Adds basic code for searchable tf-idf matrix

This commit is contained in:
procrastimax 2023-06-23 19:19:19 +02:00
parent 2684b4b8c7
commit 12cfbc5222
2 changed files with 44 additions and 0 deletions

View file

@ -22,6 +22,8 @@ date_first_tweet = datetime.strptime(tweets_all_combined['created_at'].min(), da
date_last_tweet = datetime.strptime(tweets_all_combined['created_at'].max(), date_format_str) date_last_tweet = datetime.strptime(tweets_all_combined['created_at'].max(), date_format_str)
day_diff = (date_last_tweet - date_first_tweet).days day_diff = (date_last_tweet - date_first_tweet).days
print(date_last_tweet)
def hr_func(ts): def hr_func(ts):
return ts.hour return ts.hour

42
src/search_index.py Normal file
View file

@ -0,0 +1,42 @@
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
tweet_path = "data/tweets_all_combined.csv"
tweets = pd.read_csv(tweet_path)
print(tweets.head())
print(f"shape: {tweets.shape}")
print(f"keys: {tweets.keys()}")
vectorizer = TfidfVectorizer()
model = vectorizer.fit_transform([x.lower() for x in tweets["tweet_text"]])
query = "@dima973"
query_vec = vectorizer.transform([query])
similarity = cosine_similarity(query_vec, model).flatten()
# only return stuff if there is acatually a good match for it
match_idx = np.where(similarity != 0)[0]
indices = np.argsort(-similarity[match_idx])
correct_indices = match_idx[indices]
result = tweets.iloc[correct_indices]
like_count_weight = 1.0
retweet_count_weight = 1.0
reply_count_weight = 1.0
quote_count_weight = 1.0
# TODO: maybe come up with a more intelligent relevancy_score calculation
tweets["relevancy_score"] = np.log(1 + (tweets["like_count"] * like_count_weight) + (tweets["retweet_count"] * retweet_count_weight) + (tweets["reply_count"] * reply_count_weight) + (tweets["quote_count"] * quote_count_weight))
result = tweets.iloc[correct_indices]
overall = result["relevancy_score"] * similarity[correct_indices]
print(result.loc[overall.sort_values(ascending=False).index][["tweet_text", "like_count", "retweet_count", "reply_count", "quote_count", "relevancy_score"]].head())
# TODO: save trained TfidfVectorizer matrix as pickle
# TODO: save csv with relevancy score