uni-leipzig-open-access/json/s00432-023-04667-5
2024-01-25 14:46:53 +01:00

1 line
No EOL
33 KiB
Text

{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,11,27]],"date-time":"2023-11-27T06:17:38Z","timestamp":1701065858376},"reference-count":76,"publisher":"Springer Science and Business Media LLC","issue":"10","license":[{"start":{"date-parts":[[2023,3,15]],"date-time":"2023-03-15T00:00:00Z","timestamp":1678838400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2023,3,15]],"date-time":"2023-03-15T00:00:00Z","timestamp":1678838400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100002957","name":"Technische Universit\u00e4t Dresden","doi-asserted-by":"crossref"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Cancer Res Clin Oncol"],"published-print":{"date-parts":[[2023,8]]},"abstract":"<jats:title>Abstract<\/jats:title><jats:sec>\n <jats:title>Background<\/jats:title>\n <jats:p>Artificial intelligence (AI) is influencing our society on many levels and has broad implications for the future practice of hematology and oncology. However, for many medical professionals and researchers, it often remains unclear what AI can and cannot do, and what are promising areas for a sensible application of AI in hematology and oncology. Finally, the limits and perils of using AI in oncology are not obvious to many healthcare professionals.<\/jats:p>\n <\/jats:sec><jats:sec>\n <jats:title>Methods<\/jats:title>\n <jats:p>In this article, we provide an expert-based consensus statement by the joint Working Group on \u201cArtificial Intelligence in Hematology and Oncology\u201d by the German Society of Hematology and Oncology (DGHO), the German Association for Medical Informatics, Biometry and Epidemiology (GMDS), and the Special Interest Group Digital Health of the German Informatics Society (GI). We provide a conceptual framework for AI in hematology and oncology.<\/jats:p>\n <\/jats:sec><jats:sec>\n <jats:title>Results<\/jats:title>\n <jats:p>First, we propose a technological definition, which we deliberately set in a narrow frame to mainly include the technical developments of the last ten\u00a0years. Second, we present a taxonomy of clinically relevant AI systems, structured according to the type of clinical data they are used to analyze. Third, we show an overview of potential applications, including clinical, research, and educational environments with a focus on hematology and oncology.<\/jats:p>\n <\/jats:sec><jats:sec>\n <jats:title>Conclusion<\/jats:title>\n <jats:p>Thus, this article provides a point of reference for hematologists and oncologists, and at the same time sets forth a framework for the further development and clinical deployment of AI in hematology and oncology in the future.<\/jats:p>\n <\/jats:sec>","DOI":"10.1007\/s00432-023-04667-5","type":"journal-article","created":{"date-parts":[[2023,3,15]],"date-time":"2023-03-15T10:03:22Z","timestamp":1678874602000},"page":"7997-8006","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":8,"title":["An overview and a roadmap for artificial intelligence in hematology and oncology"],"prefix":"10.1007","volume":"149","author":[{"given":"Wiebke","family":"R\u00f6sler","sequence":"first","affiliation":[]},{"given":"Michael","family":"Altenbuchinger","sequence":"additional","affiliation":[]},{"given":"Bettina","family":"Bae\u00dfler","sequence":"additional","affiliation":[]},{"given":"Tim","family":"Beissbarth","sequence":"additional","affiliation":[]},{"given":"Gernot","family":"Beutel","sequence":"additional","affiliation":[]},{"given":"Robert","family":"Bock","sequence":"additional","affiliation":[]},{"given":"Nikolas","family":"von Bubnoff","sequence":"additional","affiliation":[]},{"given":"Jan-Niklas","family":"Eckardt","sequence":"additional","affiliation":[]},{"given":"Sebastian","family":"Foersch","sequence":"additional","affiliation":[]},{"given":"Chiara M. L.","family":"Loeffler","sequence":"additional","affiliation":[]},{"given":"Jan