1 line
No EOL
59 KiB
Text
1 line
No EOL
59 KiB
Text
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,12,13]],"date-time":"2023-12-13T00:35:20Z","timestamp":1702427720396},"reference-count":135,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2023,5,5]],"date-time":"2023-05-05T00:00:00Z","timestamp":1683244800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2023,5,5]],"date-time":"2023-05-05T00:00:00Z","timestamp":1683244800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100004189","name":"Max-Planck-Gesellschaft","doi-asserted-by":"publisher"},{"DOI":"10.13039\/501100002347","name":"Bundesministerium f\u00fcr Bildung und Forschung","doi-asserted-by":"publisher","award":["01LK1602A","01LK1602B","01LK2101B"]},{"DOI":"10.13039\/501100008138","name":"Ministry of Science, Technology and Innovation | Ag\u00eancia Espacial Brasileira","doi-asserted-by":"publisher","award":["01.11.01248.00"]},{"DOI":"10.13039\/501100003593","name":"Ministry of Science, Technology and Innovation | Conselho Nacional de Desenvolvimento Cient\u00edfico e Tecnol\u00f3gico","doi-asserted-by":"publisher","award":["200723\/2015-4","200723\/2015-4","169842\/2017-7"]},{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher"},{"DOI":"10.13039\/501100002946","name":"Deutsches Zentrum f\u00fcr Luft- und Raumfahrt","doi-asserted-by":"publisher"},{"DOI":"10.13039\/501100001807","name":"Funda\u00e7\u00e3o de Amparo \u00e0 Pesquisa do Estado de S\u00e3o Paulo","doi-asserted-by":"crossref"},{"name":"Max Planck Graduate Center with the Johannes Gutenberg University Mainz"},{"DOI":"10.13039\/501100002322","name":"Coordena\u00e7\u00e3o de Aperfei\u00e7oamento de Pessoal de N\u00edvel Superior","doi-asserted-by":"publisher","award":["88887.368025\/2019-00"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Commun Earth Environ"],"abstract":"<jats:title>Abstract<\/jats:title><jats:p>Smoke from vegetation fires affects air quality, atmospheric cycling, and the climate in the Amazon rain forest. A major unknown has remained the quantity of long-range transported smoke from Africa in relation to local and regional fire emissions. Here we quantify the abundance, seasonality, and properties of African smoke in central Amazonia. We show that it accounts for ~\u200960% of the black carbon concentrations during the wet season and ~\u200930% during the dry season. The African smoke influences aerosol-radiation interactions across the entire Amazon, with the strongest impact on the vulnerable eastern basin, a hot spot of climate and land use change. Our findings further suggest that the direct influence of African smoke has been historically relevant for soil fertilization, the carbon and water cycles, and, thus, the development of the Amazon forest ecosystem, even in the pre-industrial era.<\/jats:p>","DOI":"10.1038\/s43247-023-00795-5","type":"journal-article","created":{"date-parts":[[2023,5,5]],"date-time":"2023-05-05T14:03:01Z","timestamp":1683295381000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["African biomass burning affects aerosol cycling over the Amazon"],"prefix":"10.1038","volume":"4","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3444-0912","authenticated-orcid":false,"given":"Bruna A.","family":"Holanda","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2279-7722","authenticated-orcid":false,"given":"Marco A.","family":"Franco","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6807-5007","authenticated-orcid":false,"given":"David","family":"Walter","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7754-3036","authenticated-orcid":false,"given":"Paulo","family":"Artaxo","sequence":"additional","affiliation":[]},{"given":"Samara","family":"Carbone","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4912-9879","authenticated-orcid":false,"given":"Yafang","family":"Cheng","sequence":"additional","affiliation":[]},{"given":"Sourangsu","family":"Chowdhury","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3824-9373","authenticated-orcid":false,"given":"Florian","family":"Ditas","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7453-1264","authenticated-orcid":false,"given":"Martin","family":"Gysel-Beer","sequence":"additional","affiliation":[]},{"given":"Thomas","family":"Klimach","sequence":"additional","affiliation":[]},{"given":"Leslie A.","family":"Kremper","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3321-6655","authenticated-orcid":false,"given":"Ovid O.","family":"Kr\u00fcger","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3610-9078","authenticated-orcid":false,"given":"Jost V.","family":"Lavric","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6307-3846","authenticated-orcid":false,"given":"Jos","family":"Lelieveld","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6841-3157","authenticated-orcid":false,"given":"Chaoqun","family":"Ma","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8243-1706","authenticated-orcid":false,"given":"Luiz A. T.","family":"Machado","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2982-1369","authenticated-orcid":false,"given":"Robin L.","family":"Modini","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7207-4450","authenticated-orcid":false,"given":"Fernando G.","family":"Morais","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2440-6104","authenticated-orcid":false,"given":"Andrea","family":"Pozzer","sequence":"additional","affiliation":[]},{"given":"Jorge","family":"Saturno","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4889-1669","authenticated-orcid":false,"given":"Hang","family":"Su","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4652-5561","authenticated-orcid":false,"given":"Manfred","family":"Wendisch","sequence":"additional","affiliation":[]},{"given":"Stefan","family":"Wolff","sequence":"additional","affiliation":[]},{"given":"Mira L.","family":"P\u00f6hlker","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1968-7925","authenticated-orcid":false,"given":"Meinrat O.","family":"Andreae","sequence":"additional","affiliation":[]},{"given":"Ulrich","family":"P\u00f6schl","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6958-425X","authenticated-orcid":false,"given":"Christopher","family":"P\u00f6hlker","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,5,5]]},"reference":[{"key":"795_CR1","doi-asserted-by":"publisher","first-page":"1710","DOI":"10.1126\/science.1086112","volume":"301","author":"MJ Heckenberger","year":"2003","unstructured":"Heckenberger, M. J. et al. Amazonia 1492: Pristine forest or cultural parkland? Science 301, 1710\u20131714 (2003).","journal-title":"Science"},{"key":"795_CR2","doi-asserted-by":"publisher","first-page":"680","DOI":"10.1111\/j.1523-1739.2005.00697.x","volume":"19","author":"PM Fearnside","year":"2005","unstructured":"Fearnside, P. M. Deforestation in Brazilian Amazonia: History, rates, and consequences. Conservation Biol. 19, 680\u2013688 (2005).","journal-title":"Conservation Biol."},{"key":"795_CR3","doi-asserted-by":"publisher","first-page":"144","DOI":"10.1038\/s41559-020-01368-x","volume":"5","author":"CHL Silva Junior","year":"2021","unstructured":"Silva Junior, C. H. L. et al. The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. Nature Ecol. Evol. 5, 144\u2013145 (2021).","journal-title":"Nature Ecol. Evol."