260 lines
7.5 KiB
Python
Executable file
260 lines
7.5 KiB
Python
Executable file
#! python3
|
|
import logging
|
|
import os
|
|
import sqlite3
|
|
import time
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from datetime import datetime
|
|
import sys
|
|
|
|
from dotenv import load_dotenv
|
|
import pandas as pd
|
|
import requests
|
|
from bs4 import BeautifulSoup
|
|
|
|
load_dotenv()
|
|
|
|
if (os.environ.get('LOGGING_LEVEL', 'INFO') == 'INFO'):
|
|
logging_level = logging.INFO
|
|
else:
|
|
logging_level = logging.DEBUG
|
|
|
|
logging.basicConfig(
|
|
level=logging_level,
|
|
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
|
handlers=[
|
|
logging.FileHandler("app.log"),
|
|
logging.StreamHandler(sys.stdout)
|
|
]
|
|
)
|
|
logger = logging.getLogger("knack-scraper")
|
|
|
|
def table_exists(tablename: str, con: sqlite3.Connection):
|
|
query = "SELECT 1 FROM sqlite_master WHERE type='table' AND name=? LIMIT 1"
|
|
return len(con.execute(query, [tablename]).fetchall()) > 0
|
|
|
|
|
|
def split_semicolon_list(value: str):
|
|
if pd.isna(value):
|
|
return []
|
|
return [item.strip() for item in str(value).split(';') if item.strip()]
|
|
|
|
|
|
def build_dimension_and_mapping(postdf: pd.DataFrame, field_name: str, dim_col: str):
|
|
"""Extract unique dimension values and post-to-dimension mappings from a column."""
|
|
if postdf.empty or field_name not in postdf.columns:
|
|
return None, None
|
|
|
|
values = set()
|
|
mapping_rows = []
|
|
|
|
for post_id, raw in zip(postdf['id'], postdf[field_name]):
|
|
items = split_semicolon_list(raw)
|
|
for item in items:
|
|
values.add(item)
|
|
mapping_rows.append({'post_id': post_id, dim_col: item})
|
|
|
|
if not values:
|
|
return None, None
|
|
|
|
dim_df = pd.DataFrame({
|
|
'id': range(len(values)),
|
|
dim_col: sorted(values),
|
|
})
|
|
map_df = pd.DataFrame(mapping_rows)
|
|
return dim_df, map_df
|
|
|
|
|
|
def store_dimension_and_mapping(
|
|
con: sqlite3.Connection,
|
|
dim_df: pd.DataFrame | None,
|
|
map_df: pd.DataFrame | None,
|
|
table_name: str,
|
|
dim_col: str,
|
|
mapping_table: str,
|
|
mapping_id_col: str,
|
|
):
|
|
"""Persist a dimension table and its mapping table, merging with existing values."""
|
|
if dim_df is None or dim_df.empty:
|
|
return
|
|
|
|
if table_exists(table_name, con):
|
|
existing = pd.read_sql(f"SELECT id, {dim_col} FROM {table_name}", con)
|
|
merged = pd.concat([existing, dim_df], ignore_index=True)
|
|
merged = merged.drop_duplicates(subset=[dim_col], keep='first').reset_index(drop=True)
|
|
merged['id'] = range(len(merged))
|
|
else:
|
|
merged = dim_df.copy()
|
|
|
|
# Replace table with merged content
|
|
merged.to_sql(table_name, con, if_exists="replace", index=False)
|
|
|
|
if map_df is None or map_df.empty:
|
|
return
|
|
|
|
value_to_id = dict(zip(merged[dim_col], merged['id']))
|
|
map_df = map_df.copy()
|
|
map_df[mapping_id_col] = map_df[dim_col].map(value_to_id)
|
|
map_df = map_df[['post_id', mapping_id_col]].dropna()
|
|
map_df.to_sql(mapping_table, con, if_exists="append", index=False)
|
|
|
|
|
|
def download(id: int):
|
|
if id == 0:
|
|
return
|
|
base_url = "https://knack.news/"
|
|
url = f"{base_url}{id}"
|
|
res = requests.get(url)
|
|
|
|
# make sure we don't dos knack
|
|
time.sleep(2)
|
|
|
|
if not (200 <= res.status_code <= 300):
|
|
return
|
|
|
|
logger.debug("Found promising page with id %d!", id)
|
|
|
|
content = res.content
|
|
soup = BeautifulSoup(content, "html.parser")
|
|
|
|
pC = soup.find("div", {"class": "postContent"})
|
|
|
|
if pC is None:
|
|
# not a normal post
|
|
logger.debug(
|
|
"Page with id %d does not have a .pageContent-div. Skipping for now.", id
|
|
)
|
|
return
|
|
|
|
# every post has these fields
|
|
