uni-leipzig-open-access/json/s00248-022-02130-5
2024-01-25 14:46:53 +01:00

1 line
No EOL
40 KiB
Text

{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,8,16]],"date-time":"2023-08-16T15:18:31Z","timestamp":1692199111482},"reference-count":92,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2022,11,29]],"date-time":"2022-11-29T00:00:00Z","timestamp":1669680000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2022,11,29]],"date-time":"2022-11-29T00:00:00Z","timestamp":1669680000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/100019774","name":"Belmont Forum","doi-asserted-by":"publisher","award":["ANR-15-MASC-0001-P3"]},{"DOI":"10.13039\/100010365","name":"St. Hilda's College, University of Oxford","doi-asserted-by":"publisher","award":["Junior Research Fellowship"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Microb Ecol"],"published-print":{"date-parts":[[2023,8]]},"abstract":"<jats:title>\nAbstract\n<\/jats:title><jats:p>The amphibian skin microbiome is important in maintaining host health, but is vulnerable to perturbation from changes in biotic and abiotic conditions. Anthropogenic habitat disturbance and emerging infectious diseases are both potential disrupters of the skin microbiome, in addition to being major drivers of amphibian decline globally. We investigated how host environment (hydrology, habitat disturbance), pathogen presence, and host biology (life stage) impact the skin microbiome of wild Dhofar toads (<jats:italic>Duttaphrynus dhufarensis<\/jats:italic>) in Oman. We detected ranavirus (but not <jats:italic>Batrachochytrium dendrobatidis<\/jats:italic>) across all sampling sites, constituting the first report of this pathogen in Oman, with reduced prevalence in disturbed sites. We show that skin microbiome beta diversity is driven by host life stage, water source, and habitat disturbance, but not ranavirus infection. Finally, although trends in bacterial diversity and differential abundance were evident in disturbed versus undisturbed sites, bacterial co-occurrence patterns determined through network analyses revealed high site specificity. Our results therefore provide support for amphibian skin microbiome diversity and taxa abundance being associated with habitat disturbance, with bacterial co-occurrence (and likely broader aspects of microbial community ecology) being largely site specific.<\/jats:p>","DOI":"10.1007\/s00248-022-02130-5","type":"journal-article","created":{"date-parts":[[2022,11,29]],"date-time":"2022-11-29T07:30:29Z","timestamp":1669707029000},"page":"1393-1404","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Environmental and Anthropogenic Factors Shape the Skin Bacterial Communities of a Semi-Arid Amphibian Species"],"prefix":"10.1007","volume":"86","author":[{"given":"K. A.","family":"Bates","sequence":"first","affiliation":[]},{"given":"J.","family":"Friesen","sequence":"additional","affiliation":[]},{"given":"A.","family":"Loyau","sequence":"additional","affiliation":[]},{"given":"H.","family":"Butler","sequence":"additional","affiliation":[]},{"given":"V. T.","family":"Vredenburg","sequence":"additional","affiliation":[]},{"given":"J.","family":"Laufer","sequence":"additional","affiliation":[]},{"given":"A.","family":"Chatzinotas","sequence":"additional","affiliation":[]},{"given":"D. S.","family":"Schmeller","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,11,29]]},"reference":[{"key":"2130_CR1","doi-asserted-by":"publisher","first-page":"1235","DOI":"10.1016\/j.chom.2021.05.011","volume":"29","author":"A Uberoi","year":"2021","unstructured":"Uberoi A, Bartow-McKenney C, Zheng Q et al (2021) Commensal microbiota regulates skin barrier function and repair via signaling through the aryl hydrocarbon receptor. Cell Host Microbe 