},{"key":"795_CR4","doi-asserted-by":"publisher","first-page":"118229","DOI":"10.1016\/j.atmosenv.2021.118229","volume":"248","author":"GM Pereira","year":"2021","unstructured":"Pereira, G. M. et al. Physical and chemical characterization of the 2019 \u201cblack rain\u201d event in the Metropolitan Area of S\u00e3o Paulo, Brazil. Atmos. Environ. 248, 118229 (2021).","journal-title":"Atmos. Environ."},{"key":"795_CR5","doi-asserted-by":"publisher","first-page":"321","DOI":"10.1038\/nature10717","volume":"481","author":"EA Davidson","year":"2012","unstructured":"Davidson, E. A. et al. The Amazon basin in transition. Nature 481, 321\u2013328 (2012).","journal-title":"Nature"},{"key":"795_CR6","doi-asserted-by":"publisher","first-page":"8523","DOI":"10.5194\/acp-19-8523-2019","volume":"19","author":"MO Andreae","year":"2019","unstructured":"Andreae, M. O. Emission of trace gases and aerosols from biomass burning \u2013 an updated assessment. Atmos. Chem. Phys. 19, 8523\u20138546 (2019).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR7","doi-asserted-by":"publisher","first-page":"203","DOI":"10.1039\/c3fd00052d","volume":"165","author":"P Artaxo","year":"2013","unstructured":"Artaxo, P. et al. Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions. Faraday Discussions. 165, 203\u2013235 (2013).","journal-title":"Faraday Discussions."},{"key":"795_CR8","doi-asserted-by":"publisher","first-page":"10289","DOI":"10.5194\/acp-18-10289-2018","volume":"18","author":"ML P\u00f6hlker","year":"2018","unstructured":"P\u00f6hlker, M. L. et al. Long-term observations of cloud condensation nuclei over the Amazon rain forest \u2013 part 2: Variability and characteristics of biomass burning, long-range transport, and pristine rain forest aerosols. Atmos. Chem. Phys. 18, 10289\u201310331 (2018).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR9","doi-asserted-by":"crossref","unstructured":"Roberts, G. C., Nenes, A., Seinfeld, J. H. & Andreae, M. O. Impact of biomass burning on cloud properties in the Amazon basin. J. Geophys. Res Atmos. 108. https:\/\/agupubs.onlinelibrary.wiley.com\/doi\/abs\/10.1029\/2001JD000985. https:\/\/agupubs.onlinelibrary.wiley.com\/doi\/pdf\/10.1029\/2001JD000985 (2003).","DOI":"10.1029\/2001JD000985"},{"key":"795_CR10","doi-asserted-by":"publisher","first-page":"1342","DOI":"10.1126\/science.1089424","volume":"303","author":"I Koren","year":"2004","unstructured":"Koren, I., Kaufman, Y. J., Remer, L. A. & Martins, J. V. Measurement of the effect of Amazon smoke on inhibition of cloud formation. Science 303, 1342\u20131345 (2004).","journal-title":"Science"},{"key":"795_CR11","doi-asserted-by":"publisher","first-page":"129","DOI":"10.1126\/science.225.4658.129","volume":"225","author":"E Salati","year":"1984","unstructured":"Salati, E. & Vose, P. B. Amazon Basin: A System in Equilibrium. Science 225, 129\u2013138 (1984).","journal-title":"Science"},{"key":"795_CR12","doi-asserted-by":"crossref","unstructured":"Liu, L. et al. Impact of biomass burning aerosols on radiation, clouds, and precipitation over the Amazon during the dry season: dependence of aerosol-cloud and aerosol-radiation interactions on aerosol loading. Atmos. Chem. Phys. 20, 1\u201350 (2020).","DOI":"10.5194\/acp-2020-191"},{"key":"795_CR13","doi-asserted-by":"publisher","first-page":"e2021JD034615","DOI":"10.1029\/2021JD034615","volume":"126","author":"R Herbert","year":"2021","unstructured":"Herbert, R., Stier, P. & Dagan, G. Isolating large-scale smoke impacts on cloud and precipitation processes over the Amazon with convection permitting resolution. J. Geophys. Res. Atmos. 126, e2021JD034615 (2021).","journal-title":"J. Geophys. Res. Atmos."},{"key":"795_CR14","doi-asserted-by":"publisher","first-page":"e2021JD035259","DOI":"10.1029\/2021JD035259","volume":"127","author":"F Dominguez","year":"2022","unstructured":"Dominguez, F. et al. Amazonian moisture recycling revisited using wrf with water vapor tracers. J. Geophys. Res. Atmos. 127, e2021JD035259 (2022).","journal-title":"J. Geophys. Res. Atmos."},{"key":"795_CR15","doi-asserted-by":"publisher","first-page":"1337","DOI":"10.1126\/science.1092779","volume":"303","author":"MO Andreae","year":"2004","unstructured":"Andreae, M. O. et al. Smoking rain clouds over the Amazon. Science 303, 1337\u20131342 (2004).","journal-title":"Science"},{"key":"795_CR16","doi-asserted-by":"publisher","first-page":"1309","DOI":"10.1126\/science.1160606","volume":"321","author":"D Rosenfeld","year":"2008","unstructured":"Rosenfeld, D. et al. Flood or drought: How do aerosols affect precipitation? Science 321, 1309\u20131313 (2008).","journal-title":"Science"},{"key":"795_CR17","doi-asserted-by":"publisher","first-page":"1779","DOI":"10.1098\/rstb.2007.0026","volume":"363","author":"L Aragao","year":"2008","unstructured":"Aragao, L. et al. Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Philosophical Trans. Royal Society B-Biol. Sci. 363, 1779\u20131785 (2008).","journal-title":"Philosophical Trans. Royal Society B-Biol. Sci."},{"key":"795_CR18","doi-asserted-by":"publisher","first-page":"1885","DOI":"10.1175\/BAMS-D-14-00255.1","volume":"97","author":"M Wendisch","year":"2016","unstructured":"Wendisch, M. et al. ACRIDICON\u2013CHUVA campaign: Studying tropical deep convective clouds and precipitation over Amazonia using the new German research aircraft HALO. Bulletin American Meteorol. Society. 97, 1885\u20131908 (2016).","journal-title":"Bulletin American Meteorol. Society."},{"key":"795_CR19","doi-asserted-by":"publisher","first-page":"5771","DOI":"10.5194\/acp-19-5771-2019","volume":"19","author":"E Darbyshire","year":"2019","unstructured":"Darbyshire, E. et al. The vertical distribution of biomass burning pollution over tropical South America from aircraft in situ measurements during SAMBBA. Atmos. Chem. Phys. 19, 5771\u20135790 (2019).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR20","doi-asserted-by":"publisher","first-page":"16955","DOI":"10.1029\/JD095iD10p16955","volume":"95","author":"RW Talbot","year":"1990","unstructured":"Talbot, R. W. et al. Aerosol Chemistry During the Wet Season in Central Amazonia : The Influence of Long-Range Transport. Journal of Geophys. Res. 95, 16955\u201316969 (1990).","journal-title":"Journal of Geophys. Res."},{"key":"795_CR21","doi-asserted-by":"publisher","first-page":"133","DOI":"10.3402\/tellusb.v44i2.15434","volume":"44","author":"R Swap","year":"1992","unstructured":"Swap, R., Garstang, M., Greco, S., Talbot, R. & Kallberg, P. Saharan dust in the Amazon basin. Tellus Series B-Chem. Phys. Meteorol. 44, 133\u2013149 (1992).","journal-title":"Tellus Series B-Chem. Phys. Meteorol."},{"key":"795_CR22","doi-asserted-by":"publisher","first-page":"L20802","DOI":"10.1029\/2011GL049200","volume":"38","author":"H Baars","year":"2011","unstructured":"Baars, H. et al. Further evidence for significant smoke transport from Africa to Amazonia. Geophys. Res. Lett. 38, L20802 (2011).","journal-title":"Geophys. Res. Lett."