uni-leipzig-open-access/json/ijms24076232
2024-01-25 14:46:53 +01:00

1 line
No EOL
43 KiB
Text

{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,11,2]],"date-time":"2023-11-02T08:20:54Z","timestamp":1698913254462},"reference-count":132,"publisher":"MDPI AG","issue":"7","license":[{"start":{"date-parts":[[2023,3,25]],"date-time":"2023-03-25T00:00:00Z","timestamp":1679702400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IJMS"],"abstract":"<jats:p>Three-dimensional tumor models have become established in both basic and clinical research. As multicellular systems consisting of tumor and tumor-associated cells, they can better represent tumor characteristics than monocellular 2D cultures. In this review, we highlight the potential applications of tumor spheroids and organoids in the field of urology. Further, we illustrate the generation and characteristics of standardized organoids as well as membrane-based 3D in vitro models in bladder cancer research. We discuss the technical aspects and review the initial successes of molecular analyses in the three major urologic tumor entities: urinary bladder carcinoma (BCa), prostate carcinoma (PCa), and renal cell carcinoma (RCC).<\/jats:p>","DOI":"10.3390\/ijms24076232","type":"journal-article","created":{"date-parts":[[2023,3,27]],"date-time":"2023-03-27T08:05:40Z","timestamp":1679904340000},"page":"6232","source":"Crossref","is-referenced-by-count":3,"title":["3D Tumor Models in Urology"],"prefix":"10.3390","volume":"24","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-2484-6994","authenticated-orcid":false,"given":"Jochen","family":"Neuhaus","sequence":"first","affiliation":[{"name":"Department of Urology, Research Laboratory, University Leipzig, D-04103 Leipzig, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0124-4878","authenticated-orcid":false,"given":"Anja","family":"Rabien","sequence":"additional","affiliation":[{"name":"Department of Urology, Charit\u00e9-Universit\u00e4tsmedizin Berlin, Campus Charit\u00e9 Mitte, Charit\u00e9platz 1, D-10117 Berlin, Germany"}]},{"given":"Annabell","family":"Reinhold","sequence":"additional","affiliation":[{"name":"Department of Urology, Research Laboratory, University Leipzig, D-04103 Leipzig, Germany"}]},{"given":"Lisa","family":"Koehler","sequence":"additional","affiliation":[{"name":"Department of Urology, Charit\u00e9-Universit\u00e4tsmedizin Berlin, Campus Charit\u00e9 Mitte, Charit\u00e9platz 1, D-10117 Berlin, Germany"},{"name":"Institute of Environmental Science and Geography, University of Potsdam, D-14476 Potsdam, Germany"}]},{"given":"Mandy","family":"Berndt-Paetz","sequence":"additional","affiliation":[{"name":"Department of Urology, Research Laboratory, University Leipzig, D-04103 Leipzig, Germany"}]}],"member":"1968","published-online":{"date-parts":[[2023,3,25]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"1506","DOI":"10.1111\/j.1464-410X.2007.06795.x","article-title":"Differentiation potential of urothelium from patients with benign bladder dysfunction","volume":"99","author":"Southgate","year":"2007","journal-title":"BJU Int."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"1423","DOI":"10.1016\/j.eururo.2008.03.068","article-title":"Generation of a Functional, Differentiated Porcine Urothelial Tissue In Vitro","volume":"54","author":"Turner","year":"2008","journal-title":"Eur. Urol."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"1238","DOI":"10.1038\/s41598-018-19690-7","article-title":"A urine-dependent human urothelial organoid offers a potential alternative to rodent models of infection","volume":"8","author":"Horsley","year":"2018","journal-title":"Sci. Rep."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s13287-021-02512-5","article-title":"Impact of human adipose tissue-derived stem cells on dermatofibrosarcoma protuberans cells in an indirect co-culture: An in vitro study","volume":"12","author":"Yuan","year":"2021","journal-title":"Stem Cell Res. Ther."},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Zhang, M., Xu, M.X., Zhou, Z., Zhang, K., Zhou, J., Zhao, Y., Wang, Z., and Lu, M.J. (2014). The differentiation of human adipose-derived stem cells towards a urothelium-like phenotype in vitro and the dynamic temporal changes of related cytokines by both paracrine and autocrine signal regulation. PLoS ONE, 9.","DOI":"10.1371\/journal.pone.0095583"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"1586","DOI":"10.1016\/j.cell.2016.05.082","article-title":"Modeling Development and Disease with Organoids","volume":"165","author":"Clevers","year":"2016","journal-title":"Cell"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"787","DOI":"10.1002\/jez.1400090405","article-title":"The outgrowth of the nerve fiber as a mode of protoplasmic movement","volume":"9","author":"Harrison","year":"1910","journal-title":"J. Exp. Zool."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12964-019-0505-5","article-title":"Cancer-associated fibroblasts promote prostate tumor growth and progression through upregulation of cholesterol and steroid biosynthesis","volume":"18","author":"Neuwirt","year":"2020","journal-title":"Cell Commun. Signal."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"1520","DOI":"10.1111\/jphp.13145","article-title":"Assessing the cytotoxic potential of glycoalkaloidic extract in nanoparticles against bladder cancer cells","volume":"71","author":"Miranda","year":"2019","journal-title":"J. Pharm. Pharmacol."