Moritz","family":"Middeke","sequence":"additional","affiliation":[]},{"given":"Martha-Lena","family":"Mueller","sequence":"additional","affiliation":[]},{"given":"Thomas","family":"Oellerich","sequence":"additional","affiliation":[]},{"given":"Benjamin","family":"Risse","sequence":"additional","affiliation":[]},{"given":"Andr\u00e9","family":"Scherag","sequence":"additional","affiliation":[]},{"given":"Christoph","family":"Schliemann","sequence":"additional","affiliation":[]},{"given":"Markus","family":"Scholz","sequence":"additional","affiliation":[]},{"given":"Rainer","family":"Spang","sequence":"additional","affiliation":[]},{"given":"Christian","family":"Thielscher","sequence":"additional","affiliation":[]},{"given":"Ioannis","family":"Tsoukakis","sequence":"additional","affiliation":[]},{"given":"Jakob Nikolas","family":"Kather","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,3,15]]},"reference":[{"key":"4667_CR1","doi-asserted-by":"crossref","first-page":"4006","DOI":"10.1038\/ncomms5006","volume":"5","author":"HJWL Aerts","year":"2014","unstructured":"Aerts HJWL et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006","journal-title":"Nat Commun"},{"key":"4667_CR2","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/j.jacr.2019.07.019","volume":"17","author":"A Alexander","year":"2020","unstructured":"Alexander A, Jiang A, Ferreira C, Zurkiya D (2020) An intelligent future for medical imaging: a market outlook on artificial intelligence for medical imaging. J Am Coll Radiol 17:165\u2013170","journal-title":"J Am Coll Radiol"},{"key":"4667_CR3","doi-asserted-by":"crossref","first-page":"8","DOI":"10.1016\/j.jclinepi.2022.11.015","volume":"154","author":"NC Andaur","year":"2023","unstructured":"Andaur NC et al (2023) Systematic review identifies the design and methodological conduct of studies on machine learning-based prediction models. J Clin Epidemiol 154:8\u201322","journal-title":"J Clin Epidemiol"},{"key":"4667_CR4","doi-asserted-by":"publisher","author":"K Araki","year":"2022","unstructured":"Araki K et al (2022) Developing artificial intelligence models for extracting oncologic outcomes from japanese electronic health records. Adv Ther. https:\/\/doi.org\/10.1007\/s12325-022-02397-7","journal-title":"Adv Ther","DOI":"10.1007\/s12325-022-02397-7"},{"key":"4667_CR5","doi-asserted-by":"crossref","unstructured":"Balasubramaniam V, 2021 Artificial intelligence algorithm with SVM classification using dermascopic images for melanoma diagnosis. March. 3: 34\u201342","DOI":"10.36548\/jaicn.2021.1.003"},{"key":"4667_CR6","doi-asserted-by":"crossref","first-page":"118","DOI":"10.1038\/s41746-020-00324-0","volume":"3","author":"S Benjamens","year":"2020","unstructured":"Benjamens S, Dhunnoo P, Mesk\u00f3 B (2020) The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit Med 3:118","journal-title":"NPJ Digit Med"},{"key":"4667_CR7","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1016\/j.ejca.2018.12.016","volume":"111","author":"TJ Brinker","year":"2019","unstructured":"Brinker TJ et al (2019) Comparing artificial intelligence algorithms to 157 German dermatologists: the melanoma classification benchmark. Eur J Cancer 111:30\u201337","journal-title":"Eur J Cancer"},{"key":"4667_CR8","doi-asserted-by":"crossref","first-page":"276","DOI":"10.1007\/s00292-019-0605-4","volume":"40","author":"R B\u00fcttner","year":"2019","unstructured":"B\u00fcttner R, Wolf J, Kron A (2019) Nationales netzwerk genomische medizin the national network genomic medicine (nNGM): Model for innovative diagnostics and therapy of lung cancer within a public healthcare system. Pathologe 40:276\u2013280","journal-title":"Pathologe"},{"key":"4667_CR9","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1038\/nmeth.4642","volume":"15","author":"D Bzdok","year":"2018","unstructured":"Bzdok D, Altman N, Krzywinski M (2018) Statistics versus machine learning. Nat Methods 15:233\u2013234","journal-title":"Nat Methods"},{"key":"4667_CR10","doi-asserted-by":"crossref","first-page":"493","DOI":"10.1038\/s41551-021-00751-8","volume":"5","author":"RJ Chen","year":"2021","unstructured":"Chen