29:1235-1248.e8. https:\/\/doi.org\/10.1016\/j.chom.2021.05.011","journal-title":"Cell Host Microbe"},{"key":"2130_CR2","doi-asserted-by":"publisher","first-page":"1011","DOI":"10.1016\/j.immuni.2015.10.016","volume":"43","author":"TC Scharschmidt","year":"2015","unstructured":"Scharschmidt TC, Vasquez KS, Truong H-A et al (2015) A wave of regulatory t cells into neonatal skin mediates tolerance to commensal microbes. Immunity 43:1011\u20131021. https:\/\/doi.org\/10.1016\/j.immuni.2015.10.016","journal-title":"Immunity"},{"key":"2130_CR3","doi-asserted-by":"publisher","first-page":"1115","DOI":"10.1126\/science.1225152","volume":"337","author":"S Naik","year":"2012","unstructured":"Naik S, Bouladoux N, Wilhelm C et al (2012) Compartmentalized control of skin immunity by resident commensals. Science 337:1115\u20131119. https:\/\/doi.org\/10.1126\/science.1225152","journal-title":"Science"},{"key":"2130_CR4","doi-asserted-by":"publisher","first-page":"954","DOI":"10.1126\/science.1260144","volume":"346","author":"Y Belkaid","year":"2014","unstructured":"Belkaid Y, Segre JA (2014) Dialogue between skin microbiota and immunity. Science 346:954\u2013959. https:\/\/doi.org\/10.1126\/science.1260144","journal-title":"Science"},{"key":"2130_CR5","doi-asserted-by":"publisher","first-page":"53","DOI":"10.1007\/s10393-005-0009-1","volume":"3","author":"RN Harris","year":"2006","unstructured":"Harris RN, James TY, Lauer A et al (2006) Amphibian pathogen Batrachochytrium dendrobatidis is inhibited by the cutaneous bacteria of amphibian species. EcoHealth 3:53\u201356. https:\/\/doi.org\/10.1007\/s10393-005-0009-1","journal-title":"EcoHealth"},{"key":"2130_CR6","doi-asserted-by":"publisher","unstructured":"Loudon AH, Holland JA, Umile TP, et al Interactions between amphibians\u2019 symbiotic bacteria cause the production of emergent anti-fungal metabolites. Front Microbiol 5: (2014)https:\/\/doi.org\/10.3389\/fmicb.2014.00441","DOI":"10.3389\/fmicb.2014.00441"},{"key":"2130_CR7","doi-asserted-by":"publisher","first-page":"2506","DOI":"10.1038\/s41396-018-0167-0","volume":"12","author":"SM Griffiths","year":"2018","unstructured":"Griffiths SM, Harrison XA, Weldon C et al (2018) Genetic variability and ontogeny predict microbiome structure in a disease-challenged montane amphibian. ISME J 12:2506\u20132517. https:\/\/doi.org\/10.1038\/s41396-018-0167-0","journal-title":"ISME J"},{"key":"2130_CR8","doi-asserted-by":"publisher","first-page":"e85563","DOI":"10.1371\/journal.pone.0085563","volume":"9","author":"RE Antwis","year":"2014","unstructured":"Antwis RE, Haworth RL, Engelmoer DJP et al (2014) Ex situ diet influences the bacterial community associated with the skin of red-eyed tree frogs (Agalychnis callidryas). Plos One 9:e85563. https:\/\/doi.org\/10.1371\/journal.pone.0085563","journal-title":"Plos One"},{"key":"2130_CR9","doi-asserted-by":"publisher","first-page":"349","DOI":"10.1038\/ismej.2016.138","volume":"11","author":"AV Longo","year":"2017","unstructured":"Longo AV, Zamudio KR (2017) Environmental fluctuations and host skin bacteria shift survival advantage between frogs and their fungal pathogen. ISME J 11:349\u2013361. https:\/\/doi.org\/10.1038\/ismej.2016.138","journal-title":"ISME J"},{"key":"2130_CR10","doi-asserted-by":"publisher","first-page":"381","DOI":"10.1038\/s41559-019-0798-1","volume":"3","author":"JG Kueneman","year":"2019","unstructured":"Kueneman JG, Bletz MC, McKenzie VJ et al (2019) Community richness of amphibian skin bacteria correlates with bioclimate at the global scale. Nat Ecol Evol 3:381\u2013389. https:\/\/doi.org\/10.1038\/s41559-019-0798-1","journal-title":"Nat Ecol Evol"},{"key":"2130_CR11","doi-asserted-by":"publisher","first-page":"1834","DOI":"10.3389\/fmicb.2019.01834","volume":"10","author":"KA Bates","year":"2019","unstructured":"Bates