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"605","DOI":"10.3389\/fphys.2017.00605","article-title":"Comparative Analysis of 3D Bladder Tumor Spheroids Obtained by Forced Floating and Hanging Drop Methods for Drug Screening","volume":"8","author":"Amaral","year":"2017","journal-title":"Front. Physiol."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"1424","DOI":"10.1002\/pros.23404","article-title":"Estradiol promotes epithelial-to-mesenchymal transition in human benign prostatic epithelial cells","volume":"77","author":"Shi","year":"2017","journal-title":"Prostate"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"720","DOI":"10.1095\/biolreprod.116.143446","article-title":"Three-dimensional testicular organoid: A novel tool for the study of human spermatogenesis and gonadotoxicity in vitro","volume":"96","author":"Pendergraft","year":"2017","journal-title":"Biol. Reprod."},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Eder, T., Weber, A., Neuwirt, H., Gr\u00fcnbacher, G., Ploner, C., Klocker, H., Sampson, N., and Eder, I.E. (2016). Cancer-Associated Fibroblasts Modify the Response of Prostate Cancer Cells to Androgen and Anti-Androgens in Three-Dimensional Spheroid Culture. Int. J. Mol. Sci., 17.","DOI":"10.3390\/ijms17091458"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"3739251","DOI":"10.1155\/2018\/3739251","article-title":"The Potential of Fluocinolone Acetonide to Mitigate Inflammation and Lipid Accumulation in 2D and 3D Foam Cell Cultures","volume":"2018","author":"Nguyen","year":"2018","journal-title":"Biomed. Res. Int."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"5682","DOI":"10.1167\/iovs.18-25054","article-title":"The Effect of Corticosteroids on Human Choroidal Endothelial Cells: A Model to Study Central Serous Chorioretinopathy","volume":"59","author":"Brinks","year":"2018","journal-title":"Invest Ophthalmol. Vis. Sci."},{"key":"ref_16","doi-asserted-by":"crossref","unstructured":"Jun, D.Y., Kim, S.Y., Na, J.C., Lee, H.H., Kim, J., Yoon, Y.E., Hong, S.J., and Han, W.K. (2018). Tubular organotypic culture model of human kidney. PLoS ONE, 13.","DOI":"10.1371\/journal.pone.0206447"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.canlet.2017.02.018","article-title":"Efficacy of photochemical internalisation using disulfonated chlorin and porphyrin photosensitisers: An in vitro study in 2D and 3D prostate cancer models","volume":"393","author":"Woodhams","year":"2017","journal-title":"Cancer Lett."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"304","DOI":"10.1016\/j.isci.2019.01.028","article-title":"Prostate Stroma Increases the Viability and Maintains the Branching Phenotype of Human Prostate Organoids","volume":"12","author":"Richards","year":"2019","journal-title":"iScience"},{"key":"ref_19","doi-asserted-by":"crossref","unstructured":"Georgakopoulos, N., Prior, N., Angres, B., Mastrogiovanni, G., Cagan, A., Harrison, D., Hindley, C.J., Arnes-Benito, R., Liau, S.-S., and Curd, A. (2020). Long-term expansion, genomic stability and in vivo safety of adult human pancreas organoids. BMC Dev. Biol., 20.","DOI":"10.1186\/s12861-020-0209-5"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"e1800249","DOI":"10.1002\/mabi.201800249","article-title":"Self-Assembling Peptide Gels for 3D Prostate Cancer Spheroid Culture","volume":"19","author":"Georgakopoulos","year":"2019","journal-title":"Macromol. Biosci."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"3334","DOI":"10.1073\/pnas.90.8.3334","article-title":"Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane","volume":"90","author":"Zhang","year":"1993","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1080\/09205063.2018.1505264","article-title":"Bioactive 3D scaffolds self-assembled from phosphorylated mimicking peptide amphiphiles to enhance osteogenesis","volume":"30","author":"Liang","year":"2019","journal-title":"J. Biomater. Sci. Polym. Ed"},{"key":"ref_23","unstructured":"Rasband, W.S. (2023, March 01). ImageJ. U.S. National Institutes of Health, Available online: http:\/\/rsb.info.nih.gov\/ij\/."},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Amaral, R., Zimmermann, M., Ma, A.H., Zhang, H., Swiech, K., and Pan, C.X. (2020). A Simple Three-Dimensional In Vitro Culture Mimicking the In Vivo-Like Cell Behavior of Bladder Patient-Derived Xenograft Models. Cancers, 12.","DOI":"10.3390\/cancers12051304"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"784","DOI":"10.1111\/jcmm.16132","article-title":"Combined inhibition of Ref-1 and STAT3 leads to synergistic tumour inhibition in multiple cancers using 3D and in vivo tumour co-culture models","volume":"25","author":"Caston","year":"2021","journal-title":"J. Cell Mol. Med."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1089\/ten.tea.2019.0045","article-title":"Hypoxia-Preconditioned Adipose-Derived Endothelial Progenitor Cells Promote Bladder Augmentation","volume":"26","author":"Zhao","year":"2020","journal-title":"Tissue Eng. Part A"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1016\/j.actbio.2019.11.026","article-title":"Urethra-inspired biomimetic scaffold: A therapeutic strategy to promote angiogenesis for urethral regeneration in a rabbit model","volume":"102","author":"Wang","year":"2020","journal-title":"Acta Biomater."