RJ, Lu MY, Chen TY, Williamson DFK, Mahmood F (2021) Synthetic data in machine learning for medicine and healthcare. Nat Biomed Eng 5:493\u2013497","journal-title":"Nat Biomed Eng"},{"key":"4667_CR11","doi-asserted-by":"crossref","first-page":"865","DOI":"10.1016\/j.ccell.2022.07.004","volume":"40","author":"RJ Chen","year":"2022","unstructured":"Chen RJ et al (2022) Pan-cancer integrative histology-genomic analysis via multimodal deep learning. Cancer Cell 40:865-878.e6","journal-title":"Cancer Cell"},{"key":"4667_CR12","doi-asserted-by":"publisher","author":"D Cifci","year":"2022","unstructured":"Cifci D, Foersch S, Kather JN (2022) Artificial intelligence to identify genetic alterations in conventional histopathology. J Pathol. https:\/\/doi.org\/10.1002\/path.5898","journal-title":"J Pathol","DOI":"10.1002\/path.5898"},{"key":"4667_CR13","first-page":"432","volume":"22","author":"JM Dolezal","year":"2022","unstructured":"Dolezal JM et al (2022) Deep learning generates synthetic cancer histology for explainability and education. Arxiv [eesIV]. 22:432","journal-title":"Arxiv [eesIV]."},{"key":"4667_CR14","doi-asserted-by":"crossref","first-page":"686","DOI":"10.1038\/s41416-020-01122-x","volume":"124","author":"A Echle","year":"2021","unstructured":"Echle A et al (2021) Deep learning in cancer pathology: a new generation of clinical biomarkers. Br J Cancer 124:686\u2013696","journal-title":"Br J Cancer"},{"key":"4667_CR15","doi-asserted-by":"crossref","first-page":"348","DOI":"10.1038\/s41586-021-03922-4","volume":"598","author":"HA Elmarakeby","year":"2021","unstructured":"Elmarakeby HA et al (2021) Biologically informed deep neural network for prostate cancer discovery. Nature 598:348\u2013352","journal-title":"Nature"},{"key":"4667_CR16","doi-asserted-by":"crossref","first-page":"389","DOI":"10.1038\/s41576-019-0122-6","volume":"20","author":"G Eraslan","year":"2019","unstructured":"Eraslan G, Avsec \u017d, Gagneur J, Theis FJ (2019) Deep learning: new computational modelling techniques for genomics. Nat Rev Genet 20:389\u2013403","journal-title":"Nat Rev Genet"},{"key":"4667_CR17","doi-asserted-by":"crossref","first-page":"787","DOI":"10.2144\/fsoa-2021-0074","volume":"8","author":"E Farina","year":"2022","unstructured":"Farina E, Nabhen JJ, Dacoregio MI, Batalini F, Moraes FY (2022) An overview of artificial intelligence in oncology. Future Sci OA. 8:787","journal-title":"Future Sci OA."},{"key":"4667_CR18","doi-asserted-by":"publisher","author":"B Frank","year":"2022","unstructured":"Frank B et al (2022) Multidisciplinary tumor board analysis: validation study of a central tool in tumor centers. Ann Hematol. https:\/\/doi.org\/10.1007\/s00277-022-05051-y","journal-title":"Ann Hematol","DOI":"10.1007\/s00277-022-05051-y"},{"key":"4667_CR19","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1148\/radiol.2019191586","volume":"293","author":"JR Geis","year":"2019","unstructured":"Geis JR et al (2019) Ethics of artificial intelligence in radiology: summary of the joint european and north american multisociety statement. Radiology 293:436\u2013440","journal-title":"Radiology"},{"key":"4667_CR20","first-page":"1","volume":"29","author":"N Ghaffari Laleh","year":"2022","unstructured":"Ghaffari Laleh N, Ligero M, Perez-Lopez R, Kather JN (2022) Facts and hopes on the use of artificial intelligence for predictive immunotherapy biomarkers in cancer. Clin Cancer Res 29:1\u20138","journal-title":"Clin Cancer Res"},{"key":"4667_CR21","doi-asserted-by":"crossref","first-page":"e745","DOI":"10.1016\/S2589-7500(21)00208-9","volume":"3","author":"M Ghassemi","year":"2021","unstructured":"Ghassemi M, Oakden-Rayner L, Beam AL (2021) The false hope of current approaches to explainable artificial intelligence in health care. Lancet Digit Health 3:e745\u2013e750","journal-title":"Lancet Digit Health"},{"key":"4667_CR22","doi-asserted-by":"crossref","first-page":"3866","DOI":"10.3390\/s22103866","volume":"22","author":"S Ghiasi","year":"2022","unstructured":"Ghiasi S et al (2022) Sepsis mortality