KA, Shelton JMG, Mercier VL et al (2019) Captivity and infection by the fungal pathogen Batrachochytrium salamandrivorans perturb the amphibian skin microbiome. Front Microbiol 10:1834. https:\/\/doi.org\/10.3389\/fmicb.2019.01834","journal-title":"Front Microbiol"},{"key":"2130_CR12","doi-asserted-by":"publisher","first-page":"20170582","DOI":"10.1098\/rspb.2017.0582","volume":"284","author":"CG Becker","year":"2017","unstructured":"Becker CG, Longo AV, Haddad CFB, Zamudio KR (2017) Land cover and forest connectivity alter the interactions among host, pathogen and skin microbiome. Proc R Soc B 284:20170582. https:\/\/doi.org\/10.1098\/rspb.2017.0582","journal-title":"Proc R Soc B"},{"key":"2130_CR13","doi-asserted-by":"publisher","first-page":"E5049","DOI":"10.1073\/pnas.1412752111","volume":"111","author":"AJ Jani","year":"2014","unstructured":"Jani AJ, Briggs CJ (2014) The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection. Proc Natl Acad Sci USA 111:E5049\u2013E5058. https:\/\/doi.org\/10.1073\/pnas.1412752111","journal-title":"Proc Natl Acad Sci USA"},{"key":"2130_CR14","doi-asserted-by":"publisher","first-page":"20170944","DOI":"10.1098\/rspb.2017.0944","volume":"284","author":"AJ Jani","year":"2017","unstructured":"Jani AJ, Knapp RA, Briggs CJ (2017) Epidemic and endemic pathogen dynamics correspond to distinct host population microbiomes at a landscape scale. Proc R Soc B 284:20170944. https:\/\/doi.org\/10.1098\/rspb.2017.0944","journal-title":"Proc R Soc B"},{"key":"2130_CR15","doi-asserted-by":"publisher","first-page":"1628","DOI":"10.1038\/s41396-020-00875-w","volume":"15","author":"AJ Jani","year":"2021","unstructured":"Jani AJ, Bushell J, Arisdakessian CG et al (2021) The amphibian microbiome exhibits poor resilience following pathogen-induced disturbance. ISME J 15:1628\u20131640. https:\/\/doi.org\/10.1038\/s41396-020-00875-w","journal-title":"ISME J"},{"key":"2130_CR16","doi-asserted-by":"publisher","first-page":"693","DOI":"10.1038\/s41467-018-02967-w","volume":"9","author":"KA Bates","year":"2018","unstructured":"Bates KA, Clare FC, O\u2019Hanlon S et al (2018) Amphibian chytridiomycosis outbreak dynamics are linked with host skin bacterial community structure. Nat Commun 9:693. https:\/\/doi.org\/10.1038\/s41467-018-02967-w","journal-title":"Nat Commun"},{"key":"2130_CR17","doi-asserted-by":"publisher","first-page":"44","DOI":"10.1186\/s40168-021-01215-6","volume":"10","author":"KA Bates","year":"2022","unstructured":"Bates KA, Sommer U, Hopkins KP et al (2022) Microbiome function predicts amphibian chytridiomycosis disease dynamics. Microbiome 10:44. https:\/\/doi.org\/10.1186\/s40168-021-01215-6","journal-title":"Microbiome"},{"key":"2130_CR18","doi-asserted-by":"publisher","first-page":"1245","DOI":"10.3389\/fmicb.2019.01245","volume":"10","author":"LJ Campbell","year":"2019","unstructured":"Campbell LJ, Garner TWJ, Hopkins K et al (2019) Outbreaks of an emerging viral disease covary with differences in the composition of the skin microbiome of a wild United Kingdom amphibian. Front Microbiol 10:1245. https:\/\/doi.org\/10.3389\/fmicb.2019.01245","journal-title":"Front Microbiol"},{"key":"2130_CR19","doi-asserted-by":"publisher","first-page":"616","DOI":"10.1016\/j.pt.2020.04.010","volume":"36","author":"AP Bernardo-Cravo","year":"2020","unstructured":"Bernardo-Cravo AP, Schmeller DS, Chatzinotas A et al (2020) Environmental factors and host microbiomes shape host\u2013pathogen dynamics. Trends Parasitol 36:616\u2013633. https:\/\/doi.org\/10.1016\/j.pt.2020.04.010","journal-title":"Trends Parasitol"},{"key":"2130_CR20","unstructured":"IUCN (2019) The IUCN Red List of Threatened Species."