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"055005","DOI":"10.1088\/1748-6041\/10\/5\/055005","article-title":"Urethral reconstruction with a 3D porous bacterial cellulose scaffold seeded with lingual keratinocytes in a rabbit model","volume":"10","author":"Huang","year":"2015","journal-title":"Biomed. Mater."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"2041731421998840","DOI":"10.1177\/2041731421998840","article-title":"Augmentation of the insufficient tissue bed for surgical repair of hypospadias using acellular matrix grafts: A proof of concept study","volume":"12","author":"Morgante","year":"2021","journal-title":"J. Tissue Eng."},{"key":"ref_30","doi-asserted-by":"crossref","unstructured":"Zhang, J., Wehrle, E., Rubert, M., and M\u00fcller, R. (2021). 3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors. Int. J. Mol. Sci., 22.","DOI":"10.3390\/ijms22083971"},{"key":"ref_31","doi-asserted-by":"crossref","unstructured":"Kim, M.J., Chi, B.H., Yoo, J.J., Ju, Y.M., Whang, Y.M., and Chang, I.H. (2019). Structure establishment of three-dimensional (3D) cell culture printing model for bladder cancer. PLoS ONE, 14.","DOI":"10.1371\/journal.pone.0223689"},{"key":"ref_32","doi-asserted-by":"crossref","unstructured":"Berg, J., Weber, Z., Fechler-Bitteti, M., Hocke, A.C., Hippenstiel, S., Elomaa, L., Weinhart, M., and Kurreck, J. (2021). Bioprinted Multi-Cell Type Lung Model for the Study of Viral Inhibitors. Viruses, 13.","DOI":"10.3390\/v13081590"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"2102624","DOI":"10.1002\/adma.202102624","article-title":"Production of Multiple Cell-Laden Microtissue Spheroids with a Biomimetic Hepatic-Lobule-Like Structure","volume":"33","author":"Hong","year":"2021","journal-title":"Adv. Mater."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"154","DOI":"10.1016\/j.actbio.2016.12.008","article-title":"3D bioprinting of urethra with PCL\/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment","volume":"50","author":"Zhang","year":"2017","journal-title":"Acta Biomater."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"664404","DOI":"10.3389\/fsurg.2021.664404","article-title":"Current Applications and Future Directions of Bioengineering Approaches for Bladder Augmentation and Reconstruction","volume":"8","author":"Wang","year":"2021","journal-title":"Front. Surg."},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Kim, J.H., Lee, S., Kang, S.J., Choi, Y.W., Choi, S.Y., Park, J.Y., and Chang, I.H. (2021). Establishment of Three-Dimensional Bioprinted Bladder Cancer-on-a-Chip with a Microfluidic System Using Bacillus Calmette-Gu\u00e9rin. Int. J. Mol. Sci., 22.","DOI":"10.3390\/ijms22168887"},{"key":"ref_37","doi-asserted-by":"crossref","unstructured":"Zhang, Z., Wang, H., Ding, Q., Xing, Y., Xu, Z., Lu, C., Luo, D., Xu, L., Xia, W., and Zhou, C. (2018). Establishment of patient-derived tumor spheroids for non-small cell lung cancer. PLoS ONE, 13.","DOI":"10.1371\/journal.pone.0194016"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"1399","DOI":"10.1016\/j.drudis.2016.07.003","article-title":"Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling","volume":"21","author":"Skardal","year":"2016","journal-title":"Drug Discov. Today"},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"2506","DOI":"10.1016\/j.bbagen.2014.01.010","article-title":"Extracellular matrix: A dynamic microenvironment for stem cell niche","volume":"1840","author":"Gattazzo","year":"2014","journal-title":"Biochim. Biophys. Acta"},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"647","DOI":"10.1038\/nrm3873","article-title":"Three-dimensional organotypic culture: Experimental models of mammalian biology and disease","volume":"15","author":"Shamir","year":"2014","journal-title":"Nat. Rev. Mol. Cell Biol."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1016\/j.addr.2014.10.015","article-title":"Modeling human carcinomas: Physiologically relevant 3D models to improve anti-cancer drug development","volume":"79\u201380","author":"Unger","year":"2014","journal-title":"Adv. Drug Deliv. Rev."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1038\/embor.2011.249","article-title":"Suppression of Rac1 activity at the apical membrane of MDCK cells is essential for cyst structure maintenance","volume":"13","author":"Yagi","year":"2012","journal-title":"EMBO Rep."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"750","DOI":"10.1128\/IAI.74.1.750-757.2006","article-title":"Novel three-dimensional organoid model for evaluation of the interaction of uropathogenic Escherichia coli with terminally differentiated human urothelial cells","volume":"74","author":"Smith","year":"2006","journal-title":"Infect. Immun."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"1601","DOI":"10.1002\/pros.20628","article-title":"Culture requirements of prostatic epithelial cell lines for acinar morphogenesis and lumen formation in vitro: Role of extracellular calcium","volume":"67","author":"Tyson","year":"2007","journal-title":"Prostate"},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1038\/nrurol.2017.19","article-title":"Patient-derived xenografts as in vivo models for research in urological malignancies","volume":"14","author":"Inoue","year":"2017","journal-title":"Nat. Rev. Urol."