},{"key":"795_CR23","doi-asserted-by":"publisher","first-page":"16216","DOI":"10.1073\/pnas.1906091116","volume":"116","author":"AE Barkley","year":"2019","unstructured":"Barkley, A. E. et al. African biomass burning is a substantial source of phosphorus deposition to the Amazon, Tropical Atlantic Ocean, and Southern Ocean. Proc. Natl Acad. Sci. 116, 16216\u201316221 (2019).","journal-title":"Proc. Natl Acad. Sci."},{"key":"795_CR24","doi-asserted-by":"publisher","first-page":"8425","DOI":"10.5194\/acp-19-8425-2019","volume":"19","author":"C P\u00f6hlker","year":"2019","unstructured":"P\u00f6hlker, C. et al. Land cover and its transformation in the backward trajectory footprint region of the Amazon Tall Tower Observatory. Atmos. Chem. Phys. 19, 8425\u20138470 (2019).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR25","doi-asserted-by":"publisher","first-page":"10055","DOI":"10.5194\/acp-18-10055-2018","volume":"18","author":"D Moran-Zuloaga","year":"2018","unstructured":"Moran-Zuloaga, D. et al. Long-term study on coarse mode aerosols in the Amazon rain forest with the frequent intrusion of Saharan dust plumes. Atmos. Chem. Phys. 18, 10055\u201310088 (2018).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR26","doi-asserted-by":"publisher","first-page":"14775","DOI":"10.5194\/acp-16-14775-2016","volume":"16","author":"Q Wang","year":"2016","unstructured":"Wang, Q. et al. Modeling investigation of light-absorbing aerosols in the Amazon Basin during the wet season. Atmos. Chem. Phys. 16, 14775\u201314794 (2016).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR27","doi-asserted-by":"publisher","first-page":"12793","DOI":"10.1029\/94JD00263","volume":"99","author":"MO Andreae","year":"1994","unstructured":"Andreae, M. O. et al. Influence of plumes from biomass burning on atmospheric chemistry over the equatorial and tropical South Atlantic during CITE 3. J. Geophys. Res. 99, 12793 (1994).","journal-title":"J. Geophys. Res."},{"key":"795_CR28","doi-asserted-by":"publisher","first-page":"1574","DOI":"10.1002\/qj.2765","volume":"142","author":"AA Adebiyi","year":"2016","unstructured":"Adebiyi, A. A. & Zuidema, P. The role of the southern African easterly jet in modifying the southeast Atlantic aerosol and cloud environments. Quarterly J. Royal Meteorol. Society. 142, 1574\u20131589 (2016).","journal-title":"Quarterly J. Royal Meteorol. Society."},{"key":"795_CR29","doi-asserted-by":"publisher","first-page":"4456","DOI":"10.1002\/2017GL076926","volume":"45","author":"P Zuidema","year":"2018","unstructured":"Zuidema, P. et al. The Ascension Island Boundary Layer in the Remote Southeast Atlantic is Often Smoky. Geophys. Res. Lett. 45, 4456\u20134465 (2018).","journal-title":"Geophys. Res. Lett."},{"key":"795_CR30","doi-asserted-by":"publisher","first-page":"4757","DOI":"10.5194\/acp-20-4757-2020","volume":"20","author":"BA Holanda","year":"2020","unstructured":"Holanda, B. A. et al. Influx of African biomass burning aerosol during the Amazonian dry season through layered transatlantic transport of black carbon-rich smoke. Atmos. Chem. Phys. 20, 4757\u20134785 (2020).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR31","doi-asserted-by":"publisher","first-page":"10061","DOI":"10.5194\/acp-14-10061-2014","volume":"14","author":"D Liu","year":"2014","unstructured":"Liu, D. et al. Size distribution, mixing state and source apportionment of black carbon aerosol in London during wintertime. Atmos. Chem. Phys. 14, 10061\u201310084 (2014).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR32","doi-asserted-by":"publisher","first-page":"8365","DOI":"10.5194\/acp-13-8365-2013","volume":"13","author":"A Petzold","year":"2013","unstructured":"Petzold, A. et al. Recommendations for reporting \u201cblack carbon\" measurements. Atmos. Chem. Phys. 13, 8365\u20138379 (2013).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR33","doi-asserted-by":"publisher","first-page":"10723","DOI":"10.5194\/acp-15-10723-2015","volume":"15","author":"MO Andreae","year":"2015","unstructured":"Andreae, M. O. et al. The Amazon Tall Tower Observatory (ATTO): Overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols. Atmos. Chem. Phys. 15, 10723\u201310776 (2015).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR34","doi-asserted-by":"publisher","first-page":"8195","DOI":"10.5194\/acp-21-8195-2021","volume":"21","author":"I Tadic","year":"2021","unstructured":"Tadic, I. et al. Central role of nitric oxide in ozone production in the upper tropical troposphere over the Atlantic Ocean and western Africa. Atmos. Chem. Phys. 21, 8195\u20138211 (2021).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR35","doi-asserted-by":"publisher","first-page":"10391","DOI":"10.5194\/acp-18-10391-2018","volume":"18","author":"J Saturno","year":"2018","unstructured":"Saturno, J. et al. African volcanic emissions influencing atmospheric aerosols over the Amazon rain forest. Atmos. Chem. Phys. 18, 10391\u201310405 (2018).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR36","doi-asserted-by":"publisher","first-page":"2","DOI":"10.1029\/2012GL052034","volume":"39","author":"N Moteki","year":"2012","unstructured":"Moteki, N. et al. Size dependence of wet removal of black carbon aerosols during transport from the boundary layer to the free troposphere. Geophys. Res. Lett. 39, 2\u20135 (2012).","journal-title":"Geophys. Res. Lett."},{"key":"795_CR37","doi-asserted-by":"publisher","first-page":"3173","DOI":"10.5194\/acp-15-3173-2015","volume":"15","author":"L Fierce","year":"2015","unstructured":"Fierce, L., Riemer, N. & Bond, T. C. Explaining variance in black carbon\u2019s aging timescale. Atmos. Chem. Phys. 15, 3173\u20133191 (2015).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR38","doi-asserted-by":"publisher","first-page":"9417","DOI":"10.5194\/acp-21-9417-2021","volume":"21","author":"H Wu","year":"2021","unstructured":"Wu, H. et al. Rapid transformation of ambient absorbing aerosols from west African biomass burning. Atmos. Chem. Phys. 21, 9417\u20139440 (2021).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR39","doi-asserted-by":"publisher","first-page":"14315","DOI":"10.1021\/acs.est.2c03851","volume":"56","author":"AJI Sedlacek","year":"2022","unstructured":"Sedlacek, A. J. I. et al. Using the black carbon particle mixing state to characterize the lifecycle of biomass burning aerosols. Environ. Sci. Technol. 56, 14315\u201314325 (2022).","journal-title":"Environ. Sci. Technol."},{"key":"795_CR40","doi-asserted-by":"publisher","first-page":"182","DOI":"10.1038\/s43247-022-00517-3","volume":"3","author":"H Che","year":"2022","unstructured":"Che, H. et al. Cloud processing and weeklong ageing affect biomass burning aerosol properties over the south-eastern Atlantic. Commun. Earth Environ. 3, 182 (2022).","journal-title":"Commun. Earth Environ."},{"key":"795_CR41","doi-asserted-by":"crossref","unstructured":"Martin, S. et al. The Green Ocean Amazon Experiment (GoAmazon2014\/5) observes pollution affecting gases, aerosols, clouds, and rainfall over the rain forest. Bulletin American Meteorol. Society. 