},{"key":"2130_CR21","doi-asserted-by":"publisher","first-page":"1775","DOI":"10.1126\/science.1149374","volume":"318","author":"CG Becker","year":"2007","unstructured":"Becker CG, Fonseca CR, Haddad CFB et al (2007) Habitat split and the global decline of amphibians. Science 318:1775\u20131777. https:\/\/doi.org\/10.1126\/science.1149374","journal-title":"Science"},{"key":"2130_CR22","doi-asserted-by":"publisher","unstructured":"Longcore JE, Pessier AP, Nichols DK (1999) Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia 91:219. https:\/\/doi.org\/10.2307\/3761366","DOI":"10.2307\/3761366"},{"key":"2130_CR23","doi-asserted-by":"publisher","first-page":"1200","DOI":"10.1017\/S0950268806007679","volume":"135","author":"AA Cunningham","year":"2007","unstructured":"Cunningham AA, Hyatt AD, Russell P, Bennett PM (2007) Emerging epidemic diseases of frogs in Britain are dependent on the source of ranavirus agent and the route of exposure. Epidemiol Infect 135:1200\u20131212. https:\/\/doi.org\/10.1017\/S0950268806007679","journal-title":"Epidemiol Infect"},{"key":"2130_CR24","doi-asserted-by":"publisher","first-page":"630","DOI":"10.1126\/science.1258268","volume":"346","author":"A Martel","year":"2014","unstructured":"Martel A, Blooi M, Adriaensen C et al (2014) Recent introduction of a chytrid fungus endangers western palearctic salamanders. Science 346:630\u2013631. https:\/\/doi.org\/10.1126\/science.1258268","journal-title":"Science"},{"key":"2130_CR25","doi-asserted-by":"publisher","first-page":"2586","DOI":"10.1016\/j.cub.2014.09.028","volume":"24","author":"SJ Price","year":"2014","unstructured":"Price SJ, Garner TWJ, Nichols RA et al (2014) Collapse of amphibian communities due to an introduced ranavirus. Curr Biol 24:2586\u20132591. https:\/\/doi.org\/10.1016\/j.cub.2014.09.028","journal-title":"Curr Biol"},{"key":"2130_CR26","doi-asserted-by":"publisher","author":"S Louca","year":"2021","unstructured":"Louca S (2021) The rates of global bacterial and archaeal dispersal. ISME J. https:\/\/doi.org\/10.1038\/s41396-021-01069-8","journal-title":"ISME J","DOI":"10.1038\/s41396-021-01069-8"},{"key":"2130_CR27","doi-asserted-by":"publisher","first-page":"292","DOI":"10.1186\/s12866-020-01979-1","volume":"20","author":"RR Jim\u00e9nez","year":"2020","unstructured":"Jim\u00e9nez RR, Alvarado G, Sandoval J, Sommer S (2020) Habitat disturbance influences the skin microbiome of a rediscovered neotropical-montane frog. BMC Microbiol 20:292. https:\/\/doi.org\/10.1186\/s12866-020-01979-1","journal-title":"BMC Microbiol"},{"key":"2130_CR28","doi-asserted-by":"publisher","first-page":"e3688","DOI":"10.7717\/peerj.3688","volume":"5","author":"MC Hughey","year":"2017","unstructured":"Hughey MC, Pena JA, Reyes R et al (2017) Skin bacterial microbiome of a generalist Puerto Rican frog varies along elevation and land use gradients. PeerJ 5:e3688. https:\/\/doi.org\/10.7717\/peerj.3688","journal-title":"PeerJ"},{"key":"2130_CR29","doi-asserted-by":"publisher","first-page":"995","DOI":"10.1016\/j.scitotenv.2016.07.230","volume":"572","author":"S Costa","year":"2016","unstructured":"Costa S, Lopes I, Proen\u00e7a DN et al (2016) Diversity of cutaneous microbiome of Pelophylax perezi populations inhabiting different environments. Sci Total Environ 572:995\u20131004. https:\/\/doi.org\/10.1016\/j.scitotenv.2016.07.230","journal-title":"Sci Total Environ"},{"key":"2130_CR30","doi-asserted-by":"publisher","first-page":"11301","DOI":"10.1021\/acs.est.0c03219","volume":"54","author":"JF Preuss","year":"2020","unstructured":"Preuss JF, Greenspan SE, Rossi EM et al (2020) Widespread pig farming practice linked to shifts in skin microbiomes and disease in pond-breeding amphibians. Environ Sci Technol 54:11301\u201311312. https:\/\/doi.org\/10.1021\/acs.est.0c03219","journal-title":"Environ Sci