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"401","DOI":"10.1038\/nrurol.2017.65","article-title":"The potential of organoids in urological cancer research","volume":"14","author":"Wang","year":"2017","journal-title":"Nat. Rev. Urol."},{"key":"ref_47","doi-asserted-by":"crossref","unstructured":"Okada, S., Vaeteewoottacharn, K., and Kariya, R. (2019). Application of Highly Immunocompromised Mice for the Establishment of Patient-Derived Xenograft (PDX) Models. Cells, 8.","DOI":"10.20944\/preprints201906.0002.v1"},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"76374","DOI":"10.18632\/oncotarget.13062","article-title":"Genomic profiling is predictive of response to cisplatin treatment but not to PI3K inhibition in bladder cancer patient-derived xenografts","volume":"7","author":"Wei","year":"2016","journal-title":"Oncotarget"},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"324","DOI":"10.1016\/j.trsl.2015.02.001","article-title":"Patient-derived bladder cancer xenografts: A systematic review","volume":"166","author":"Bernardo","year":"2015","journal-title":"Transl. Res."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"e5981","DOI":"10.7717\/peerj.5981","article-title":"A systematic review of the validity of patient derived xenograft (PDX) models: The implications for translational research and personalised medicine","volume":"6","author":"Collins","year":"2018","journal-title":"PeerJ"},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"998","DOI":"10.1158\/2159-8290.CD-14-0001","article-title":"Patient-derived xenograft models: An emerging platform for translational cancer research","volume":"4","author":"Hidalgo","year":"2014","journal-title":"Cancer Discov."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"166","DOI":"10.3389\/fcell.2020.00166","article-title":"Modeling Cell Communication in Cancer with Organoids: Making the Complex Simple","volume":"8","author":"Fiorini","year":"2020","journal-title":"Front. Cell Dev. Biol."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"e95","DOI":"10.1002\/ctm2.95","article-title":"Conditional reprogramming: Modeling urological cancer and translation to clinics","volume":"10","author":"Liu","year":"2020","journal-title":"Clin. Transl. Med."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1186\/s12943-021-01426-3","article-title":"Patient derived organoids in prostate cancer: Improving therapeutic efficacy in precision medicine","volume":"20","author":"Pamarthy","year":"2021","journal-title":"Mol. Cancer"},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"464","DOI":"10.1038\/22780","article-title":"Creation of human tumour cells with defined genetic elements","volume":"400","author":"Hahn","year":"1999","journal-title":"Nature"},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1002\/term.1923","article-title":"Qualifying stem cell sources: How to overcome potential pitfalls in regenerative medicine","volume":"10","author":"Reinke","year":"2016","journal-title":"J. Tissue Eng. Regen. Med."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1038\/nrm.2016.8","article-title":"A decade of transcription factor-mediated reprogramming to pluripotency","volume":"17","author":"Takahashi","year":"2016","journal-title":"Nat. Rev. Mol. Cell Biol."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"1392","DOI":"10.1038\/nm.4238","article-title":"Patient-derived induced pluripotent stem cells in cancer research and precision oncology","volume":"22","author":"Papapetrou","year":"2016","journal-title":"Nat. Med."},{"key":"ref_59","doi-asserted-by":"crossref","unstructured":"Hwang, J.W., Desterke, C., F\u00e9raud, O., Richard, S., Ferlicot, S., Verkarre, V., Patard, J.J., Loisel-Duwattez, J., Foudi, A., and Griscelli, F. (2019). iPSC-Derived Embryoid Bodies as Models of c-Met-Mutated Hereditary Papillary Renal Cell Carcinoma. Int. J. Mol. Sci., 20.","DOI":"10.3390\/ijms20194867"},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"377","DOI":"10.1038\/s41576-019-0100-z","article-title":"Induced pluripotent stem cells in disease modelling and drug discovery","volume":"20","author":"Rowe","year":"2019","journal-title":"Nat. Rev. Genet."},{"key":"ref_61","doi-asserted-by":"crossref","unstructured":"Palechor-Ceron, N., Krawczyk, E., Dakic, A., Simic, V., Yuan, H., Blancato, J., Wang, W., Hubbard, F., Zheng, Y.L., and Dan, H. (2019). Conditional Reprogramming for Patient-Derived Cancer Models and Next-Generation Living Biobanks. Cells, 8.","DOI":"10.3390\/cells8111327"},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1186\/s12943-017-0745-1","article-title":"Generation of stable PDX derived cell lines using conditional reprogramming","volume":"16","author":"Borodovsky","year":"2017","journal-title":"Mol. Cancer"},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1016\/j.bbrc.2019.06.165","article-title":"Fidelity of a PDX-CR model for bladder cancer","volume":"517","author":"Mondal","year":"2019","journal-title":"Biochem. Biophys. Res. Commun."},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"430","DOI":"10.1016\/j.eururo.2019.06.016","article-title":"Personalized Drug Sensitivity Screening for Bladder Cancer Using Conditionally Reprogrammed Patient-derived Cells","volume":"76","author":"Kettunen","year":"2019","journal-title":"Eur. Urol."