uni-leipzig-open-access/json/s41467-023-37111-w
2024-01-25 14:46:53 +01:00

1 line
No EOL
29 KiB
Text

{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,1,18]],"date-time":"2024-01-18T13:02:57Z","timestamp":1705582977996},"reference-count":79,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2023,3,18]],"date-time":"2023-03-18T00:00:00Z","timestamp":1679097600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2023,3,18]],"date-time":"2023-03-18T00:00:00Z","timestamp":1679097600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Nat Commun"],"abstract":"<jats:title>Abstract<\/jats:title><jats:p>Spatially resolved transcriptomics of tissue sections enables advances in fundamental and applied biomedical research. Here, we present Multiplexed Deterministic Barcoding in Tissue (xDBiT) to acquire spatially resolved transcriptomes of nine tissue sections in parallel. New microfluidic chips were developed to spatially encode mRNAs over a total tissue area of 1.17\u2009cm<jats:sup>2<\/jats:sup> with a 50\u2009\u00b5m resolution. Optimization of the biochemical protocol increased read and gene counts per spot by one order of magnitude compared to previous reports. Furthermore, the introduction of alignment markers allowed seamless registration of images and spatial transcriptomic spots. Together with technological advances, we provide an open-source computational pipeline to prepare raw sequencing data for downstream analysis. The functionality of xDBiT was demonstrated by acquiring 16 spatially resolved transcriptomic datasets from five different murine organs, including the cerebellum, liver, kidney, spleen, and heart. Factor analysis and deconvolution of spatial transcriptomes allowed for in-depth characterization of the murine kidney.<\/jats:p>","DOI":"10.1038\/s41467-023-37111-w","type":"journal-article","created":{"date-parts":[[2023,3,26]],"date-time":"2023-03-26T20:03:17Z","timestamp":1679860997000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Spatial transcriptomics using multiplexed deterministic barcoding in tissue"],"prefix":"10.1038","volume":"14","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-2216-3332","authenticated-orcid":false,"given":"Johannes","family":"Wirth","sequence":"first","affiliation":[]},{"given":"Nina","family":"Huber","sequence":"additional","affiliation":[]},{"given":"Kelvin","family":"Yin","sequence":"additional","affiliation":[]},{"given":"Sophie","family":"Brood","sequence":"additional","affiliation":[]},{"given":"Simon","family":"Chang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9534-6201","authenticated-orcid":false,"given":"Celia P.","family":"Martinez-Jimenez","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9455-4538","authenticated-orcid":false,"given":"Matthias","family":"Meier","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,3,18]]},"reference":[{"key":"37111_CR1","doi-asserted-by":"publisher","first-page":"1202","DOI":"10.1016\/j.cell.2015.05.002","volume":"161","author":"EZ Macosko","year":"2015","unstructured":"Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202\u20131214 (2015).","journal-title":"Cell"},{"key":"37111_CR2","doi-asserted-by":"publisher","first-page":"302","DOI":"10.1038\/nmeth.4154","volume":"14","author":"SA Vitak","year":"2017","unstructured":"Vitak, S. A. et al. Sequencing thousands of single-cell genomes with combinatorial indexing. Nat. Methods 14, 302\u2013308 (2017).","journal-title":"Nat. Methods"},{"key":"37111_CR3","doi-asserted-by":"publisher","first-page":"176","DOI":"10.1126\/science.aam8999","volume":"360","author":"AB Rosenberg","year":"2018","unstructured":"Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176\u2013182 (2018).","journal-title":"Science"},{"key":"37111_CR4","doi-asserted-by":"publisher","first-page":"1096","DOI":"10.1038\/nmeth.2639","volume":"10","author":"S