Technol"},{"key":"2130_CR31","doi-asserted-by":"publisher","first-page":"1124","DOI":"10.1038\/s41467-017-00923-8","volume":"8","author":"T Allen","year":"2017","unstructured":"Allen T, Murray KA, Zambrana-Torrelio C et al (2017) Global hotspots and correlates of emerging zoonotic diseases. Nat Commun 8:1124. https:\/\/doi.org\/10.1038\/s41467-017-00923-8","journal-title":"Nat Commun"},{"key":"2130_CR32","doi-asserted-by":"publisher","first-page":"3095","DOI":"10.1007\/s10531-020-02021-6","volume":"29","author":"DS Schmeller","year":"2020","unstructured":"Schmeller DS, Courchamp F, Killeen G (2020) Biodiversity loss, emerging pathogens and human health risks. Biodivers Conserv 29:3095\u20133102. https:\/\/doi.org\/10.1007\/s10531-020-02021-6","journal-title":"Biodivers Conserv"},{"key":"2130_CR33","doi-asserted-by":"publisher","author":"WJ Neely","year":"2021","unstructured":"Neely WJ, Greenspan SE, Stahl LM et al (2021) Habitat disturbance linked with host microbiome dispersion and Bd dynamics in temperate amphibians. Microb Ecol. https:\/\/doi.org\/10.1007\/s00248-021-01897-3","journal-title":"Microb Ecol","DOI":"10.1007\/s00248-021-01897-3"},{"key":"2130_CR34","doi-asserted-by":"publisher","first-page":"13947","DOI":"10.1111\/1365-2435.13947","volume":"1365\u20132435","author":"H Sentenac","year":"2021","unstructured":"Sentenac H, Loyau A, Leflaive J, Schmeller DS (2021) The significance of biofilms to human, animal, plant and ecosystem health. Funct Ecol 1365\u20132435:13947. https:\/\/doi.org\/10.1111\/1365-2435.13947","journal-title":"Funct Ecol"},{"key":"2130_CR35","doi-asserted-by":"publisher","first-page":"1118","DOI":"10.1890\/1051-0761(1998)008[1118:SAAIOE]2.0.CO;2","volume":"8","author":"HH Welsh","year":"1998","unstructured":"Welsh HH, Ollivier LM (1998) Stream amphibians as indictors of ecosystem stress: a case study from California\u2019s redwoods. Ecol Appl 8:1118\u20131132. https:\/\/doi.org\/10.1890\/1051-0761(1998)008[1118:SAAIOE]2.0.CO;2","journal-title":"Ecol Appl"},{"key":"2130_CR36","doi-asserted-by":"publisher","first-page":"827","DOI":"10.1017\/S003118202100038X","volume":"148","author":"DJ Marcogliese","year":"2021","unstructured":"Marcogliese DJ, King KC, Bates KA (2021) Effects of multiple stressors on northern leopard frogs in agricultural wetlands. Parasitology 148:827\u2013834. https:\/\/doi.org\/10.1017\/S003118202100038X","journal-title":"Parasitology"},{"key":"2130_CR37","doi-asserted-by":"publisher","first-page":"9","DOI":"10.1186\/s40168-020-0784-5","volume":"8","author":"Y Krotman","year":"2020","unstructured":"Krotman Y, Yergaliyev TM, Alexander Shani R et al (2020) Dissecting the factors shaping fish skin microbiomes in a heterogeneous inland water system. Microbiome 8:9. https:\/\/doi.org\/10.1186\/s40168-020-0784-5","journal-title":"Microbiome"},{"key":"2130_CR38","doi-asserted-by":"publisher","first-page":"323","DOI":"10.1111\/j.1749-6632.2002.tb04400.x","volume":"969","author":"DE Green","year":"2002","unstructured":"Green DE, Converse KA, Schrader AK (2002) Epizootiology of sixty-four amphibian morbidity and mortality events in the USA, 1996\u20132001. Ann N Y Acad Sci 969:323\u2013339. https:\/\/doi.org\/10.1111\/j.1749-6632.2002.tb04400.x","journal-title":"Ann N Y Acad Sci"},{"key":"2130_CR39","doi-asserted-by":"publisher","first-page":"556","DOI":"10.7589\/0090-3558-39.3.556","volume":"39","author":"DE Docherty","year":"2003","unstructured":"Docherty DE, Meteyer CU, Wang J et al (2003) Diagnostic and molecular evaluation of three iridovirus-associated salamander mortality events. J Wildl Dis 39:556\u2013566. https:\/\/doi.org\/10.7589\/0090-3558-39.3.556","journal-title":"J Wildl Dis"},{"key":"2130_CR40","doi-asserted-by":"publisher","first-page":"1459","DOI":"10.1126\/science.aav0379","volume":"363","author":"BC Scheele","year":"2019","unstructured":"Scheele