},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"5720","DOI":"10.1158\/1078-0432.CCR-20-1569","article-title":"Sildenafil Potentiates the Therapeutic Efficacy of Docetaxel in Advanced Prostate Cancer by Stimulating NO-cGMP Signaling","volume":"26","author":"Muniyan","year":"2020","journal-title":"Clin. Cancer Res."},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1038\/s42003-022-03133-1","article-title":"OTUD6A promotes prostate tumorigenesis via deubiquitinating Brg1 and AR","volume":"5","author":"Fu","year":"2022","journal-title":"Commun. Biol."},{"key":"ref_67","first-page":"3042","article-title":"CWR22: The first human prostate cancer xenograft with strongly androgen-dependent and relapsed strains both in vivo and in soft agar","volume":"56","author":"Nagabhushan","year":"1996","journal-title":"Cancer Res."},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"110109","DOI":"10.1016\/j.celrep.2021.110109","article-title":"Reduced NCOR2 expression accelerates androgen deprivation therapy failure in prostate cancer","volume":"37","author":"Long","year":"2021","journal-title":"Cell Rep."},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"1272","DOI":"10.1158\/0008-5472.CAN-13-2921-T","article-title":"High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development","volume":"74","author":"Lin","year":"2014","journal-title":"Cancer Res."},{"key":"ref_70","doi-asserted-by":"crossref","unstructured":"Ci, X., Hao, J., Dong, X., Xue, H., Wu, R., Choi, S.Y., Haegert, A.M., Collins, C.C., Liu, X., and Lin, D. (2020). Conditionally Reprogrammed Cells from Patient-Derived Xenograft to Model Neuroendocrine Prostate Cancer Development. Cells, 9.","DOI":"10.3390\/cells9061398"},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1038\/s41467-021-27322-4","article-title":"Single-cell analysis of human primary prostate cancer reveals the heterogeneity of tumor-associated epithelial cell states","volume":"13","author":"Song","year":"2022","journal-title":"Nat. Commun."},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"4332","DOI":"10.1158\/1078-0432.CCR-18-0409","article-title":"A PDX\/Organoid Biobank of Advanced Prostate Cancers Captures Genomic and Phenotypic Heterogeneity for Disease Modeling and Therapeutic Screening","volume":"24","author":"Beshiri","year":"2018","journal-title":"Clin. Cancer Res."},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"7704","DOI":"10.1038\/s41598-017-07979-y","article-title":"The miR-183 family cluster alters zinc homeostasis in benign prostate cells, organoids and prostate cancer xenografts","volume":"7","author":"Dambal","year":"2017","journal-title":"Sci. Rep."},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"7349","DOI":"10.1038\/s41467-021-26901-9","article-title":"The long noncoding RNA H19 regulates tumor plasticity in neuroendocrine prostate cancer","volume":"12","author":"Singh","year":"2021","journal-title":"Nat. Commun."},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"4586","DOI":"10.1038\/onc.2012.477","article-title":"Chromatin H3K27me3\/H3K4me3 histone marks define gene sets in high-grade serous ovarian cancer that distinguish malignant, tumour-sustaining and chemo-resistant ovarian tumour cells","volume":"32","author":"Curry","year":"2013","journal-title":"Oncogene"},{"key":"ref_76","first-page":"1107","article-title":"High-Throughput Imaging Assay for Drug Screening of 3D Prostate Cancer Organoids","volume":"26","author":"Choo","year":"2021","journal-title":"Adv. Sci. Drug Discov."},{"key":"ref_77","doi-asserted-by":"crossref","first-page":"4609","DOI":"10.1038\/s41598-021-83662-7","article-title":"A bladder cancer patient-derived xenograft displays aggressive growth dynamics in vivo and in organoid culture","volume":"11","author":"Cai","year":"2021","journal-title":"Sci. Rep."},{"key":"ref_78","doi-asserted-by":"crossref","first-page":"4567","DOI":"10.1073\/pnas.1803595116","article-title":"Mouse and human urothelial cancer organoids: A tool for bladder cancer research","volume":"116","author":"Mullenders","year":"2019","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_79","doi-asserted-by":"crossref","first-page":"515","DOI":"10.1016\/j.cell.2018.03.017","article-title":"Tumor Evolution and Drug Response in Patient-Derived Organoid Models of Bladder Cancer","volume":"173","author":"Lee","year":"2018","journal-title":"Cell"},{"key":"ref_80","doi-asserted-by":"crossref","first-page":"e1248","DOI":"10.1002\/cti2.1248","article-title":"Patient-derived organoids of bladder cancer recapitulate antigen expression profiles and serve as a personal evaluation model for CAR-T cells in vitro","volume":"10","author":"Yu","year":"2021","journal-title":"Clin. Transl. Immunology"},{"key":"ref_81","doi-asserted-by":"crossref","unstructured":"Wei, Y., Amend, B., Todenh\u00f6fer, T., Lipke, N., Aicher, W.K., Fend, F., Stenzl, A., and Harland, N. (2022). Urinary Tract Tumor Organoids Reveal Eminent Differences in Drug Sensitivities When Compared to 2-Dimensional Culture Systems. Int. J. Mol. Sci., 23.","DOI":"10.3390\/ijms23116305"},{"key":"ref_82","doi-asserted-by":"crossref","first-page":"664","DOI":"10.1038\/s41586-020-3034-x","article-title":"Creation of bladder assembloids mimicking tissue regeneration and cancer","volume":"588","author":"Kim","year":"2020","journal-title":"Nature"},{"key":"ref_83","doi-asserted-by":"crossref","first-page":"610","DOI":"10.5966\/sctm.2013-0131","article-title":"Induction of human embryonic and induced pluripotent stem cells into urothelium","volume":"3","author":"Osborn","year":"2014","journal-title":"Stem. Cells Transl. Med."