title = pC.find("h3", {"class": "postTitle"}).text
|
|
postText = pC.find("div", {"class": "postText"})
|
|
|
|
# these fields are possible but not required
|
|
# TODO: cleanup
|
|
try:
|
|
date_parts = pC.find("span", {"class": "singledate"}).text.split(' ')
|
|
day = int(date_parts[0][:-1])
|
|
months = {'Januar': 1, 'Februar': 2, 'März': 3, 'April': 4, 'Mai': 5, 'Juni': 6, 'Juli': 7, 'August': 8, 'September': 9, 'Oktober': 10, 'November': 11, 'Dezember': 12}
|
|
month = months[date_parts[1]]
|
|
year = int(date_parts[2])
|
|
parsed_date = datetime(year, month, day)
|
|
except Exception:
|
|
parsed_date = None
|
|
|
|
try:
|
|
author = pC.find("span", {"class": "author"}).text
|
|
except AttributeError:
|
|
author = None
|
|
|
|
try:
|
|
category = pC.find("span", {"class": "categoryInfo"}).find_all()
|
|
category = [c.text for c in category if c.text != 'Alle Artikel']
|
|
category = ";".join(category)
|
|
except AttributeError:
|
|
category = None
|
|
|
|
try:
|
|
tags = [x.text for x in pC.find("div", {"class": "tagsInfo"}).find_all("a")]
|
|
tags = ";".join(tags)
|
|
except AttributeError:
|
|
tags = None
|
|
|
|
img = pC.find("img", {"class": "postImage"})
|
|
if img is not None:
|
|
img = img["src"]
|
|
|
|
res_dict = {
|
|
"id": id,
|
|
"title": title,
|
|
"author": author,
|
|
"date": parsed_date,
|
|
"category": category,
|
|
"url": url,
|
|
"img_link": img,
|
|
"tags": tags,
|
|
"text": postText.text,
|
|
"html": str(postText),
|
|
"scraped_at": datetime.now(),
|
|
"is_cleaned": False
|
|
}
|
|
|
|
return res_dict
|
|
|
|
|
|
def run_downloads(min_id: int, max_id: int, num_threads: int = 8):
|
|
res = []
|
|
|
|
logger.info(
|
|
"Started parallel scrape of posts from id %d to id %d using %d threads.",
|
|
min_id,
|
|
max_id - 1,
|
|
num_threads,
|
|
)
|
|
with ThreadPoolExecutor(max_workers=num_threads) as executor:
|
|
# Use a list comprehension to create a list of futures
|
|
futures = [executor.submit(download, i) for i in range(min_id, max_id)]
|
|
|
|
for future in futures:
|
|
post = future.result()
|
|
if post is not None:
|
|
res.append(post)
|
|
|
|
postdf = pd.DataFrame(res)
|
|
return postdf
|
|
|
|
|
|
def main():
|
|
num_threads = int(os.environ.get("NUM_THREADS", 8))
|
|
n_scrapes = int(os.environ.get("NUM_SCRAPES", 100))
|
|
database_location = os.environ.get("DATABASE_LOCATION", "../data/knack.sqlite")
|
|
|
|
logger.debug(f"Started Knack Scraper: \nNUM_THREADS: {num_threads}\nN_SCRAPES: {n_scrapes}\nDATABASE_LOCATION: {database_location}")
|
|
|
|
con = sqlite3.connect(database_location)
|
|
with con:
|
|
if table_exists("posts", con):
|
|
logger.info("found posts retrieved earlier")
|
|
max_id_in_db = con.execute("SELECT MAX(id) FROM posts").fetchone()[0]
|
|
logger.info("Got max id %d!", max_id_in_db)
|
|
else:
|
|
logger.info("no posts scraped so far - starting from 0")
|
|
max_id_in_db = -1
|
|
|
|
postdf = run_downloads(
|
|
min_id=max_id_in_db + 1,
|
|
max_id=max_id_in_db + n_scrapes,
|
|
num_threads=num_threads,
|
|
)
|
|
|
|
postdf.to_sql("posts", con, if_exists="append")
|
|
|
|
# Tags
|
|
tag_dim, tag_map = build_dimension_and_mapping(postdf, 'tags', 'tag')
|
|
store_dimension_and_mapping(
|
|
con,
|
|
tag_dim,
|
|
tag_map,
|
|
table_name="tags",
|
|
dim_col="tag",
|
|
mapping_table="posttags",
|
|
mapping_id_col="tag_id",
|
|
)
|
|
|
|
# Categories
|
|
category_dim, category_map = build_dimension_and_mapping(postdf, 'category', 'category')
|
|
store_dimension_and_mapping(
|
|
con,
|
|
category_dim,
|
|
category_map,
|
|
table_name="categories",
|
|
dim_col="category",
|
|
mapping_table="postcategories",
|
|
mapping_id_col="category_id",
|
|
)
|
|
|
|
logger.info(f"scraped new entries. number of new posts: {len(postdf.index)}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|