prediction using wearable monitoring in low-middle income countries. Sensors 22:3866","journal-title":"Sensors"},{"key":"4667_CR23","first-page":"116","volume":"57","author":"S Hegselmann","year":"2022","unstructured":"Hegselmann S et al (2022) TabLLM: few-shot classification of tabular data with large language models. Arxiv [csCL] 57:116","journal-title":"Arxiv [csCL]"},{"key":"4667_CR24","doi-asserted-by":"crossref","first-page":"2780","DOI":"10.1158\/2159-8290.CD-21-0126","volume":"11","author":"P Horak","year":"2021","unstructured":"Horak P et al (2021) Comprehensive genomic and transcriptomic analysis for guiding therapeutic decisions in patients with rare cancers. Cancer Discov 11:2780\u20132795","journal-title":"Cancer Discov"},{"key":"4667_CR25","doi-asserted-by":"crossref","first-page":"1182","DOI":"10.3324\/haematol.2017.181024","volume":"103","author":"H Horn","year":"2018","unstructured":"Horn H et al (2018) Gene expression profiling reveals a close relationship between follicular lymphoma grade 3A and 3B, but distinct profiles of follicular lymphoma grade 1 and 2. Haematologica 103:1182\u20131190","journal-title":"Haematologica"},{"key":"4667_CR26","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1186\/s12920-020-0686-1","volume":"13","author":"Z Huang","year":"2020","unstructured":"Huang Z et al (2020) Deep learning-based cancer survival prognosis from RNA-seq data: approaches and evaluations. BMC Med Genomics 13:41","journal-title":"BMC Med Genomics"},{"key":"4667_CR27","doi-asserted-by":"crossref","first-page":"104348","DOI":"10.1016\/j.compbiomed.2021.104348","volume":"132","author":"DM Ibrahim","year":"2021","unstructured":"Ibrahim DM, Elshennawy NM, Sarhan AM (2021) Deep-chest: Multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer chest diseases. Comput Biol Med 132:104348","journal-title":"Comput Biol Med"},{"key":"4667_CR28","doi-asserted-by":"crossref","first-page":"e210027","DOI":"10.1148\/ryai.2021210027","volume":"3","author":"C Jacobs","year":"2021","unstructured":"Jacobs C et al (2021) Deep Learning for Lung Cancer Detection on Screening CT Scans: Results of a Large-Scale Public Competition and an Observer Study with 11 Radiologists. Radiol Artif Intell 3:e210027","journal-title":"Radiol Artif Intell"},{"key":"4667_CR29","doi-asserted-by":"crossref","first-page":"789","DOI":"10.1038\/s43018-020-0087-6","volume":"1","author":"JN Kather","year":"2020","unstructured":"Kather JN et al (2020) Pan-cancer image-based detection of clinically actionable genetic alterations. Nature Cancer 1:789\u2013799","journal-title":"Nature Cancer"},{"key":"4667_CR30","doi-asserted-by":"crossref","first-page":"e1006775","DOI":"10.1371\/journal.pcbi.1006775","volume":"15","author":"Y Kheifetz","year":"2019","unstructured":"Kheifetz Y, Scholz M (2019) Modeling individual time courses of thrombopoiesis during multi-cyclic chemotherapy. PLoS Comput Biol 15:e1006775","journal-title":"PLoS Comput Biol"},{"key":"4667_CR31","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1038\/s41568-020-00327-9","volume":"21","author":"A Kleppe","year":"2021","unstructured":"Kleppe A et al (2021) Designing deep learning studies in cancer diagnostics. Nat Rev Cancer 21:199\u2013211","journal-title":"Nat Rev Cancer"},{"key":"4667_CR32","first-page":"1825","volume":"25","author":"J Kockwelp","year":"2022","unstructured":"Kockwelp J et al (2022) Cell selection-based data reduction pipeline for whole slide image analysis of acute myeloid leukemia. in. Comp vis Pattern Recog Work. 25:1825\u20131834","journal-title":"Comp vis Pattern Recog Work."