},{"key":"ref_84","doi-asserted-by":"crossref","first-page":"7139","DOI":"10.3390\/ijms15057139","article-title":"Generation of bladder urothelium from human pluripotent stem cells under chemically defined serum- and feeder-free system","volume":"15","author":"Kang","year":"2014","journal-title":"Int. J. Mol. Sci."},{"key":"ref_85","doi-asserted-by":"crossref","first-page":"902","DOI":"10.1007\/s13238-019-0649-5","article-title":"Continuous culture of urine-derived bladder cancer cells for precision medicine","volume":"10","author":"Jiang","year":"2019","journal-title":"Protein. Cell"},{"key":"ref_86","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/S0248-4900(94)80013-8","article-title":"A new method for the 3-D in vitro growth of human RT112 bladder carcinoma cells using the alginate culture technique","volume":"82","author":"Boxberger","year":"1994","journal-title":"Biol. Cell"},{"key":"ref_87","first-page":"1678","article-title":"Identification of genes involved in human urothelial cell-matrix interactions: Implications for the progression pathways of malignant urothelium","volume":"61","author":"Smith","year":"2001","journal-title":"Cancer Res."},{"key":"ref_88","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1016\/j.biomaterials.2017.08.041","article-title":"Tissue-engineered human 3D model of bladder cancer for invasion study and drug discovery","volume":"145","author":"Goulet","year":"2017","journal-title":"Biomaterials"},{"key":"ref_89","doi-asserted-by":"crossref","unstructured":"Tracey, A.T., Murray, K.S., Coleman, J.A., and Kim, K. (2020). Patient-Derived Xenograft Models in Urological Malignancies: Urothelial Cell Carcinoma and Renal Cell Carcinoma. Cancers, 12.","DOI":"10.3390\/cancers12020439"},{"key":"ref_90","doi-asserted-by":"crossref","first-page":"137ra75","DOI":"10.1126\/scitranslmed.3003643","article-title":"A validated tumorgraft model reveals activity of dovitinib against renal cell carcinoma","volume":"4","author":"Sivanand","year":"2012","journal-title":"Sci. Transl. Med."},{"key":"ref_91","doi-asserted-by":"crossref","first-page":"1537","DOI":"10.1096\/fj.201700740R","article-title":"Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy","volume":"32","author":"Wang","year":"2018","journal-title":"FASEB J."},{"key":"ref_92","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1007\/978-1-4939-8600-2_6","article-title":"Three-Dimensional Cell Culture Model Utilization in Renal Carcinoma Cancer Stem Cell Research","volume":"1817","author":"Brodaczewska","year":"2018","journal-title":"Methods Mol. Biol."},{"key":"ref_93","doi-asserted-by":"crossref","first-page":"1302","DOI":"10.3389\/fonc.2019.01302","article-title":"Spheroid-Derived Cells From Renal Adenocarcinoma Have Low Telomerase Activity and High Stem-Like and Invasive Characteristics","volume":"9","author":"Zanjani","year":"2019","journal-title":"Front. Oncol."},{"key":"ref_94","doi-asserted-by":"crossref","first-page":"17076","DOI":"10.1038\/s41598-021-96288-6","article-title":"Single cell organization and cell cycle characterization of DNA stained multicellular tumor spheroids","volume":"11","author":"Olofsson","year":"2021","journal-title":"Sci. Rep."},{"key":"ref_95","doi-asserted-by":"crossref","unstructured":"Batchelder, C.A., Martinez, M.L., and Tarantal, A.F. (2015). Natural Scaffolds for Renal Differentiation of Human Embryonic Stem Cells for Kidney Tissue Engineering. PLoS ONE, 10.","DOI":"10.1371\/journal.pone.0143849"},{"key":"ref_96","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1038\/s41419-019-1453-0","article-title":"Organoids as a new model for improving regenerative medicine and cancer personalized therapy in renal diseases","volume":"10","author":"Grassi","year":"2019","journal-title":"Cell Death Dis."},{"key":"ref_97","doi-asserted-by":"crossref","first-page":"216","DOI":"10.4111\/icu.2020.61.2.216","article-title":"Establishment of patient-derived three-dimensional organoid culture in renal cell carcinoma","volume":"61","author":"Na","year":"2020","journal-title":"Investig. Clin. Urol."},{"key":"ref_98","doi-asserted-by":"crossref","first-page":"152","DOI":"10.1016\/j.euf.2019.06.009","article-title":"Tracing Clonal Dynamics Reveals that Two- and Three-dimensional Patient-derived Cell Models Capture Tumor Heterogeneity of Clear Cell Renal Cell Carcinoma","volume":"7","author":"Bolck","year":"2021","journal-title":"Eur. Urol. Focus"},{"key":"ref_99","doi-asserted-by":"crossref","unstructured":"Nyga, A., Stamati, K., Redondo, P.A., Azimi, T., Feber, A., Neves, J.B., Hamoudi, R., Presneau, N., El Sheikh, S., and Tran, M.G.B. (2022). Renal tumouroids: Challenges of manufacturing 3D cultures from patient derived primary cells. J. Cell Commun. Signal.","DOI":"10.1007\/s12079-022-00666-2"},{"key":"ref_100","doi-asserted-by":"crossref","first-page":"1775","DOI":"10.3389\/fonc.2020.01775","article-title":"Cultivation of Clear Cell Renal Cell Carcinoma Patient-Derived Organoids in an Air-Liquid Interface System as a Tool for Studying Individualized Therapy","volume":"10","author":"Esser","year":"2020","journal-title":"Front. Oncol."