Picelli","year":"2013","unstructured":"Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096\u20131098 (2013).","journal-title":"Nat. Methods"},{"key":"37111_CR5","doi-asserted-by":"crossref","unstructured":"Moses, L. & Pachter, L. Museum of spatial transcriptomics. Nat. Methods 19, 534\u2013546 (2022).","DOI":"10.1038\/s41592-022-01409-2"},{"key":"37111_CR6","doi-asserted-by":"crossref","unstructured":"Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).","DOI":"10.1126\/science.aaa6090"},{"key":"37111_CR7","doi-asserted-by":"publisher","first-page":"235","DOI":"10.1038\/s41586-019-1049-y","volume":"568","author":"CHL Eng","year":"2019","unstructured":"Eng, C. H. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568, 235\u2013239 (2019).","journal-title":"Nature"},{"key":"37111_CR8","doi-asserted-by":"publisher","first-page":"987","DOI":"10.1038\/s41592-019-0548-y","volume":"16","author":"S Vickovic","year":"2019","unstructured":"Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987\u2013990 (2019).","journal-title":"Nat. Methods"},{"key":"37111_CR9","doi-asserted-by":"publisher","unstructured":"Wu, L. et al. Spatially-resolved transcriptomics analyses of invasive fronts in solid tumors. bioRxiv 2021.10.21.465135 (2021) https:\/\/doi.org\/10.1101\/2021.10.21.465135.","DOI":"10.1101\/2021.10.21.465135"},{"key":"37111_CR10","doi-asserted-by":"publisher","first-page":"111","DOI":"10.1126\/science.abb9536","volume":"373","author":"SR Srivatsan","year":"2021","unstructured":"Srivatsan, S. R. et al. Embryo-scale, single-cell spatial transcriptomics. Science 373, 111\u2013117 (2021).","journal-title":"Science"},{"key":"37111_CR11","doi-asserted-by":"publisher","first-page":"eabg4755","DOI":"10.1126\/sciadv.abg4755","volume":"7","author":"Y Lee","year":"2021","unstructured":"Lee, Y. et al. XYZeq: Spatially resolved single-cell RNA sequencing reveals expression heterogeneity in the tumor microenvironment. Sci. Adv. 7, eabg4755 (2021).","journal-title":"Sci. Adv."},{"key":"37111_CR12","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s42003-020-01247-y","volume":"3","author":"A Andersson","year":"2020","unstructured":"Andersson, A. et al. Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography. Commun. Biol. 3, 1\u20138 (2020).","journal-title":"Commun. Biol."},{"key":"37111_CR13","doi-asserted-by":"crossref","unstructured":"Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat. Biotechnol. 40, 661\u2013671 (2022).","DOI":"10.1038\/s41587-021-01139-4"},{"key":"37111_CR14","doi-asserted-by":"crossref","unstructured":"Lopez, R. et al. DestVI identifies continuums of cell types in spatial transcriptomics data. Nat. Biotechnol. 40, 1360\u20131369 (2022).","DOI":"10.1038\/s41587-022-01272-8"},{"key":"37111_CR15","doi-asserted-by":"crossref","unstructured":"Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nat. Biotechnol. 40, 1349\u20131359 (2022).","DOI":"10.1038\/s41587-022-01273-7"},{"key":"37111_CR16","doi-asserted-by":"publisher","first-page":"1665","DOI":"10.1016\/j.cell.2020.10.026","volume":"183","author":"Y Liu","year":"2020","unstructured":"Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183, 1665\u20131681.e18 (2020).","journal-title":"Cell"},{"key":"37111_CR17","doi-asserted-by":"publisher","unstructured":"Liu, Y. et al. Spatial-CITE-seq: spatially resolved high-plex protein and whole transcriptome co-mapping. bioRxiv 2022.04.01.486788 (2022) https:\/\/doi.org\/10.1101\/2022.04.01.486788.","DOI":"10.1101\/2022.04.01.486788"},{"key":"37111_CR18","doi-asserted-by":"publisher","first-page":"681","DOI":"10.1126\/science.abg7216","volume":"375","author":"Y Deng","year":"2022","unstructured":"Deng, Y. et al. Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level. Science 375, 681\u2013686 (2022).","journal-title":"Science"},{"key":"37111_CR19","doi-asserted-by":"publisher","first-page":"375","DOI":"10.1038\/s41586-022-05094-1","volume":"609","author":"Y Deng","year":"2022","unstructured":"Deng, Y. et al. Spatial profiling of chromatin accessibility in mouse and human tissues. Nature 609, 375\u2013383 (2022).","journal-title":"Nature"},{"key":"37111_CR20","doi-asserted-by":"publisher","unstructured":"Virshup, I., Rybakov, S., Theis, F. J., Angerer, P. & Wolf, F. A. anndata: Annotated data. bioRxiv 2021.12.16.473007 (2021) https:\/\/doi.org\/10.1101\/2021.12.16.473007.","DOI":"10.1101\/2021.12.16.473007"},{"key":"37111_CR21","doi-asserted-by":"publisher","DOI":"10.1186\/s13059-017-1382-0","volume":"19","author":"FA Wolf","year":"2018","unstructured":"Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).","journal-title":"Genome Biol."},{"key":"37111_CR22","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1023\/B:VISI.0000029664.99615.94","volume":"60","author":"DG Lowe","year":"2004","unstructured":"Lowe, D. G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91\u2013110 (2004).","journal-title":"Int. J. Comput. Vis."},{"key":"37111_CR23","doi-asserted-by":"publisher","first-page":"171","DOI":"10.1038\/s41592-021-01358-2","volume":"19","author":"G Palla","year":"2022","unstructured":"Palla, G. et al. Squidpy: a scalable framework for spatial omics analysis. Nat. Methods 19, 171\u2013178 (2022).","journal-title":"Nat. Methods"},{"key":"37111_CR24","doi-asserted-by":"publisher","first-page":"395","DOI":"10.1038\/nmeth.1448","volume":"7","author":"C Larsson","year":"2010","unstructured":"Larsson, C., Grundberg, I., S\u00f6derberg, O. & Nilsson, M. In situ detection and genotyping of individual mRNA molecules. Nat. Methods 7, 395 (2010).","journal-title":"Nat. Methods"},{"key":"37111_CR25","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1038\/s41586-021-03634-9","volume":"596","author":"A Rao","year":"2021","unstructured":"Rao, A., Barkley, D., Fran\u00e7a, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211\u2013220 (2021).","journal-title":"Nature"},{"key":"37111_CR26","doi-asserted-by":"publisher","first-page":"515","DOI":"10.1039\/C2LC20799K","volume":"12","author":"KW Oh","year":"2012","unstructured":"Oh, K. W., Lee, K., Ahn, B. & Furlani, E. P. Design of pressure-driven microfluidic networks using electric circuit analogy. Lab. Chip 12, 515\u2013545 (2012).","journal-title":"Lab. Chip"},{"key":"37111_CR27","doi-asserted-by":"publisher","DOI":"10.1186\/1471-2105-12-S10-S4","volume":"12","author":"F Zhang","year":"2011","unstructured":"Zhang, F. & Chen, J. Y. HOMER: a human organ-specific molecular electronic repository. BMC Bioinf. 12, S4 (2011).","journal-title":"BMC Bioinf."},{"key":"37111_CR28","doi-asserted-by":"publisher","unstructured":"McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. Preprint at https:\/\/doi.org\/10.48550\/arXiv.1802.03426 (2020).","DOI":"10.48550\/arXiv.1802.03426"},{"key":"37111_CR29","doi-asserted-by":"publisher","DOI":"10.1038\/s41598-019-41695-z","volume":"9","author":"VA Traag","year":"2019","unstructured":"Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).","journal-title":"Sci. Rep."},{"key":"37111_CR30","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-021-21892-z","volume":"12","author":"M Mantri","year":"2021","unstructured":"Mantri, M. et al. Spatiotemporal single-cell RNA sequencing of developing chicken hearts identifies interplay between cellular differentiation and morphogenesis. Nat. Commun. 12, 1771 (2021).","journal-title":"Nat. Commun."},{"key":"37111_CR31","doi-asserted-by":"publisher","first-page":"466","DOI":"10.1038\/s41586-020-2797-4","volume":"588","author":"M Litvi\u0148ukov\u00e1","year":"2020","unstructured":"Litvi\u0148ukov\u00e1, M. et al. Cells of the adult human heart. Nature 588, 466\u2013472 (2020).","journal-title":"Nature"},{"key":"37111_CR32","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-018-06639-7","volume":"9","author":"S Nomura","year":"2018","unstructured":"Nomura, S. et al. Cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure. Nat. Commun. 