},{"key":"4667_CR33","first-page":"70","volume":"254","author":"J Krause","year":"2021","unstructured":"Krause J et al (2021) Deep learning detects genetic alterations in cancer histology generated by adversarial networks. J Pathol 254:70\u201379","journal-title":"J Pathol"},{"key":"4667_CR34","doi-asserted-by":"crossref","first-page":"e199609","DOI":"10.1001\/jamanetworkopen.2019.9609","volume":"2","author":"PJ Kroth","year":"2019","unstructured":"Kroth PJ et al (2019) Association of electronic health record design and use factors with clinician stress and burnout. JAMA Netw Open 2:e199609","journal-title":"JAMA Netw Open"},{"key":"4667_CR35","doi-asserted-by":"publisher","author":"TH Kung","year":"2022","unstructured":"Kung TH et al (2022) Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. Biorxiv. https:\/\/doi.org\/10.1101\/2022.12.19.22283643","journal-title":"Biorxiv","DOI":"10.1101\/2022.12.19.22283643"},{"key":"4667_CR36","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1148\/radiol.2021200928","volume":"299","author":"M Ligero","year":"2021","unstructured":"Ligero M et al (2021) A CT-based radiomics signature is associated with response to immune checkpoint inhibitors in advanced solid tumors. Radiology 299:109\u2013119","journal-title":"Radiology"},{"key":"4667_CR37","doi-asserted-by":"crossref","first-page":"1095","DOI":"10.1016\/j.ccell.2022.09.012","volume":"40","author":"J Lipkova","year":"2022","unstructured":"Lipkova J et al (2022) Artificial intelligence for multimodal data integration in oncology. Cancer Cell 40:1095\u20131110","journal-title":"Cancer Cell"},{"key":"4667_CR38","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1038\/s41416-021-01633-1","volume":"126","author":"C Luchini","year":"2022","unstructured":"Luchini C, Pea A, Scarpa A (2022) Artificial intelligence in oncology: current applications and future perspectives. Br J Cancer 126:4\u20139","journal-title":"Br J Cancer"},{"key":"4667_CR39","doi-asserted-by":"crossref","first-page":"3503","DOI":"10.1007\/s10462-021-10088-y","volume":"55","author":"D Minh","year":"2022","unstructured":"Minh D, Wang HX, Li YF, Nguyen TN (2022) Explainable artificial intelligence: a comprehensive review. Artif Intell Rev 55:3503\u20133568","journal-title":"Artif Intell Rev"},{"key":"4667_CR40","doi-asserted-by":"crossref","first-page":"709","DOI":"10.1038\/s43018-021-00236-2","volume":"2","author":"O Morin","year":"2021","unstructured":"Morin O et al (2021) An artificial intelligence framework integrating longitudinal electronic health records with real-world data enables continuous pan-cancer prognostication. Nat Cancer 2:709\u2013722","journal-title":"Nat Cancer"},{"key":"4667_CR41","doi-asserted-by":"crossref","first-page":"205520762211439","DOI":"10.1177\/20552076221143903","volume":"8","author":"L Mosch","year":"2022","unstructured":"Mosch L et al (2022) The medical profession transformed by artificial intelligence: Qualitative study. Digit Health 8:20552076221143904","journal-title":"Digit Health"},{"key":"4667_CR42","doi-asserted-by":"crossref","first-page":"e195","DOI":"10.1016\/S2589-7500(20)30292-2","volume":"3","author":"UJ Muehlematter","year":"2021","unstructured":"Muehlematter UJ, Daniore P, Vokinger KN (2021) Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015\u201320): a comparative analysis. Lancet Digital Health 3:e195\u2013e203","journal-title":"Lancet Digital Health"},{"key":"4667_CR43","first-page":"481","volume":"289","author":"R Muhiyaddin","year":"2022","unstructured":"Muhiyaddin R et al (2022) Electronic health records and physician burnout: a scoping review. Stud Health Technol Inform 289:481\u2013484","journal-title":"Stud Health Technol Inform"},{"key":"4667_CR44","doi-asserted-by":"crossref","first-page":"m689","DOI":"10.1136\/bmj.m689","volume":"368","author":"M Nagendran","year":"2020","unstructured":"Nagendran M et al (2020) Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ 368:m689","journal-title":"BMJ"},{"key":"4667_CR45","doi-asserted-by":"crossref","first-page":"1182","DOI":"10.1001\/jamaophthalmol.2019.2923","volume":"137","author":"S Natarajan","year":"2019","unstructured":"Natarajan S, Jain A, Krishnan R, Rogye A, Sivaprasad S (2019) Diagnostic accuracy of community-based diabetic retinopathy screening with an offline artificial intelligence system on a smartphone. JAMA Ophthalmol 137:1182\u20131188","journal-title":"JAMA Ophthalmol"},{"key":"4667_CR46","doi-asserted-by":"crossref","first-page":"e29835","DOI":"10.1002\/pbc.29835","volume":"69","author":"CN