},{"key":"ref_101","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1038\/s41563-021-01057-5","article-title":"Next-generation cancer organoids","volume":"21","author":"LeSavage","year":"2022","journal-title":"Nat. Mater."},{"key":"ref_102","doi-asserted-by":"crossref","first-page":"222","DOI":"10.1089\/bio.2019.0062","article-title":"Cryopreservation of Viable Human Tissues: Renewable Resource for Viable Tissue, Cell Lines, and Organoid Development","volume":"18","author":"He","year":"2020","journal-title":"Biopreserv. Biobank."},{"key":"ref_103","doi-asserted-by":"crossref","first-page":"1310","DOI":"10.1038\/s41467-020-15155-6","article-title":"An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity","volume":"11","author":"Calandrini","year":"2020","journal-title":"Nat. Commun."},{"key":"ref_104","doi-asserted-by":"crossref","first-page":"929","DOI":"10.1038\/s41467-020-14700-7","article-title":"Inhibiting WNT and NOTCH in renal cancer stem cells and the implications for human patients","volume":"11","author":"Fendler","year":"2020","journal-title":"Nat. Commun."},{"key":"ref_105","doi-asserted-by":"crossref","first-page":"e883","DOI":"10.1002\/ctm2.883","article-title":"Nicotinamide-N-methyltransferase is a promising metabolic drug target for primary and metastatic clear cell renal cell carcinoma","volume":"12","author":"Reustle","year":"2022","journal-title":"Clin. Transl. Med."},{"key":"ref_106","doi-asserted-by":"crossref","unstructured":"Rausch, M., Rutz, A., Allard, P.-M., Delucinge-Vivier, C., Docquier, M., Dormond, O., Dyson, P., Wolfender, J.-L., and Nowak-Sliwinska, P. (2021). Drug Repurposing to Identify a Synergistic High-Order Drug Combination to Treat Sunitinib-Resistant Renal Cell Carcinoma. Cancers, 13.","DOI":"10.3390\/cancers13163978"},{"key":"ref_107","doi-asserted-by":"crossref","first-page":"F33","DOI":"10.1152\/ajprenal.00141.2021","article-title":"Three-dimensional coculture provides an improved in vitro model for papillary renal cell carcinoma","volume":"321","author":"Rosette","year":"2021","journal-title":"Am. J. Physiol. Renal. Physiol."},{"key":"ref_108","doi-asserted-by":"crossref","first-page":"1266","DOI":"10.1158\/1535-7163.MCT-19-0174","article-title":"Cabozantinib Reverses Renal Cell Carcinoma-mediated Osteoblast Inhibition in Three-dimensional Coculture In Vitro and Reduces Bone Osteolysis In Vivo","volume":"19","author":"Pan","year":"2020","journal-title":"Mol. Cancer Ther."},{"key":"ref_109","doi-asserted-by":"crossref","unstructured":"Grote, S., Traub, F., Mittelstaet, J., Seitz, C., Kaiser, A., Handgretinger, R., and Schleicher, S. (2021). Adapter Chimeric Antigen Receptor (AdCAR)-Engineered NK-92 Cells for the Multiplex Targeting of Bone Metastases. Cancers, 13.","DOI":"10.3390\/cancers13051124"},{"key":"ref_110","doi-asserted-by":"crossref","unstructured":"Belhabib, I., Zaghdoudi, S., Lac, C., Bousquet, C., and Jean, C. (2021). Extracellular Matrices and Cancer-Associated Fibroblasts: Targets for Cancer Diagnosis and Therapy. Cancers, 13.","DOI":"10.3390\/cancers13143466"},{"key":"ref_111","doi-asserted-by":"crossref","first-page":"119283","DOI":"10.1016\/j.biomaterials.2019.119283","article-title":"VEGF\u2014Supplemented extracellular matrix is sufficient to induce endothelial differentiation of human iPSC","volume":"216","author":"Ullah","year":"2019","journal-title":"Biomaterials"},{"key":"ref_112","doi-asserted-by":"crossref","unstructured":"Trivedi, P., Liu, R., Bi, H., Xu, C., Rosenholm, J.M., and \u00c5kerfelt, M. (2021). 3D Modeling of Epithelial Tumors-The Synergy between Materials Engineering, 3D Bioprinting, High-Content Imaging, and Nanotechnology. Int. J. Mol. Sci., 22.","DOI":"10.3390\/ijms22126225"},{"key":"ref_113","doi-asserted-by":"crossref","first-page":"715","DOI":"10.1002\/pros.23985","article-title":"Interaction between prostate cancer cells and prostate fibroblasts promotes accumulation and proteolytic processing of basement membrane proteins","volume":"80","author":"Ojalill","year":"2020","journal-title":"Prostate"},{"key":"ref_114","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1080\/19336918.2015.1005463","article-title":"Tenascin-C and carcinoma cell invasion in oral and urinary bladder cancer","volume":"9","author":"Berndt","year":"2015","journal-title":"Cell Adh. Migr."},{"key":"ref_115","doi-asserted-by":"crossref","first-page":"601","DOI":"10.1177\/1535370214560973","article-title":"Metastatic bladder cancer cells distinctively sense and respond to physical cues of collagen fibril-mimetic nanotopography","volume":"240","author":"Iuliano","year":"2015","journal-title":"Exp. Biol. Med."},{"key":"ref_116","doi-asserted-by":"crossref","first-page":"36128","DOI":"10.1038\/srep36128","article-title":"Linearized texture of three-dimensional extracellular matrix is mandatory for bladder cancer cell invasion","volume":"6","author":"Alfano","year":"2016","journal-title":"Sci. Rep."},{"key":"ref_117","doi-asserted-by":"crossref","first-page":"3441","DOI":"10.2147\/OTT.S194568","article-title":"Collagen stiffness promoted non-muscle-invasive bladder cancer progression to muscle-invasive bladder cancer","volume":"12","author":"Zhu","year":"2019","journal-title":"Onco Targets Ther."