0, 981\u2013997 (2016).","DOI":"10.1175\/BAMS-D-15-00221.1"},{"key":"795_CR42","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1029\/2008GL033968","volume":"35","author":"JP Schwarz","year":"2008","unstructured":"Schwarz, J. P. et al. Measurement of the mixing state, mass, and optical size of individual black carbon particles in urban and biomass burning emissions. Geophys. Res. Lett. 35, 1\u20135 (2008).","journal-title":"Geophys. Res. Lett."},{"key":"795_CR43","doi-asserted-by":"publisher","first-page":"5877","DOI":"10.5194\/acp-22-5877-2022","volume":"22","author":"MD Andr\u00e9s Hern\u00e1ndez","year":"2022","unstructured":"Andr\u00e9s Hern\u00e1ndez, M. D. et al. Overview: On the transport and transformation of pollutants in the outflow of major population centres \u2013 observational data from the EMeRGe European intensive operational period in summer 2017. Atmos. Chem. Phys. 22, 5877\u20135924 (2022).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR44","doi-asserted-by":"publisher","first-page":"12817","DOI":"10.5194\/acp-18-12817-2018","volume":"18","author":"J Saturno","year":"2018","unstructured":"Saturno, J. et al. Black and brown carbon over central Amazonia: long-term aerosol measurements at the ATTO site. Atmos. Chem. Phys. 18, 12817\u201312843 (2018).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR45","doi-asserted-by":"publisher","first-page":"9990","DOI":"10.1021\/acs.est.6b02313","volume":"50","author":"KT Malecha","year":"2016","unstructured":"Malecha, K. T. & Nizkorodov, S. A. Photodegradation of secondary organic aerosol particles as a source of small, oxygenated volatile organic compounds. Environ. Sci. Technol. 50, 9990\u20139997 (2016).","journal-title":"Environ. Sci. Technol."},{"key":"795_CR46","doi-asserted-by":"publisher","first-page":"5380","DOI":"10.1002\/jgrd.50171","volume":"118","author":"TC Bond","year":"2013","unstructured":"Bond, T. C. et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 118, 5380\u20135552 (2013).","journal-title":"J. Geophys. Res. Atmos."},{"key":"795_CR47","doi-asserted-by":"publisher","first-page":"4735","DOI":"10.5194\/acp-20-4735-2020","volume":"20","author":"C Denjean","year":"2020","unstructured":"Denjean, C. et al. Overview of aerosol optical properties over southern west Africa from dacciwa aircraft measurements. Atmos. Chem. Phys. 20, 4735\u20134756 (2020).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR48","doi-asserted-by":"publisher","first-page":"27","DOI":"10.1080\/02786820500421521","volume":"40","author":"TC Bond","year":"2006","unstructured":"Bond, T. C. & Bergstrom, R. W. Light Absorption by Carbonaceous Particles: An Investigative Review. Aerosol Sci. Technol. 40, 27\u201367 (2006).","journal-title":"Aerosol Sci. Technol."},{"key":"795_CR49","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/ncomms12361","volume":"7","author":"L Fierce","year":"2016","unstructured":"Fierce, L., Bond, T. C., Bauer, S. E., Mena, F. & Riemer, N. Black carbon absorption at the global scale is affected by particle-scale diversity in composition. Nat. Commun. 7, 1\u20138 (2016).","journal-title":"Nat. Commun."},{"key":"795_CR50","doi-asserted-by":"publisher","first-page":"3131","DOI":"10.5194\/acp-6-3131-2006","volume":"6","author":"MO Andreae","year":"2006","unstructured":"Andreae, M. O. & Gelencser, A. Black carbon or brown carbon? the nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 6, 3131\u20133148 (2006).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR51","doi-asserted-by":"publisher","first-page":"7683","DOI":"10.5194\/acp-13-7683-2013","volume":"13","author":"R Saleh","year":"2013","unstructured":"Saleh, R. et al. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions. Atmos. Chem. Phys. 13, 7683\u20137693 (2013).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR52","doi-asserted-by":"publisher","first-page":"6175","DOI":"10.1029\/2017JD027818","volume":"123","author":"JC Corbin","year":"2018","unstructured":"Corbin, J. C. et al. Brown and black carbon emitted by a marine engine operated on heavy fuel oil and distillate fuels: Optical properties, size distributions, and emission factors. J. Geophys. Res. Atmos. 123, 6175\u20136195 (2018).","journal-title":"J. Geophys. Res. Atmos."},{"key":"795_CR53","first-page":"D07207","volume":"111","author":"GL Schuster","year":"2006","unstructured":"Schuster, G. L., Dubovik, O. & Holben, B. N. Angstrom exponent and bimodal aerosol size distributions. J. Geophys. Res. 111, D07207 (2006).","journal-title":"J. Geophys. Res."},{"key":"795_CR54","doi-asserted-by":"publisher","first-page":"1153","DOI":"10.5194\/gmd-9-1153-2016","volume":"9","author":"P J\u00f6ckel","year":"2016","unstructured":"J\u00f6ckel, P. et al. Earth system chemistry integrated modelling (escimo) with the modular earth submodel system (messy) version 2.51. Geosci. Model Dev. 9, 1153\u20131200 (2016).","journal-title":"Geosci. Model Dev."},{"key":"795_CR55","doi-asserted-by":"crossref","first-page":"e2019MS001916","DOI":"10.1029\/2019MS001916","volume":"12","author":"G Danabasoglu","year":"2020","unstructured":"Danabasoglu, G. et al. The community earth system model version 2 (cesm2). J. Adv. Modeling Earth Sys. 12, e2019MS001916 (2020).","journal-title":"J. Adv. Modeling Earth Sys."},{"key":"795_CR56","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41612-017-0007-3","volume":"1","author":"MT Lund","year":"2018","unstructured":"Lund, M. T. et al. Short Black Carbon lifetime inferred from a global set of aircraft observations. npj Climate Atmos. Sci. 1, 1\u20138 (2018).","journal-title":"npj Climate Atmos. Sci."},{"key":"795_CR57","doi-asserted-by":"publisher","first-page":"4963","DOI":"10.5194\/acp-19-4963-2019","volume":"19","author":"M Mallet","year":"2019","unstructured":"Mallet, M. et al. Simulation of the transport, vertical distribution, optical properties and radiative impact of smoke aerosols with the aladin regional climate model during the ORACLES-2016 and LASIC experiments. Atmos. Chem. Phys. 19, 4963\u20134990 (2019).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR58","doi-asserted-by":"publisher","first-page":"11491","DOI":"10.5194\/acp-20-11491-2020","volume":"20","author":"Y Shinozuka","year":"2020","unstructured":"Shinozuka, Y. et al. Modeling the smoky troposphere of the southeast Atlantic: a comparison to ORACLES airborne observations from September of 2016. Atmos. Chem. Phys. 20, 11491\u201311526 (2020).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR59","doi-asserted-by":"crossref","unstructured":"Ramo, R. et al. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Proc. Natl. Acad. Sci. 118. https:\/\/www.pnas.org\/content\/118\/9\/e2011160118.full.pdf (2021).","DOI":"10.1073\/pnas.2011160118"},{"key":"795_CR60","doi-asserted-by":"publisher","first-page":"20150170","DOI":"10.1098\/rstb.2015.0170","volume":"371","author":"W Bond","year":"2016","unstructured":"Bond, W. & Zaloumis, N. P. The deforestation story: testing for anthropogenic origins of Africa\u2019s flammable grassy biomes. Philosophical Trans. Royal Society B: Biol. Sci. 371, 20150170 (2016).","journal-title":"Philosophical Trans. Royal Society B: Biol. Sci."