Nessle","year":"2022","unstructured":"Nessle CN, Flora C, Sandford E, Choi SW, Tewari M (2022) High-frequency temperature monitoring at home using a wearable device: A case series of early fever detection and antibiotic administration for febrile neutropenia with bacteremia. Pediatr Blood Cancer 69:e29835","journal-title":"Pediatr Blood Cancer"},{"key":"4667_CR47","doi-asserted-by":"crossref","first-page":"e2200073","DOI":"10.1200\/CCI.22.00073","volume":"6","author":"RB Parikh","year":"2022","unstructured":"Parikh RB et al (2022) Development of machine learning algorithms incorporating electronic health record data, patient-reported outcomes, or both to predict mortality for outpatients with cancer. JCO Clin Cancer Inform 6:e2200073","journal-title":"JCO Clin Cancer Inform"},{"key":"4667_CR48","doi-asserted-by":"crossref","first-page":"102118","DOI":"10.1016\/j.media.2021.102118","volume":"72","author":"G Quellec","year":"2021","unstructured":"Quellec G et al (2021) ExplAIn: explanatory artificial intelligence for diabetic retinopathy diagnosis. Med Image Anal 72:102118","journal-title":"Med Image Anal"},{"key":"4667_CR49","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1038\/s41591-021-01614-0","volume":"28","author":"P Rajpurkar","year":"2022","unstructured":"Rajpurkar P, Chen E, Banerjee O, Topol EJ (2022) AI in health and medicine. Nat Med 28:31\u201338","journal-title":"Nat Med"},{"key":"4667_CR50","doi-asserted-by":"crossref","first-page":"984021","DOI":"10.3389\/fonc.2022.984021","volume":"12","author":"N Rodr\u00edguez Ruiz","year":"2022","unstructured":"Rodr\u00edguez Ruiz N et al (2022) Data-driven support to decision-making in molecular tumour boards for lymphoma: A design science approach. Front Oncol 12:984021","journal-title":"Front Oncol"},{"key":"4667_CR51","doi-asserted-by":"crossref","first-page":"4653923","DOI":"10.1155\/2022\/4653923","volume":"2022","author":"F Sabry","year":"2022","unstructured":"Sabry F, Eltaras T, Labda W, Alzoubi K, Malluhi Q (2022) Machine Learning for Healthcare Wearable Devices: The Big Picture. J Healthc Eng 2022:4653923","journal-title":"J Healthc Eng"},{"key":"4667_CR52","first-page":"554","volume":"33","author":"J Schmidhuber","year":"2022","unstructured":"Schmidhuber J (2022) Annotated history of modern AI and Deep learning. Arxiv [csNE]. 33:554","journal-title":"Arxiv [csNE]."},{"key":"4667_CR53","first-page":"113","volume":"109","author":"CMD Schmidt","year":"2017","unstructured":"Schmidt CMD (2017) Anderson breaks with ibm watson, raising questions about artificial intelligence in oncology. J Natl Cancer Inst 109:113","journal-title":"J Natl Cancer Inst"},{"key":"4667_CR54","doi-asserted-by":"crossref","first-page":"e0000102","DOI":"10.1371\/journal.pdig.0000102","volume":"1","author":"KP Seastedt","year":"2022","unstructured":"Seastedt KP et al (2022) Global healthcare fairness: We should be sharing more, not less, data. PLOS Digit Health 1:e0000102","journal-title":"PLOS Digit Health"},{"key":"4667_CR55","doi-asserted-by":"crossref","first-page":"e10010","DOI":"10.2196\/10010","volume":"7","author":"J Shen","year":"2019","unstructured":"Shen J et al (2019) Artificial intelligence versus clinicians in disease diagnosis: systematic review. JMIR Med Inform 7:e10010","journal-title":"JMIR Med Inform"},{"key":"4667_CR56","doi-asserted-by":"crossref","first-page":"1026","DOI":"10.1038\/s43018-022-00436-4","volume":"3","author":"A Shmatko","year":"2022","unstructured":"Shmatko A, Ghaffari LN, Gerstung M, Kather JN (2022) Artificial intelligence in histopathology: enhancing cancer research and clinical oncology. Nat Cancer. 3:1026\u20131038","journal-title":"Nat Cancer."},{"key":"4667_CR57","first-page":"1","volume":"42","author":"JT Shreve","year":"2022","unstructured":"Shreve JT, Khanani SA, Haddad TC (2022) Artificial Intelligence in Oncology: Current Capabilities, Future Opportunities, and Ethical Considerations. Am Soc Clin Oncol Educ Book 42:1\u201310","journal-title":"Am Soc Clin Oncol Educ Book"},{"key":"4667_CR58","first-page":"103","volume":"5","author":"K Singhal","year":"2022","unstructured":"Singhal K et al (2022) Large language models encode clinical knowledge. Arxiv. 