BC, Pasmans F, Skerratt LF et al (2019) Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363:1459\u20131463. https:\/\/doi.org\/10.1126\/science.aav0379","journal-title":"Science"},{"key":"2130_CR41","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0056802","volume":"8","author":"DH Olson","year":"2013","unstructured":"Olson DH, Aanensen DM, Ronnenberg KL et al (2013) Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS ONE 8:e56802. https:\/\/doi.org\/10.1371\/journal.pone.0056802","journal-title":"PLoS ONE"},{"key":"2130_CR42","doi-asserted-by":"publisher","first-page":"912","DOI":"10.1139\/facets-2020-0013","volume":"6","author":"JL Brunner","year":"2021","unstructured":"Brunner JL, Olson DH, Gray MJ et al (2021) Global patterns of ranavirus detections FACETS 6:912\u2013924. https:\/\/doi.org\/10.1139\/facets-2020-0013","journal-title":"Global patterns of ranavirus detections FACETS"},{"key":"2130_CR43","unstructured":"OpenStreetMap contributors (2015) Planet OpenStreetMap (OSM)"},{"key":"2130_CR44","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1553\/giscience2021_01_s33","volume":"1","author":"M Marconcini","year":"2021","unstructured":"Marconcini M, Metz-Marconcini A, Esch T, Gorelick N (2021) Understanding current trends in global urbanization- the world settlement footprint suite. Giforum 1:33\u201338. https:\/\/doi.org\/10.1553\/giscience2021_01_s33","journal-title":"Giforum"},{"key":"2130_CR45","doi-asserted-by":"publisher","first-page":"487","DOI":"10.3389\/fmicb.2018.00487","volume":"9","author":"AJ Jani","year":"2018","unstructured":"Jani AJ, Briggs CJ (2018) Host and aquatic environment shape the amphibian skin microbiome but effects on downstream resistance to the pathogen Batrachochytrium dendrobatidis are variable. Front Microbiol 9:487. https:\/\/doi.org\/10.3389\/fmicb.2018.00487","journal-title":"Front Microbiol"},{"key":"2130_CR46","doi-asserted-by":"publisher","first-page":"1322","DOI":"10.1111\/mec.15789","volume":"30","author":"P Jervis","year":"2021","unstructured":"Jervis P, Pintanel P, Hopkins K et al (2021) Post-epizootic microbiome associations across communities of neotropical amphibians. Mol Ecol 30:1322\u20131335. https:\/\/doi.org\/10.1111\/mec.15789","journal-title":"Mol Ecol"},{"key":"2130_CR47","first-page":"47","volume":"134","author":"T Dejean","year":"2010","unstructured":"Dejean T, Miaud C, Schmeller DS (2010) Protocole d\u2019hygi\u00e8ne pour limiter la diss\u00e9mination de la Chytridiomycose lors d\u2019interventions sur le terrain. Bulletin de la Soci\u00e9t\u00e9 herp\u00e9tologique de France 134:47\u201350","journal-title":"Bulletin de la Soci\u00e9t\u00e9 herp\u00e9tologique de France"},{"key":"2130_CR48","doi-asserted-by":"publisher","first-page":"54","DOI":"10.1016\/j.ejrh.2018.03.002","volume":"16","author":"J Friesen","year":"2018","unstructured":"Friesen J, Zink M, Bawain A, M\u00fcller T (2018) Hydrometeorology of the Dhofar cloud forest and its implications for groundwater recharge. J Hydrol: Reg Stud 16:54\u201366. https:\/\/doi.org\/10.1016\/j.ejrh.2018.03.002","journal-title":"J Hydrol: Reg Stud"},{"key":"2130_CR49","doi-asserted-by":"publisher","first-page":"299","DOI":"10.3389\/feart.2020.00299","volume":"8","author":"R Arnold","year":"2020","unstructured":"Arnold R, Haug J-K, Lange M, Friesen J (2020) Impact of forest cover change on available water resources: long-term forest cover dynamics of the semi-arid Dhofar cloud forest. Oman Front Earth Sci 8:299. https:\/\/doi.org\/10.3389\/feart.2020.00299","journal-title":"Oman Front Earth Sci"},{"key":"2130_CR50","doi-asserted-by":"publisher","first-page":"141","DOI":"10.3354\/dao060141","volume":"60","author":"D Boyle","year":"2004","unstructured":"Boyle D, Boyle D, Olsen V et al (2004) Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis Aquat Org 60:141\u2013148. https:\/\/doi.org\/10.3354\/dao060141","journal-title":"Dis Aquat Org"},{"key":"2130_CR51","doi-asserted-by":"publisher","first-page":"147","DOI":"10.1016\/j.jviromet.2017.08.016","volume":"249","author":"WTM Leung","year":"2017","unstructured":"Leung WTM, Thomas-Walters L, Garner TWJ et al (2017) A quantitative-PCR based method to estimate ranavirus viral load following normalisation by reference to an ultraconserved vertebrate target. J Virol Methods 249:147\u2013155. https:\/\/doi.org\/10.1016\/j.jviromet.2017.08.016","journal-title":"J Virol Methods"},{"key":"2130_CR52","doi-asserted-by":"publisher","first-page":"581","DOI":"10.1038\/nmeth.3869","volume":"13","author":"BJ Callahan","year":"2016","unstructured":"Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581\u2013583. https:\/\/doi.org\/10.1038\/nmeth.3869","journal-title":"Nat Methods"},{"key":"2130_CR53","doi-asserted-by":"publisher","first-page":"D590","DOI":"10.1093\/nar\/gks1219","volume":"41","author":"C Quast","year":"2012","unstructured":"Quast C, Pruesse E, Yilmaz P et al (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590\u2013D596. https:\/\/doi.org\/10.1093\/nar\/gks1219","journal-title":"Nucleic Acids Res"},{"key":"2130_CR54","doi-asserted-by":"publisher","first-page":"e61217","DOI":"10.1371\/journal.pone.0061217","volume":"8","author":"PJ McMurdie","year":"2013","unstructured":"McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217. https:\/\/doi.org\/10.1371\/journal.pone.0061217","journal-title":"PLoS ONE"},{"key":"2130_CR55","doi-asserted-by":"publisher","first-page":"226","DOI":"10.1186\/s40168-018-0605-2","volume":"6","author":"NM Davis","year":"2018","unstructured":"Davis NM, Proctor DM, Holmes SP et al (2018) Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6:226. https:\/\/doi.org\/10.1186\/s40168-018-0605-2","journal-title":"Microbiome"},{"key":"2130_CR56","doi-asserted-by":"publisher","first-page":"e27310","DOI":"10.1371\/journal.pone.0027310","volume":"6","author":"PD Schloss","year":"2011","unstructured":"Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. Plos One 6:e27310. https:\/\/doi.org\/10.1371\/journal.pone.0027310","journal-title":"Plos One"},{"key":"2130_CR57","doi-asserted-by":"publisher","unstructured":"Bates D, M\u00e4chler M, Bolker B, Walker S (2015)\u00a0Fitting linear mixed-effects models using lme4. J Stat Soft 67.\u00a0https:\/\/doi.org\/10.18637\/jss.v067.i01","DOI":"10.18637\/jss.v067.i01"},{"key":"2130_CR58","unstructured":"Singmann H, Bolker B, Westfall J, Aust F (2017) Afex: analysis of factorial experiments."},{"key":"2130_CR59","doi-asserted-by":"publisher","first-page":"1494","DOI":"10.3758\/s13428-016-0809-y","volume":"49","author":"SG Luke","year":"2017","unstructured":"Luke SG (2017) Evaluating significance in linear mixed-effects models in R. Behav Res 49:1494\u20131502. https:\/\/doi.org\/10.3758\/s13428-016-0809-y","journal-title":"Behav Res"},{"key":"2130_CR60","doi-asserted-by":"publisher","first-page":"2224","DOI":"10.3389\/fmicb.2017.02224","volume":"8","author":"GB Gloor","year":"2017","unstructured":"Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ (2017) Microbiome datasets are compositional: and this is not optional. Front Microbiol 8:2224. https:\/\/doi.org\/10.3389\/fmicb.2017.02224","journal-title":"Front Microbiol"},{"key":"2130_CR61","unstructured":"Lahti L, Shetty S, Blake T, Salojarvi J (2017) Tools for microbiome analysis in R"},{"key":"2130_CR62","unstructured":"Oksanen J, Blanchet FG, Kindt R, et al (2016) Vegan: community ecology package"},{"key":"2130_CR63","unstructured":"Greg Gloor RGW (2017) ALDEx2"},{"key":"2130_CR64","doi-asserted-by":"publisher","first-page":"2938","DOI":"10.1093\/bioinformatics\/btx364","volume":"33","author":"JR