},{"key":"795_CR61","doi-asserted-by":"publisher","first-page":"303","DOI":"10.1146\/annurev-marine-031921-013612","volume":"14","author":"DS Hamilton","year":"2022","unstructured":"Hamilton, D. S. et al. Earth, wind, fire, and pollution: Aerosol nutrient sources and impacts on ocean biogeochemistry. Ann. Rev. Marine Sci. 14, 303\u2013330 (2022).","journal-title":"Ann. Rev. Marine Sci."},{"key":"795_CR62","doi-asserted-by":"publisher","first-page":"3403","DOI":"10.5194\/acp-18-3403-2018","volume":"18","author":"AM Y\u00e1\u00f1ez-Serrano","year":"2018","unstructured":"Y\u00e1\u00f1ez-Serrano, A. M. et al. Monoterpene chemical speciation in a tropical rainforest: variation with season, height, and time of day at the Amazon Tall Tower Observatory (ATTO). Atmos. Chem. Phys. 18, 3403\u20133418 (2018).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR63","doi-asserted-by":"publisher","first-page":"6583","DOI":"10.5194\/acp-20-6583-2020","volume":"20","author":"S Bot\u00eda","year":"2020","unstructured":"Bot\u00eda, S. et al. Understanding nighttime methane signals at the Amazon Tall Tower Observatory (ATTO). Atmos. Chem. Phys. 20, 6583\u20136606 (2020).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR64","doi-asserted-by":"publisher","first-page":"153","DOI":"10.5194\/amt-13-153-2020","volume":"13","author":"N L\u00f6bs","year":"2020","unstructured":"L\u00f6bs, N. et al. Aerosol measurement methods to quantify spore emissions from fungi and cryptogamic covers in the Amazon. Atmos. Meas. Tech. 13, 153\u2013164 (2020).","journal-title":"Atmos. Meas. Tech."},{"key":"795_CR65","doi-asserted-by":"publisher","first-page":"479","DOI":"10.5194\/amt-2-479-2009","volume":"2","author":"SL von der Weiden","year":"2009","unstructured":"von der Weiden, S. L., Drewnick, F. & Borrmann, S. Particle loss calculator \u2013 a new software tool for the assessment of the performance of aerosol inlet systems. Atmos. Meas. Tech. 2, 479\u2013494 (2009).","journal-title":"Atmos. Meas. Tech."},{"key":"795_CR66","doi-asserted-by":"publisher","first-page":"3726","DOI":"10.1364\/AO.42.003726","volume":"42","author":"M Stephens","year":"2003","unstructured":"Stephens, M., Turner, N. & Sandberg, J. Particle identification by laser-induced incandescence in a solid-state laser cavity. Applied optics 42, 3726\u201336 (2003).","journal-title":"Applied optics"},{"key":"795_CR67","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1029\/2006JD007076","volume":"111","author":"JP Schwarz","year":"2006","unstructured":"Schwarz, J. P. et al. Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere. J. Geophys. Res. Atmos. 111, 1\u201315 (2006).","journal-title":"J. Geophys. Res. Atmos."},{"key":"795_CR68","doi-asserted-by":"publisher","first-page":"5831","DOI":"10.5194\/acp-13-5831-2013","volume":"13","author":"M Laborde","year":"2013","unstructured":"Laborde, M. et al. Black carbon physical properties and mixing state in the European megacity Paris. Atmos. Chem. Phys. 13, 5831\u20135856 (2013).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR69","doi-asserted-by":"publisher","first-page":"2851","DOI":"10.5194\/amt-4-2851-2011","volume":"4","author":"M Gysel","year":"2011","unstructured":"Gysel, M., Laborde, M., Olfert, J. S., Subramanian, R. & Gr\u00e9hn, A. J. Effective density of Aquadag and fullerene soot black carbon reference materials used for SP2 calibration. Atmos. Measurement Tech. 4, 2851\u20132858 (2011).","journal-title":"Atmos. Measurement Tech."},{"key":"795_CR70","doi-asserted-by":"publisher","unstructured":"Gysel-Beer, M. & Corbin, J. SP2 toolkit 4.115 (Igor7) (Version 4.115). https:\/\/doi.org\/10.5281\/zenodo.3575186\/ (2019).","DOI":"10.5281\/zenodo.3575186\/"},{"key":"795_CR71","doi-asserted-by":"publisher","first-page":"1379","DOI":"10.5194\/amt-14-1379-2021","volume":"14","author":"RE Pileci","year":"2021","unstructured":"Pileci, R. E. et al. Comparison of co-located refractory black carbon (rBC) and elemental carbon (EC) mass concentration measurements during field campaigns at several European sites. Atmos. Measurement Tech. 14, 1379\u20131403 (2021).","journal-title":"Atmos. Measurement Tech."},{"key":"795_CR72","doi-asserted-by":"publisher","first-page":"125","DOI":"10.1080\/02786820601118398","volume":"41","author":"RS Gao","year":"2007","unstructured":"Gao, R. S. et al. A Novel Method for Estimating Light-Scattering Properties of Soot Aerosols Using a Modified Single-Particle Soot Photometer. Aerosol Sci. Technol. 41, 125\u2013135 (2007).","journal-title":"Aerosol Sci. Technol."},{"key":"795_CR73","doi-asserted-by":"publisher","first-page":"635","DOI":"10.5194\/acp-21-635-2021","volume":"21","author":"J Yuan","year":"2021","unstructured":"Yuan, J. et al. Variability in the mass absorption cross section of black carbon (BC) aerosols is driven by BC internal mixing state at a central European background site (Melpitz, Germany) in winter. Atmos. Chem. Phys. 21, 635\u2013655 (2021).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR74","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1029\/2020GL088011","volume":"47","author":"G Motos","year":"2020","unstructured":"Motos, G. et al. Black Carbon Aerosols in the Lower Free Troposphere are Heavily Coated in Summer but Largely Uncoated in Winter at Jungfraujoch in the Swiss Alps. Geophys. Res. Lett. 47, 1\u201310 (2020).","journal-title":"Geophys. Res. Lett."},{"key":"795_CR75","doi-asserted-by":"publisher","first-page":"15709","DOI":"10.5194\/acp-16-15709-2016","volume":"16","author":"ML P\u00f6hlker","year":"2016","unstructured":"P\u00f6hlker, M. L. et al. Long-term observations of cloud condensation nuclei in the Amazon rain forest \u2013 part 1: Aerosol size distribution, hygroscopicity, and new model parameterizations for CCN prediction. Atmos. Chem. Phys. 16, 15709\u201315740 (2016).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR76","doi-asserted-by":"publisher","first-page":"3469","DOI":"10.5194\/acp-22-3469-2022","volume":"22","author":"MA Franco","year":"2022","unstructured":"Franco, M. A. et al. Occurrence and growth of sub-50 nm aerosol particles in the Amazonian boundary layer. Atmos. Chem. Phys. 22, 3469\u20133492 (2022).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR77","doi-asserted-by":"publisher","first-page":"18065","DOI":"10.5194\/acp-21-18065-2021","volume":"21","author":"LAT Machado","year":"2021","unstructured":"Machado, L. A. T. et al. How weather events modify aerosol particle size distributions in the Amazon boundary layer. Atmos. Chem. Phys. 21, 18065\u201318086 (2021).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR78","doi-asserted-by":"publisher","first-page":"780","DOI":"10.1080\/02786826.2011.560211","volume":"45","author":"NL Ng","year":"2011","unstructured":"Ng, N. L. et al. An aerosol chemical speciation monitor (acsm) for routine monitoring of the composition and mass concentrations of ambient aerosol. Aerosol Sci. Technol. 45, 780\u2013794 (2011).","journal-title":"Aerosol Sci. Technol."},{"key":"795_CR79","unstructured":"Schulz, C. et al. Aircraft-based observations of isoprene epoxydiol-derived secondary organic aerosol (IEPOX-SOA) in the tropical upper troposphere over the Amazon region. Atmos. Chem. Phys. Discussions 1\u201332. https:\/\/www.atmos-chem-phys-discuss.net\/acp-2018-232\/ (2018)."