5:103","journal-title":"Arxiv."},{"key":"4667_CR59","doi-asserted-by":"crossref","first-page":"350","DOI":"10.1016\/S0140-6736(19)32998-8","volume":"395","author":"O-J Skrede","year":"2020","unstructured":"Skrede O-J et al (2020) Deep learning for prediction of colorectal cancer outcome: a discovery and validation study. Lancet 395:350\u2013360","journal-title":"Lancet"},{"key":"4667_CR60","doi-asserted-by":"crossref","first-page":"1553","DOI":"10.1016\/S1470-2045(20)30615-X","volume":"21","author":"V Sorin","year":"2020","unstructured":"Sorin V, Barash Y, Konen E, Klang E (2020) Deep-learning natural language processing for oncological applications. Lancet Oncol 21:1553\u20131556","journal-title":"Lancet Oncol"},{"key":"4667_CR61","doi-asserted-by":"crossref","first-page":"892","DOI":"10.1136\/bmjdrc-2019-000892","volume":"8","author":"B Sosale","year":"2020","unstructured":"Sosale B et al (2020) Simple, mobile-based artificial intelligence algorithm in the detection of diabetic retinopathy (SMART) study. BMJ Open Diabetes Res Care 8:892","journal-title":"BMJ Open Diabetes Res Care"},{"key":"4667_CR62","doi-asserted-by":"crossref","first-page":"543","DOI":"10.1038\/s41375-019-0573-y","volume":"34","author":"AM Staiger","year":"2020","unstructured":"Staiger AM et al (2020) A novel lymphoma-associated macrophage interaction signature (LAMIS) provides robust risk prognostication in diffuse large B-cell lymphoma clinical trial cohorts of the DSHNHL. Leukemia 34:543\u2013552","journal-title":"Leukemia"},{"key":"4667_CR63","doi-asserted-by":"crossref","first-page":"e19274","DOI":"10.2196\/19274","volume":"22","author":"T Tajirian","year":"2020","unstructured":"Tajirian T et al (2020) The influence of electronic health record use on physician burnout: cross-sectional survey. J Med Internet Res 22:e19274","journal-title":"J Med Internet Res"},{"key":"4667_CR64","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1007\/s00345-013-1040-4","volume":"32","author":"AA Thomas","year":"2014","unstructured":"Thomas AA et al (2014) Extracting data from electronic medical records: validation of a natural language processing program to assess prostate biopsy results. World J Urol 32:99\u2013103","journal-title":"World J Urol"},{"key":"4667_CR65","doi-asserted-by":"crossref","first-page":"116","DOI":"10.1038\/s41586-019-1390-1","volume":"572","author":"N Toma\u0161ev","year":"2019","unstructured":"Toma\u0161ev N et al (2019) A clinically applicable approach to continuous prediction of future acute kidney injury. Nature 572:116\u2013119","journal-title":"Nature"},{"key":"4667_CR66","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1038\/s41591-018-0300-7","volume":"25","author":"EJ Topol","year":"2019","unstructured":"Topol EJ (2019) High-performance medicine: the convergence of human and artificial intelligence. Nat Med 25:44\u201356","journal-title":"Nat Med"},{"key":"4667_CR67","doi-asserted-by":"crossref","first-page":"1318","DOI":"10.1038\/s41591-020-1042-x","volume":"26","author":"EJ Topol","year":"2020","unstructured":"Topol EJ (2020) Welcoming new guidelines for AI clinical research. Nat Med 26:1318\u20131320","journal-title":"Nat Med"},{"key":"4667_CR68","doi-asserted-by":"crossref","first-page":"152","DOI":"10.1186\/s13073-021-00968-x","volume":"13","author":"KA Tran","year":"2021","unstructured":"Tran KA et al (2021) Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med 13:152","journal-title":"Genome Med"},{"key":"4667_CR69","doi-asserted-by":"crossref","first-page":"998","DOI":"10.1093\/annonc\/mdz108","volume":"30","author":"S Trebeschi","year":"2019","unstructured":"Trebeschi S et al (2019) Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers. Ann Oncol 30:998\u20131004","journal-title":"Ann Oncol"},{"key":"4667_CR70","doi-asserted-by":"crossref","first-page":"1229","DOI":"10.1038\/s41591-020-0942-0","volume":"26","author":"P