9, 4435 (2018).","journal-title":"Nat. Commun."},{"key":"37111_CR33","doi-asserted-by":"publisher","first-page":"395","DOI":"10.1038\/s41575-019-0134-x","volume":"16","author":"S Ben-Moshe","year":"2019","unstructured":"Ben-Moshe, S. & Itzkovitz, S. Spatial heterogeneity in the mammalian liver. Nat. Rev. Gastroenterol. Hepatol. 16, 395\u2013410 (2019).","journal-title":"Nat. Rev. Gastroenterol. Hepatol."},{"key":"37111_CR34","doi-asserted-by":"publisher","first-page":"D607","DOI":"10.1093\/nar\/gky1131","volume":"47","author":"D Szklarczyk","year":"2019","unstructured":"Szklarczyk, D. et al. STRING v11: protein\u2013protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607\u2013D613 (2019).","journal-title":"Nucleic Acids Res."},{"key":"37111_CR35","doi-asserted-by":"publisher","first-page":"D507","DOI":"10.1093\/nar\/gkq968","volume":"39","author":"M Gremse","year":"2011","unstructured":"Gremse, M. et al. The BRENDA Tissue Ontology (BTO): the first all-integrating ontology of all organisms for enzyme sources. Nucleic Acids Res. 39, D507\u2013D513 (2011).","journal-title":"Nucleic Acids Res."},{"key":"37111_CR36","doi-asserted-by":"publisher","first-page":"D794","DOI":"10.1093\/nar\/gkx1081","volume":"46","author":"CA Davis","year":"2018","unstructured":"Davis, C. A. et al. The encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids Res. 46, D794\u2013D801 (2018).","journal-title":"Nucleic Acids Res."},{"key":"37111_CR37","doi-asserted-by":"publisher","first-page":"57","DOI":"10.1038\/nature11247","volume":"489","author":"I Dunham","year":"2012","unstructured":"Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57\u201374 (2012).","journal-title":"Nature"},{"key":"37111_CR38","doi-asserted-by":"crossref","unstructured":"Velten, B. et al. Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nat. Methods 19, 179\u2013186 (2022).","DOI":"10.1038\/s41592-021-01343-9"},{"key":"37111_CR39","doi-asserted-by":"publisher","first-page":"2501","DOI":"10.1038\/s41596-018-0045-2","volume":"13","author":"F Salm\u00e9n","year":"2018","unstructured":"Salm\u00e9n, F. et al. Barcoded solid-phase RNA capture for spatial transcriptomics profiling in mammalian tissue sections. Nat. Protoc. 13, 2501\u20132534 (2018).","journal-title":"Nat. Protoc."},{"key":"37111_CR40","doi-asserted-by":"crossref","unstructured":"Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat. Biotechnol. 39, 313\u2013319 (2021).","DOI":"10.1038\/s41587-020-0739-1"},{"key":"37111_CR41","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41467-021-22266-1","volume":"12","author":"Z Miao","year":"2021","unstructured":"Miao, Z. et al. Single cell regulatory landscape of the mouse kidney highlights cellular differentiation programs and disease targets. Nat. Commun. 12, 1\u201317 (2021).","journal-title":"Nat. Commun."},{"key":"37111_CR42","doi-asserted-by":"publisher","first-page":"787","DOI":"10.1016\/j.kint.2018.11.028","volume":"95","author":"JZ Clark","year":"2019","unstructured":"Clark, J. Z. et al. Representation and relative abundance of cell-type selective markers in whole-kidney RNA-Seq data. Kidney Int. 95, 787\u2013796 (2019).","journal-title":"Kidney Int."},{"key":"37111_CR43","doi-asserted-by":"publisher","first-page":"1358","DOI":"10.1681\/ASN.2019040415","volume":"30","author":"L Chen","year":"2019","unstructured":"Chen, L. et al. Renal-tubule epithelial cell nomenclature for single-cell rna-sequencing studies. J. Am. Soc. Nephrol. 30, 1358\u20131364 (2019).","journal-title":"J. Am. Soc. Nephrol."