},{"key":"795_CR80","doi-asserted-by":"publisher","first-page":"12185","DOI":"10.5194\/acp-18-12185-2018","volume":"18","author":"SS de S\u00e1","year":"2018","unstructured":"de S\u00e1, S. S. et al. Urban influence on the concentration and composition of submicron particulate matter in central Amazonia. Atmos. Chem. Phys. 18, 12185\u201312206 (2018).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR81","doi-asserted-by":"publisher","first-page":"7973","DOI":"10.5194\/acp-19-7973-2019","volume":"19","author":"SS de S\u00e1","year":"2019","unstructured":"de S\u00e1, S. S. et al. Contributions of biomass-burning, urban, and biogenic emissions to the concentrations and light-absorbing properties of particulate matter in central Amazonia during the dry season. Atmos. Chem. Phys. 19, 7973\u20138001 (2019).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR82","doi-asserted-by":"publisher","first-page":"12697","DOI":"10.5194\/acp-20-12697-2020","volume":"20","author":"H Wu","year":"2020","unstructured":"Wu, H. et al. Vertical variability of the properties of highly aged biomass burning aerosol transported over the southeast Atlantic during CLARIFY-2017. Atmos. Chem. Phys. 20, 12697\u201312719 (2020).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR83","doi-asserted-by":"publisher","first-page":"11201","DOI":"10.5194\/acp-20-11201-2020","volume":"20","author":"JW Taylor","year":"2020","unstructured":"Taylor, J. W. et al. Absorption closure in highly aged biomass burning smoke. Atmos. Chem. Phys. 20, 11201\u201311221 (2020).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR84","doi-asserted-by":"publisher","first-page":"457","DOI":"10.5194\/amt-3-457-2010","volume":"3","author":"M Collaud Coen","year":"2010","unstructured":"Collaud Coen, M. et al. Minimizing light absorption measurement artifacts of the aethalometer: evaluation of five correction algorithms. Atmos. Meas. Tech. 3, 457\u2013474 (2010).","journal-title":"Atmos. Meas. Tech."},{"key":"795_CR85","doi-asserted-by":"publisher","first-page":"2837","DOI":"10.5194\/amt-10-2837-2017","volume":"10","author":"J Saturno","year":"2017","unstructured":"Saturno, J. et al. Comparison of different aethalometer correction schemes and a reference multi-wavelength absorption technique for ambient aerosol data. Atmos. Meas. Tech. 10, 2837\u20132850 (2017).","journal-title":"Atmos. Meas. Tech."},{"key":"795_CR86","doi-asserted-by":"publisher","first-page":"921","DOI":"10.5194\/acp-18-921-2018","volume":"18","author":"MO Andreae","year":"2018","unstructured":"Andreae, M. O. et al. Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin. Atmos. Chem. Phys. 18, 921\u2013961 (2018).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR87","doi-asserted-by":"publisher","first-page":"989","DOI":"10.5194\/acp-21-989-2021","volume":"21","author":"J Schneider","year":"2021","unstructured":"Schneider, J. et al. Aircraft-based observation of meteoric material in lower-stratospheric aerosol particles between 15 and 68\u2218 N. Atmos. Chem. Phys. 21, 989\u20131013 (2021).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR88","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1029\/2012JD018338","volume":"117","author":"H Baars","year":"2012","unstructured":"Baars, H. et al. Aerosol profiling with lidar in the Amazon Basin during the wet and dry season. J. Geophys. Res. Atmos. 117, 1\u201316 (2012).","journal-title":"J. Geophys. Res. Atmos."},{"key":"795_CR89","doi-asserted-by":"publisher","first-page":"46","DOI":"10.1080\/02786829408959695","volume":"21","author":"J Heintzenberg","year":"1994","unstructured":"Heintzenberg, J. Properties of the log-normal particle size distribution. Aerosol Sci. Technol. 21, 46\u201348 (1994).","journal-title":"Aerosol Sci. Technol."},{"key":"795_CR90","first-page":"295","volume":"47","author":"RR Draxler","year":"1998","unstructured":"Draxler, R. R. & Hess, G. D. An overview of the hysplit_4 modelling system for trajectories, dispersion and deposition. Australian Meteorol. Magazine. 47, 295\u2013308 (1998).","journal-title":"Australian Meteorol. Magazine."},{"key":"795_CR91","doi-asserted-by":"publisher","first-page":"2059","DOI":"10.1175\/BAMS-D-14-00110.1","volume":"96","author":"AF Stein","year":"2015","unstructured":"Stein, A. F. et al. NOAA\u2019s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin American Meteorol. Society. 96, 2059\u20132077 (2015).","journal-title":"Bulletin American Meteorol. Society."},{"key":"795_CR92","doi-asserted-by":"publisher","first-page":"433","DOI":"10.5194\/acp-5-433-2005","volume":"5","author":"P J\u00f6ckel","year":"2005","unstructured":"J\u00f6ckel, P., Sander, R., Kerkweg, A., Tost, H. & Lelieveld, J. Technical Note: The Modular Earth Submodel System (MESSy) - a new approach towards Earth System Modeling. Atmos. Chem. Phys. 5, 433\u2013444 (2005).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR93","doi-asserted-by":"publisher","first-page":"717","DOI":"10.5194\/gmd-3-717-2010","volume":"3","author":"P J\u00f6ckel","year":"2010","unstructured":"J\u00f6ckel, P. et al. Development cycle 2 of the Modular Earth Submodel System (MESSy2). Geosci. Model Dev. 3, 717\u2013752 (2010).","journal-title":"Geosci. Model Dev."},{"key":"795_CR94","doi-asserted-by":"publisher","first-page":"961","DOI":"10.5194\/acp-12-961-2012","volume":"12","author":"A Pozzer","year":"2012","unstructured":"Pozzer, A. et al. Distributions and regional budgets of aerosols and their precursors simulated with the EMAC chemistry-climate model. Atmos. Chem. Phys. 12, 961\u2013987 (2012).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR95","doi-asserted-by":"publisher","first-page":"1590","DOI":"10.1093\/eurheartj\/ehz135","volume":"40","author":"J Lelieveld","year":"2019","unstructured":"Lelieveld, J. et al. Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur Heart J 40, 1590\u20131596 (2019).","journal-title":"Eur Heart J"},{"key":"795_CR96","doi-asserted-by":"publisher","first-page":"4287","DOI":"10.5194\/gmd-13-4287-2020","volume":"13","author":"CG Beer","year":"2020","unstructured":"Beer, C. G. et al. Modelling mineral dust emissions and atmospheric dispersion with MADE3 in EMAC v2.54. Geosci. Model Dev. 13, 4287\u20134303 (2020).","journal-title":"Geosci. Model Dev."},{"key":"795_CR97","doi-asserted-by":"publisher","first-page":"391","DOI":"10.5194\/gmd-3-391-2010","volume":"3","author":"KJ Pringle","year":"2010","unstructured":"Pringle, K. J. et al. Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1). Geosci. Model Dev. 3, 391\u2013412 (2010).","journal-title":"Geosci. Model Dev."},{"key":"795_CR98","doi-asserted-by":"publisher","first-page":"6823","DOI":"10.5194\/acp-16-6823-2016","volume":"16","author":"P Paasonen","year":"2016","unstructured":"Paasonen, P. et al. Continental anthropogenic primary particle number emissions. Atmos. Chem. Phys. 16, 6823\u20136840 (2016).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR99","doi-asserted-by":"publisher","first-page":"3153","DOI":"10.5194\/gmd-7-3153-2014","volume":"7","author":"AP Tsimpidi","year":"2014","unstructured":"Tsimpidi, A. P., Karydis, V. A., Pozzer, A., Pandis, S. N. & Lelieveld, J. ORACLE (v1.0): module to simulate the organic aerosol composition and evolution in the atmosphere. Geosci. Model Dev. 7, 3153\u20133172 (2014).","journal-title":"Geosci. Model Dev."