},{"key":"ref_118","doi-asserted-by":"crossref","first-page":"BSR20194192","DOI":"10.1042\/BSR20194192","article-title":"Extracellular matrix-related genes play an important role in the progression of NMIBC to MIBC: A bioinformatics analysis study","volume":"40","author":"Zhang","year":"2020","journal-title":"Biosci. Rep."},{"key":"ref_119","doi-asserted-by":"crossref","first-page":"4253","DOI":"10.1007\/s11033-021-06440-8","article-title":"Transitional cell carcinoma matrix stiffness regulates the osteopontin and YAP expression in recurrent patients","volume":"48","author":"Ghasemi","year":"2021","journal-title":"Mol. Biol. Rep."},{"key":"ref_120","doi-asserted-by":"crossref","unstructured":"Bond, K.H., Chiba, T., Wynne, K.P.H., Vary, C.P.H., Sims-Lucas, S., Coburn, J.M., and Oxburgh, L. (2021). The Extracellular Matrix Environment of Clear Cell Renal Cell Carcinoma Determines Cancer Associated Fibroblast Growth. Cancers, 13.","DOI":"10.3390\/cancers13235873"},{"key":"ref_121","doi-asserted-by":"crossref","unstructured":"Salo, T., Sutinen, M., Hoque Apu, E., Sundquist, E., Cervigne, N.K., De Oliveira, C.E., Akram, S.U., Ohlmeier, S., Suomi, F., and Eklund, L. (2015). A novel human leiomyoma tissue derived matrix for cell culture studies. BMC Cancer, 15.","DOI":"10.1186\/s12885-015-1944-z"},{"key":"ref_122","doi-asserted-by":"crossref","first-page":"353","DOI":"10.1016\/j.yexcr.2018.06.037","article-title":"Desmoglein 3\u2014Influence on oral carcinoma cell migration and invasion","volume":"370","author":"Akram","year":"2018","journal-title":"Exp. Cell Res."},{"key":"ref_123","doi-asserted-by":"crossref","unstructured":"Merivaara, A., Koivunotko, E., Manninen, K., Kaseva, T., Monola, J., Salli, E., Koivuniemi, R., Savolainen, S., Valkonen, S., and Yliperttula, M. (2022). Stiffness-Controlled Hydrogels for 3D Cell Culture Models. Polymers, 14.","DOI":"10.3390\/polym14245530"},{"key":"ref_124","doi-asserted-by":"crossref","first-page":"902","DOI":"10.1186\/s40064-016-2629-z","article-title":"Impact of adjustable cryogel properties on the performance of prostate cancer cells in 3D","volume":"5","author":"Sturm","year":"2016","journal-title":"Springerplus"},{"key":"ref_125","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1093\/intbio\/zyac016","article-title":"A kidney proximal tubule model to evaluate effects of basement membrane stiffening on renal tubular epithelial cells","volume":"14","author":"Wang","year":"2022","journal-title":"Integr. Biol."},{"key":"ref_126","doi-asserted-by":"crossref","unstructured":"Millet, M., Bollmann, E., Goulet, C.R., Bernard, G., Chabaud, S., Huot, M., Pouliot, F., Bolduc, S., and Bordeleau, F. (2022). Cancer-Associated Fibroblasts in a 3D Engineered Tissue Model Induce Tumor-like Matrix Stiffening and EMT Transition. Cancers, 14.","DOI":"10.3390\/cancers14153810"},{"key":"ref_127","doi-asserted-by":"crossref","first-page":"149","DOI":"10.1007\/s10616-018-0273-x","article-title":"Development of extracellular matrix supported 3D culture of renal cancer cells and renal cancer stem cells","volume":"71","author":"Brodaczewska","year":"2019","journal-title":"Cytotechnology"},{"key":"ref_128","doi-asserted-by":"crossref","first-page":"1114","DOI":"10.1007\/s11427-017-9178-y","article-title":"Hypoxia inducible factor (HIF) in the tumor microenvironment: Friend or foe","volume":"60","author":"Huang","year":"2017","journal-title":"Sci. China Life Sci."},{"key":"ref_129","doi-asserted-by":"crossref","first-page":"1901198","DOI":"10.1002\/advs.201901198","article-title":"Adult Tissue Extracellular Matrix Determines Tissue Specification of Human iPSC-Derived Embryonic Stage Mesodermal Precursor Cells","volume":"7","author":"Ullah","year":"2020","journal-title":"Adv. Sci."},{"key":"ref_130","doi-asserted-by":"crossref","first-page":"300","DOI":"10.7150\/thno.38736","article-title":"Metastasis-on-a-chip mimicking the progression of kidney cancer in the liver for predicting treatment efficacy","volume":"10","author":"Wang","year":"2020","journal-title":"Theranostics"},{"key":"ref_131","doi-asserted-by":"crossref","unstructured":"Kolb, A.D., and Bussard, K.M. (2019). The Bone Extracellular Matrix as an Ideal Milieu for Cancer Cell Metastases. Cancers, 11.","DOI":"10.3390\/cancers11071020"},{"key":"ref_132","doi-asserted-by":"crossref","unstructured":"Hughes, A.M., Kolb, A.D., Shupp, A.B., Shine, K.M., and Bussard, K.M. (2021). Printing the Pathway Forward in Bone Metastatic Cancer Research: Applications of 3D Engineered Models and Bioprinted Scaffolds to Recapitulate the Bone-Tumor Niche. Cancers, 13.","DOI":"10.3390\/cancers13030507"}],"container-title":["International Journal of Molecular Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1422-0067\/24\/7\/6232\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,29]],"date-time":"2023-03-29T04:16:49Z","timestamp":1680063409000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1422-0067\/24\/7\/6232"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3,25]]},"references-count":132,"journal-issue":{"issue":"7","published-online":{"date-parts":[[2023,4]]}},"alternative-id":["ijms24076232"],"URL":"http:\/\/dx.doi.org\/10.3390\/ijms24076232","relation":{},"ISSN":["1422-0067"],"issn-type":[{"value":"1422-0067","type":"electronic"}],"subject":["Inorganic Chemistry","Organic Chemistry","Physical and Theoretical Chemistry","Computer Science Applications","Spectroscopy","Molecular Biology","General Medicine","Catalysis"],"published":{"date-parts":[[2023,3,25]]}}}