},{"key":"37111_CR44","doi-asserted-by":"publisher","first-page":"1176","DOI":"10.1111\/febs.15088","volume":"287","author":"GK Kumaran","year":"2020","unstructured":"Kumaran, G. K. & Hanukoglu, I. Identification and classification of epithelial cells in nephron segments by actin cytoskeleton patterns. FEBS J. 287, 1176\u20131194 (2020).","journal-title":"FEBS J."},{"key":"37111_CR45","doi-asserted-by":"publisher","first-page":"2341","DOI":"10.1681\/ASN.2020020220","volume":"31","author":"JJ Chung","year":"2020","unstructured":"Chung, J. J. et al. Single-cell transcriptome profiling of the kidney glomerulus identifies key cell types and reactions to injury. J. Am. Soc. Nephrol. 31, 2341\u20132354 (2020).","journal-title":"J. Am. Soc. Nephrol."},{"key":"37111_CR46","doi-asserted-by":"publisher","first-page":"2060","DOI":"10.1681\/ASN.2018030238","volume":"29","author":"N Karaiskos","year":"2018","unstructured":"Karaiskos, N. et al. A single-cell transcriptome atlas of the mouse glomerulus. J. Am. Soc. Nephrol. 29, 2060\u20132068 (2018).","journal-title":"J. Am. Soc. Nephrol."},{"key":"37111_CR47","doi-asserted-by":"publisher","first-page":"3093","DOI":"10.1681\/ASN.2015121340","volume":"27","author":"VG Puelles","year":"2016","unstructured":"Puelles, V. G. et al. Validation of a three-dimensional method for counting and sizing podocytes in whole glomeruli. J. Am. Soc. Nephrol. 27, 3093\u20133104 (2016).","journal-title":"J. Am. Soc. Nephrol."},{"key":"37111_CR48","doi-asserted-by":"publisher","first-page":"1869","DOI":"10.1016\/j.cmet.2021.07.018","volume":"33","author":"J B\u00e4ckdahl","year":"2021","unstructured":"B\u00e4ckdahl, J. et al. Spatial mapping reveals human adipocyte subpopulations with distinct sensitivities to insulin. Cell Metab. 33, 1869\u20131882.e6 (2021).","journal-title":"Cell Metab."},{"key":"37111_CR49","doi-asserted-by":"publisher","first-page":"976","DOI":"10.1016\/j.cell.2020.06.038","volume":"0","author":"W-T Chen","year":"2020","unstructured":"Chen, W.-T. et al. Spatial transcriptomics and in situ sequencing to study Alzheimer\u2019s disease. Cell 0, 976\u2013991.e19 (2020).","journal-title":"Cell"},{"key":"37111_CR50","doi-asserted-by":"publisher","first-page":"1334","DOI":"10.1038\/s41588-021-00911-1","volume":"53","author":"SZ Wu","year":"2021","unstructured":"Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334\u20131347 (2021).","journal-title":"Nat. Genet."},{"key":"37111_CR51","doi-asserted-by":"publisher","first-page":"e8746","DOI":"10.15252\/msb.20188746","volume":"15","author":"MD Luecken","year":"2019","unstructured":"Luecken, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 15, e8746 (2019).","journal-title":"Mol. Syst. Biol."},{"key":"37111_CR52","doi-asserted-by":"publisher","first-page":"332","DOI":"10.2144\/0000113862","volume":"52","author":"M Griffin","year":"2012","unstructured":"Griffin, M., Abu-El-Haija, M., Abu-El-Haija, M., Rokhlina, T. & Uc, A. Simplified and versatile method for isolation of high-quality RNA from pancreas. BioTechniques 52, 332\u2013334 (2012).","journal-title":"BioTechniques"},{"key":"37111_CR53","doi-asserted-by":"publisher","first-page":"1777","DOI":"10.1016\/j.cell.2022.04.003","volume":"185","author":"A Chen","year":"2022","unstructured":"Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777\u20131792.e21 (2022).","journal-title":"Cell"},{"key":"37111_CR54","doi-asserted-by":"publisher","unstructured":"Liu, Y., Enninful, A., Deng, Y. & Fan, R. Spatial transcriptome sequencing of FFPE tissues at the cellular level. bioRxiv 2020.10.13.338475 (2020) https:\/\/doi.org\/10.1101\/2020.10.13.338475.","DOI":"10.1101\/2020.10.13.338475"},{"key":"37111_CR55","doi-asserted-by":"publisher","first-page":"e1261","DOI":"10.1371\/journal.pone.0001261","volume":"2","author":"S Ahlfen","year":"2007","unstructured":"Ahlfen, S., von, Missel, A., Bendrat, K. & Schlumpberger, M. Determinants of RNA Quality from FFPE Samples. PLoS ONE 2, e1261 (2007).","journal-title":"PLoS ONE"},{"key":"37111_CR56","doi-asserted-by":"publisher","first-page":"188","DOI":"10.1016\/j.yexmp.2012.07.002","volume":"94","author":"D Groelz","year":"2013","unstructured":"Groelz, D. et al. Non-formalin fixative versus formalin-fixed tissue: a comparison of histology and RNA quality. Exp. Mol. Pathol. 