},{"key":"795_CR100","doi-asserted-by":"publisher","first-page":"3369","DOI":"10.5194\/gmd-11-3369-2018","volume":"11","author":"AP Tsimpidi","year":"2018","unstructured":"Tsimpidi, A. P., Karydis, V. A., Pozzer, A., Pandis, S. N. & Lelieveld, J. ORACLE 2-D (v2.0): an efficient module to compute the volatility and oxygen content of organic aerosol with a global chemistry\u2013climate model. Geosci. Model Dev. 11, 3369\u20133389 (2018).","journal-title":"Geosci. Model Dev."},{"key":"795_CR101","doi-asserted-by":"publisher","first-page":"5061","DOI":"10.5194\/acp-7-5061-2007","volume":"7","author":"A Lauer","year":"2007","unstructured":"Lauer, A., Eyring, V., Hendricks, J., J\u00f6ckel, P. & Lohmann, U. Global model simulations of the impact of ocean-going ships on aerosols, clouds, and the radiation budget. Atmos. Chem. Phys. 7, 5061\u20135079 (2007).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR102","doi-asserted-by":"publisher","first-page":"2209","DOI":"10.5194\/gmd-9-2209-2016","volume":"9","author":"S Dietm\u00fcller","year":"2016","unstructured":"Dietm\u00fcller, S. et al. A new radiation infrastructure for the Modular Earth Submodel System (MESSy, based on version 2.51). Geosci. Model. Dev. 9, 2209\u20132222 (2016).","journal-title":"Geosci. Model. Dev."},{"key":"795_CR103","doi-asserted-by":"publisher","first-page":"7397","DOI":"10.5194\/acp-19-7397-2019","volume":"19","author":"K Klingm\u00fcller","year":"2019","unstructured":"Klingm\u00fcller, K., Lelieveld, J., Karydis, V. A. & Stenchikov, G. L. Direct radiative effect of dust\u2013pollution interactions. Atmos. Chem. Phys. 19, 7397\u20137408 (2019).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR104","doi-asserted-by":"publisher","first-page":"445","DOI":"10.5194\/acp-5-445-2005","volume":"5","author":"R Sander","year":"2005","unstructured":"Sander, R., Kerkweg, A., J\u00f6ckel, P. & Lelieveld, J. Technical note: The new comprehensive atmospheric chemistry module MECCA. Atmos. Chem. Phys. 5, 445\u2013450 (2005).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR105","doi-asserted-by":"publisher","first-page":"1365","DOI":"10.5194\/gmd-12-1365-2019","volume":"12","author":"R Sander","year":"2019","unstructured":"Sander, R. et al. The community atmospheric chemistry box model CAABA\/MECCA-4.0. Geosci. Model Dev. 12, 1365\u20131385 (2019).","journal-title":"Geosci. Model Dev."},{"key":"795_CR106","doi-asserted-by":"publisher","first-page":"1313","DOI":"10.5194\/acp-7-1313-2007","volume":"7","author":"J Lelieveld","year":"2007","unstructured":"Lelieveld, J. et al. Stratospheric dryness: model simulations and satellite observations. Atmos. Chem. Phys. 7, 1313\u20131332 (2007).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR107","doi-asserted-by":"publisher","first-page":"3603","DOI":"10.5194\/acp-6-3603-2006","volume":"6","author":"A Kerkweg","year":"2006","unstructured":"Kerkweg, A., Sander, R., Tost, H. & J\u00f6ckel, P. Technical note: Implementation of prescribed (OFFLEM), calculated (ONLEM), and pseudo-emissions (TNUDGE) of chemical species in the Modular Earth Submodel System (MESSy). Atmos. Chem. Phys. 6, 3603\u20133609 (2006).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR108","doi-asserted-by":"publisher","first-page":"7192","DOI":"10.1073\/pnas.1819989116","volume":"116","author":"J Lelieveld","year":"2019","unstructured":"Lelieveld, J. et al. Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proc. Natl. Acad. Sci. 116, 7192\u20137197 (2019).","journal-title":"Proc. Natl. Acad. Sci."},{"key":"795_CR109","doi-asserted-by":"publisher","first-page":"2103","DOI":"10.1002\/2014JD022430","volume":"120","author":"C Br\u00fchl","year":"2015","unstructured":"Br\u00fchl, C., Lelieveld, J., Tost, H., H\u00f6pfner, M. & Glatthor, N. Stratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC. J. Geophys. Res. Atmos. 120, 2103\u20132118 (2015).","journal-title":"J. Geophys. Res. Atmos."},{"key":"795_CR110","doi-asserted-by":"publisher","first-page":"5521","DOI":"10.5194\/acp-15-5521-2015","volume":"15","author":"A Pozzer","year":"2015","unstructured":"Pozzer, A. et al. AOD trends during 2001\u20132010 from observations and model simulations. Atmos. Chem. Phys. 15, 5521\u20135535 (2015).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR111","doi-asserted-by":"publisher","first-page":"5787","DOI":"10.5194\/acp-20-5787-2020","volume":"20","author":"PH Zimmermann","year":"2020","unstructured":"Zimmermann, P. H. et al. Model simulations of atmospheric methane (1997\u20132016) and their evaluation using NOAA and AGAGE surface and IAGOS-CARIBIC aircraft observations. Atmos. Chem. Phys. 20, 5787\u20135809 (2020).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR112","doi-asserted-by":"publisher","first-page":"035020","DOI":"10.1088\/1748-9326\/abe909","volume":"16","author":"S Chowdhury","year":"2021","unstructured":"Chowdhury, S. et al. Global and national assessment of the incidence of asthma in children and adolescents from major sources of ambient NO2. Environ. Res. Lett. 16, 035020 (2021).","journal-title":"Environ. Res. Lett."},{"key":"795_CR113","doi-asserted-by":"publisher","first-page":"369","DOI":"10.5194\/gmd-11-369-2018","volume":"11","author":"RM Hoesly","year":"2018","unstructured":"Hoesly, R. M. et al. Historical (1750\u20132014) anthropogenic emissions of reactive gases and aerosols from the community emissions data system (ceds). Geosci. Model Dev. 11, 369\u2013408 (2018).","journal-title":"Geosci. Model Dev."},{"key":"795_CR114","doi-asserted-by":"publisher","first-page":"527","DOI":"10.5194\/bg-9-527-2012","volume":"9","author":"JW Kaiser","year":"2012","unstructured":"Kaiser, J. W. et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 9, 527\u2013554 (2012).","journal-title":"Biogeosciences"},{"key":"795_CR115","doi-asserted-by":"publisher","first-page":"969","DOI":"10.5194\/acp-20-969-2020","volume":"20","author":"X Pan","year":"2020","unstructured":"Pan, X. et al. Six global biomass burning emission datasets: intercomparison and application in one global aerosol model. Atmos. Chem. Phys. 20, 969\u2013994 (2020).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR116","doi-asserted-by":"publisher","first-page":"10901","DOI":"10.5194\/acp-22-10901-2022","volume":"22","author":"SF Reifenberg","year":"2022","unstructured":"Reifenberg, S. F. et al. Numerical simulation of the impact of COVID-19 lockdown on tropospheric composition and aerosol radiative forcing in Europe. Atmosph. Chem. Phys. 22, 10901\u201310917 (2022).","journal-title":"Atmosph. Chem. Phys."},{"key":"795_CR117","doi-asserted-by":"publisher","first-page":"2673","DOI":"10.5194\/gmd-15-2673-2022","volume":"15","author":"A Pozzer","year":"2022","unstructured":"Pozzer, A. et al. Simulation of organics in the atmosphere: evaluation of EMACv2.54 with the Mainz Organic Mechanism (MOM) coupled to the ORACLE (v1.0) submodel. Geosci. Model Dev. 15, 2673\u20132710 (2022).","journal-title":"Geosci. Model Dev."