Tschandl","year":"2020","unstructured":"Tschandl P et al (2020) Human\u2013computer collaboration for skin cancer recognition. Nat Med 26:1229\u20131234","journal-title":"Nat Med"},{"key":"4667_CR71","doi-asserted-by":"crossref","first-page":"350","DOI":"10.1038\/s41586-019-1724-z","volume":"575","author":"O Vinyals","year":"2019","unstructured":"Vinyals O et al (2019) Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 575:350\u2013354","journal-title":"Nature"},{"key":"4667_CR72","doi-asserted-by":"crossref","first-page":"e190031","DOI":"10.1148\/rycan.2019190031","volume":"1","author":"M Wu","year":"2019","unstructured":"Wu M et al (2019) Imaging-based biomarkers for predicting and evaluating cancer immunotherapy response. Radiol Imaging Cancer 1:e190031","journal-title":"Radiol Imaging Cancer"},{"key":"4667_CR73","doi-asserted-by":"crossref","first-page":"136","DOI":"10.1038\/s41591-021-01599-w","volume":"28","author":"A Yala","year":"2022","unstructured":"Yala A et al (2022) Optimizing risk-based breast cancer screening policies with reinforcement learning. Nat Med 28:136\u2013143","journal-title":"Nat Med"},{"key":"4667_CR74","doi-asserted-by":"crossref","first-page":"194","DOI":"10.1038\/s41746-022-00742-2","volume":"5","author":"X Yang","year":"2022","unstructured":"Yang X et al (2022) A large language model for electronic health records. NPJ Digit Med 5:194","journal-title":"NPJ Digit Med"},{"key":"4667_CR75","doi-asserted-by":"crossref","first-page":"797","DOI":"10.1001\/jamaoncol.2016.0213","volume":"2","author":"W-W Yim","year":"2016","unstructured":"Yim W-W, Yetisgen M, Harris WP, Kwan SW (2016) Natural language processing in oncology: a review. JAMA Oncol 2:797\u2013804","journal-title":"JAMA Oncol"},{"key":"4667_CR76","doi-asserted-by":"crossref","first-page":"491","DOI":"10.1186\/s12859-021-04400-4","volume":"22","author":"Z Zeng","year":"2021","unstructured":"Zeng Z et al (2021) Deep learning for cancer type classification and driver gene identification. BMC Bioinformatics 22:491","journal-title":"BMC Bioinformatics"}],"container-title":["Journal of Cancer Research and Clinical Oncology"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00432-023-04667-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s00432-023-04667-5\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00432-023-04667-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,7,27]],"date-time":"2023-07-27T17:30:53Z","timestamp":1690479053000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s00432-023-04667-5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3,15]]},"references-count":76,"journal-issue":{"issue":"10","published-print":{"date-parts":[[2023,8]]}},"alternative-id":["4667"],"URL":"http:\/\/dx.doi.org\/10.1007\/s00432-023-04667-5","relation":{},"ISSN":["0171-5216","1432-1335"],"issn-type":[{"value":"0171-5216","type":"print"},{"value":"1432-1335","type":"electronic"}],"subject":["Cancer Research","Oncology","General Medicine"],"published":{"date-parts":[[2023,3,15]]},"assertion":[{"value":"9 February 2023","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"23 February 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"15 March 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"JNK reports consulting services for Owkin, France, Panakeia, UK, and DoMore Diagnostics, Norway and has received honoraria for lectures by MSD, Eisai, and Fresenius. WR reports travel support from Janssen, AstraZeneca and Amgen, honoraria for lectures from AstraZeneca and received a grant from Novartis. NvB received honoraria from Takeda and travel support from Janssen-Cilag.MS receives funding from Pfizer Inc. for a project not related to the topic of this paper.BR has no conflicts of interest. JMM reports consulting services for Janssen, Roche, Gilead, Abbvie, Jazz, Pfizer, Astellas, Novartis and funding of scientific projects from Janssen, Jazz, Novartis and Astellas. The other authors do not report any conflicts of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}