94, 188\u2013194 (2013).","journal-title":"Exp. Mol. Pathol."},{"key":"37111_CR57","doi-asserted-by":"publisher","first-page":"113","DOI":"10.1126\/science.288.5463.113","volume":"288","author":"MA Unger","year":"2000","unstructured":"Unger, M. A., Chou, H. P., Thorsen, T., Scherer, A. & Quake, S. R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113\u2013116 (2000).","journal-title":"Science"},{"key":"37111_CR58","doi-asserted-by":"publisher","first-page":"4","DOI":"10.1186\/s12859-018-2262-7","volume":"19","author":"P Somervuo","year":"2018","unstructured":"Somervuo, P. et al. BARCOSEL: A tool for selecting an optimal barcode set for high-throughput sequencing. BMC Bioinforma. 19, 4\u20139 (2018).","journal-title":"BMC Bioinforma."},{"key":"37111_CR59","unstructured":"Nemesh, J. Drop-seq. Github https:\/\/github.com\/broadinstitute\/Drop-seq (2018)."},{"key":"37111_CR60","unstructured":"Wegmann, R. splitseq_toolbox. Github https:\/\/github.com\/RebekkaWegmann\/splitseq_toolbox (2019)."},{"key":"37111_CR61","unstructured":"Broad Institute. Picard. Github https:\/\/broadinstitute.github.io\/picard\/ (2014)."},{"key":"37111_CR62","doi-asserted-by":"publisher","first-page":"90","DOI":"10.1109\/MCSE.2007.55","volume":"9","author":"JD Hunter","year":"2007","unstructured":"Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90\u201395 (2007).","journal-title":"Comput. Sci. Eng."},{"key":"37111_CR63","doi-asserted-by":"publisher","first-page":"3021","DOI":"10.21105\/joss.03021","volume":"6","author":"M Waskom","year":"2021","unstructured":"Waskom, M. L. seaborn: statistical data visualization. J. Open Source Softw. 6, 3021 (2021).","journal-title":"J. Open Source Softw."},{"key":"37111_CR64","unstructured":"Bradski, G. The OpenCV Library. Dr. Dobb\u2019s http:\/\/www.drdobbs.com\/open-source\/the-opencv-library\/184404319 (2000)."},{"key":"37111_CR65","doi-asserted-by":"crossref","unstructured":"Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal Vol 17 No 1 Gener. Seq. Data Anal. \u2212 1014806ej171200 (2011).","DOI":"10.14806\/ej.17.1.200"},{"key":"37111_CR66","doi-asserted-by":"publisher","first-page":"15","DOI":"10.1093\/bioinformatics\/bts635","volume":"29","author":"A Dobin","year":"2013","unstructured":"Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15\u201321 (2013).","journal-title":"Bioinformatics"},{"key":"37111_CR67","doi-asserted-by":"publisher","DOI":"10.1093\/gigascience\/giab008","volume":"10","author":"P Danecek","year":"2021","unstructured":"Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021).","journal-title":"GigaScience"},{"key":"37111_CR68","unstructured":"Pysam. (2023)."},{"key":"37111_CR69","doi-asserted-by":"publisher","unstructured":"Sofroniew, N. et al. napari\/napari: 0.4.15. (2022) https:\/\/doi.org\/10.5281\/ZENODO.6344271.","DOI":"10.5281\/ZENODO.6344271"},{"key":"37111_CR70","doi-asserted-by":"publisher","first-page":"685","DOI":"10.1038\/s41587-019-0113-3","volume":"37","author":"B Hie","year":"2019","unstructured":"Hie, B., Bryson, B. & Berger, B. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama. Nat. Biotechnol. 37, 685\u2013691 (2019).","journal-title":"Nat. Biotechnol."},{"key":"37111_CR71","doi-asserted-by":"publisher","first-page":"1260419","DOI":"10.1126\/science.1260419","volume":"347","author":"U Mathias","year":"2015","unstructured":"Mathias, U. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).","journal-title":"Science"},{"key":"37111_CR72","doi-asserted-by":"publisher","first-page":"D433","DOI":"10.1093\/nar\/gki005","volume":"33","author":"C von Mering","year":"2005","unstructured":"von Mering, C. et al. STRING: known and predicted protein\u2013protein associations, integrated and transferred across organisms. Nucleic Acids Res. 33, D433\u2013D437 (2005).","journal-title":"Nucleic Acids Res."},{"key":"37111_CR73","doi-asserted-by":"publisher","first-page":"D325","DOI":"10.1093\/nar\/gkaa1113","volume":"49","author":"The Gene Ontology Consortium.","year":"2021","unstructured":"The Gene Ontology Consortium. The gene ontology resource: enriching a GOld mine. Nucleic Acids Res. 49, D325\u2013D334 (2021).","journal-title":"Nucleic Acids Res."},{"key":"37111_CR74","doi-asserted-by":"publisher","first-page":"25","DOI":"10.1038\/75556","volume":"25","author":"M Ashburner","year":"2000","unstructured":"Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25\u201329 (2000).","journal-title":"Nat. Genet."},{"key":"37111_CR75","doi-asserted-by":"publisher","first-page":"676","DOI":"10.1038\/nmeth.2019","volume":"9","author":"J Schindelin","year":"2012","unstructured":"Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676\u2013682 (2012).","journal-title":"Nat. Methods"},{"key":"37111_CR76","doi-asserted-by":"publisher","first-page":"e0240280","DOI":"10.1371\/journal.pone.0240280","volume":"16","author":"G Mazo","year":"2021","unstructured":"Mazo, G. QuickFigures: a toolkit and ImageJ PlugIn to quickly transform microscope images into scientific figures. PLoS ONE 16, e0240280 (2021).","journal-title":"PLoS ONE"},{"key":"37111_CR77","doi-asserted-by":"publisher","first-page":"1463","DOI":"10.1093\/bioinformatics\/btp184","volume":"25","author":"S Preibisch","year":"2009","unstructured":"Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinforma. Oxf. Engl. 25, 1463\u20131465 (2009).","journal-title":"Bioinforma. Oxf. Engl."},{"key":"37111_CR78","doi-asserted-by":"publisher","first-page":"163","DOI":"10.1038\/s41587-021-01206-w","volume":"40","author":"A Gayoso","year":"2022","unstructured":"Gayoso, A. et al. A Python library for probabilistic analysis of single-cell omics data. Nat. Biotechnol. 40, 163\u2013166 (2022).","journal-title":"Nat. Biotechnol."},{"key":"37111_CR79","doi-asserted-by":"publisher","unstructured":"Wirth, J. jwrth\/xDBiT_toolbox: v2.1 - Publication. (2023) https:\/\/doi.org\/10.5281\/zenodo.7615402.","DOI":"10.5281\/zenodo.7615402"}],"container-title":["Nature Communications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.nature.com\/articles\/s41467-023-37111-w.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s41467-023-37111-w","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s41467-023-37111-w.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,26]],"date-time":"2023-03-26T20:03:32Z","timestamp":1679861012000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.nature.com\/articles\/s41467-023-37111-w"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3,18]]},"references-count":79,"journal-issue":{"issue":"1","published-online":{"date-parts":[[2023,12]]}},"alternative-id":["37111"],"URL":"http:\/\/dx.doi.org\/10.1038\/s41467-023-37111-w","relation":{},"ISSN":["2041-1723"],"issn-type":[{"value":"2041-1723","type":"electronic"}],"subject":["General Physics and Astronomy","General Biochemistry, Genetics and Molecular Biology","General Chemistry","Multidisciplinary"],"published":{"date-parts":[[2023,3,18]]},"assertion":[{"value":"2 September 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"2 March 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"18 March 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"The authors declare no competing interests.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}],"article-number":"1523"}}