},{"key":"795_CR118","doi-asserted-by":"publisher","first-page":"8683","DOI":"10.5194\/acp-22-8683-2022","volume":"22","author":"OO Kr\u00fcger","year":"2022","unstructured":"Kr\u00fcger, O. O. et al. Black carbon aerosol reductions during COVID-19 confinement quantified by aircraft measurements over Europe. Atmos. Chem. Phys. 22, 8683\u20138699 (2022).","journal-title":"Atmos. Chem. Phys."},{"key":"795_CR119","doi-asserted-by":"publisher","first-page":"2477","DOI":"10.1002\/qj.49712354416","volume":"123","author":"S-J Lin","year":"1997","unstructured":"Lin, S.-J. & Rood, R. B. An explicit flux-form semi-lagrangian shallow-water model on the sphere. Quarterly J. Royal Meteorol. Society. 123, 2477\u20132498 (1997).","journal-title":"Quarterly J. Royal Meteorol. Society."},{"key":"795_CR120","doi-asserted-by":"crossref","first-page":"e2019MS001882","DOI":"10.1029\/2019MS001882","volume":"12","author":"LK Emmons","year":"2020","unstructured":"Emmons, L. K. et al. The chemistry mechanism in the community earth system model version 2 (CESM2). J. Adv. Modeling Earth Sys. 12, e2019MS001882 (2020).","journal-title":"J. Adv. Modeling Earth Sys."},{"key":"795_CR121","doi-asserted-by":"publisher","first-page":"505","DOI":"10.5194\/gmd-9-505-2016","volume":"9","author":"X Liu","year":"2016","unstructured":"Liu, X. et al. Description and evaluation of a new four-mode version of the modal aerosol module (MAM4) within version 5.3 of the community atmosphere model. Geosci. Model Dev. 9, 505\u2013522 (2016).","journal-title":"Geosci. Model Dev."},{"key":"795_CR122","doi-asserted-by":"publisher","first-page":"5145 \u2013 5153","DOI":"10.1175\/2008JCLI2292.1","volume":"21","author":"JW Hurrell","year":"2008","unstructured":"Hurrell, J. W., Hack, J. J., Shea, D., Caron, J. M. & Rosinski, J. A new sea surface temperature and sea ice boundary dataset for the community atmosphere model. J. Climate. 21, 5145 \u2013 5153 (2008).","journal-title":"J. Climate."},{"key":"795_CR123","first-page":"183 pp","volume":"38","author":"AS Darmenov","year":"2015","unstructured":"Darmenov, A. S. & da Silva, A. The Quick Fire Emissions Dataset (QFED)\u2013Documentation of versions 2.1, 2.2 and 2.4. NASA\/\/TM-2015-104606 38, 183 pp (2015).","journal-title":"NASA\/\/TM-2015-104606"},{"key":"795_CR124","doi-asserted-by":"publisher","first-page":"5419","DOI":"10.1175\/JCLI-D-16-0758.1","volume":"30","author":"R Gelaro","year":"2017","unstructured":"Gelaro, R. et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Climate. 30, 5419\u20135454 (2017).","journal-title":"J. Climate."},{"key":"795_CR125","doi-asserted-by":"publisher","first-page":"461","DOI":"10.1175\/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2","volume":"59","author":"M Chin","year":"2002","unstructured":"Chin, M. et al. Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements. J. Atmosph. Sci. 59, 461\u2013483 (2002).","journal-title":"J. Atmosph. Sci."},{"key":"795_CR126","doi-asserted-by":"publisher","first-page":"D14207","DOI":"10.1029\/2009JD012820","volume":"115","author":"P Colarco","year":"2010","unstructured":"Colarco, P., da Silva, A., Chin, M. & Diehl, T. Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J. Geophys. Res. 115, D14207 (2010).","journal-title":"J. Geophys. Res."},{"key":"795_CR127","first-page":"118","volume":"27","author":"M Rienecker","year":"2008","unstructured":"Rienecker, M. et al. The GEOS-5 Data Assimilation System\u2013Documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA\/TM\u20132008\u2013104606 27, 118 (2008).","journal-title":"NASA\/TM\u20132008\u2013104606"},{"key":"795_CR128","unstructured":"Randles, C. A. The MERRA-2 Aerosol Assimilation. NASA Tech. Report. 45, 1\u2013140 (2016)."},{"key":"795_CR129","doi-asserted-by":"publisher","first-page":"6823","DOI":"10.1175\/JCLI-D-16-0609.1","volume":"30","author":"CA Randles","year":"2017","unstructured":"Randles, C. A. et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation. J. Climate. 30, 6823\u20136850 (2017).","journal-title":"J. Climate."},{"key":"795_CR130","doi-asserted-by":"publisher","first-page":"6851","DOI":"10.1175\/JCLI-D-16-0613.1","volume":"30","author":"V Buchard","year":"2017","unstructured":"Buchard, V. et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies. J. Climate. 30, 6851\u20136872 (2017).","journal-title":"J. Climate."},{"key":"795_CR131","doi-asserted-by":"publisher","first-page":"1643","DOI":"10.1175\/JCLI-D-16-0570.1","volume":"30","author":"RH Reichle","year":"2017","unstructured":"Reichle, R. H. et al. Land Surface Precipitation in MERRA-2. J. Climate. 30, 1643\u20131664 (2017).","journal-title":"J. Climate."},{"key":"795_CR132","first-page":"D03202","volume":"115","author":"E Nowottnick","year":"2010","unstructured":"Nowottnick, E. et al. Online simulations of mineral dust aerosol distributions: Comparisons to NAMMA observations and sensitivity to dust emission parameterization. J. Geophys. Res. 115, D03202 (2010).","journal-title":"J. Geophys. Res."},{"key":"795_CR133","doi-asserted-by":"publisher","first-page":"8415","DOI":"10.5194\/acp-11-8415-2011","volume":"11","author":"E Nowottnick","year":"2011","unstructured":"Nowottnick, E., Colarco, P., da Silva, A., Hlavka, D. & McGill, M. The fate of Saharan dust across the Atlantic and implications for a central American dust barrier. Atmosph. Chem. Phys. 11, 8415\u20138431 (2011).","journal-title":"Atmosph. Chem. Phys."},{"key":"795_CR134","doi-asserted-by":"publisher","first-page":"4707","DOI":"10.5194\/acp-13-4707-2013","volume":"13","author":"H Bian","year":"2013","unstructured":"Bian, H. et al. Source attributions of pollution to the Western Arctic during the NASA ARCTAS field campaign. Atmosph. Chem. Phys. 13, 4707\u20134721 (2013).","journal-title":"Atmosph. Chem. Phys."},{"key":"795_CR135","doi-asserted-by":"publisher","unstructured":"Holanda, B. & P\u00f6hlker, C. Data on influx of African smoke into the Amazon. https:\/\/doi.org\/10.17617\/3.YTLQYH (2023).","DOI":"10.17617\/3.YTLQYH"}],"container-title":["Communications Earth & Environment"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.nature.com\/articles\/s43247-023-00795-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s43247-023-00795-5","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s43247-023-00795-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,12]],"date-time":"2023-12-12T05:28:00Z","timestamp":1702358880000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.nature.com\/articles\/s43247-023-00795-5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5,5]]},"references-count":135,"journal-issue":{"issue":"1","published-online":{"date-parts":[[2023,12]]}},"alternative-id":["795"],"URL":"http:\/\/dx.doi.org\/10.1038\/s43247-023-00795-5","relation":{},"ISSN":["2662-4435"],"issn-type":[{"value":"2662-4435","type":"electronic"}],"subject":["General Earth and Planetary Sciences","General Environmental Science"],"published":{"date-parts":[[2023,5,5]]},"assertion":[{"value":"12 July 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"5 April 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"5 May 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"The authors declare no competing interest.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}],"article-number":"154"}} |