Conway","year":"2017","unstructured":"Conway JR, Lex A, Gehlenborg N (2017) UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 33:2938\u20132940. https:\/\/doi.org\/10.1093\/bioinformatics\/btx364","journal-title":"Bioinformatics"},{"key":"2130_CR65","doi-asserted-by":"publisher","unstructured":"Peschel S, M\u00fcller CL, von Mutius E, et al (2021) NetCoMi: network construction and comparison for microbiome data in R. Briefings in Bioinformatics 22:bbaa290. https:\/\/doi.org\/10.1093\/bib\/bbaa290","DOI":"10.1093\/bib\/bbaa290"},{"key":"2130_CR66","doi-asserted-by":"publisher","first-page":"329","DOI":"10.1186\/s12859-019-2915-1","volume":"20","author":"H Hirano","year":"2019","unstructured":"Hirano H, Takemoto K (2019) Difficulty in inferring microbial community structure based on co-occurrence network approaches. BMC Bioinformatics 20:329. https:\/\/doi.org\/10.1186\/s12859-019-2915-1","journal-title":"BMC Bioinformatics"},{"key":"2130_CR67","doi-asserted-by":"publisher","unstructured":"Berry D, Widder S Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol 5:. (2014) https:\/\/doi.org\/10.3389\/fmicb.2014.00219","DOI":"10.3389\/fmicb.2014.00219"},{"key":"2130_CR68","doi-asserted-by":"publisher","first-page":"567","DOI":"10.1038\/s41579-018-0024-1","volume":"16","author":"S Banerjee","year":"2018","unstructured":"Banerjee S, Schlaeppi K, van der Heijden MGA (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16:567\u2013576. https:\/\/doi.org\/10.1038\/s41579-018-0024-1","journal-title":"Nat Rev Microbiol"},{"key":"2130_CR69","doi-asserted-by":"publisher","first-page":"990","DOI":"10.1038\/nature06536","volume":"451","author":"KE Jones","year":"2008","unstructured":"Jones KE, Patel NG, Levy MA et al (2008) Global trends in emerging infectious diseases. Nature 451:990\u2013993. https:\/\/doi.org\/10.1038\/nature06536","journal-title":"Nature"},{"key":"2130_CR70","doi-asserted-by":"publisher","first-page":"1936","DOI":"10.1016\/S0140-6736(12)61678-X","volume":"380","author":"WB Karesh","year":"2012","unstructured":"Karesh WB, Dobson A, Lloyd-Smith JO et al (2012) Ecology of zoonoses: natural and unnatural histories. Lancet 380:1936\u20131945. https:\/\/doi.org\/10.1016\/S0140-6736(12)61678-X","journal-title":"Lancet"},{"key":"2130_CR71","doi-asserted-by":"publisher","first-page":"45","DOI":"10.1038\/nature14324","volume":"520","author":"T Newbold","year":"2015","unstructured":"Newbold T, Hudson LN, Hill SLL et al (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45\u201350. https:\/\/doi.org\/10.1038\/nature14324","journal-title":"Nature"},{"key":"2130_CR72","doi-asserted-by":"publisher","first-page":"213","DOI":"10.1111\/j.1365-294X.2004.02387.x","volume":"14","author":"JK Jancovich","year":"2004","unstructured":"Jancovich JK, Davidson EW, Parameswaran N et al (2004) Evidence for emergence of an amphibian iridoviral disease because of human-enhanced spread. Mol Ecol 14:213\u2013224. https:\/\/doi.org\/10.1111\/j.1365-294X.2004.02387.x","journal-title":"Mol Ecol"},{"key":"2130_CR73","doi-asserted-by":"publisher","first-page":"1175","DOI":"10.3201\/eid1407.070602","volume":"14","author":"V St-Amour","year":"2008","unstructured":"St-Amour V, Wong WM, Garner TWJ, Lesbarr\u00e8res D (2008) Anthropogenic Influence on Prevalence of 2 Amphibian Pathogens. Emerg Infect Dis 14:1175\u20131176. https:\/\/doi.org\/10.3201\/eid1407.070602","journal-title":"Emerg Infect Dis"},{"key":"2130_CR74","doi-asserted-by":"publisher","first-page":"e0127037","DOI":"10.1371\/journal.pone.0127037","volume":"10","author":"AC North","year":"2015","unstructured":"North AC, Hodgson DJ, Price SJ, Griffiths AGF (2015) Anthropogenic and ecological drivers of amphibian disease (ranavirosis). Plos One 10:e0127037. https:\/\/doi.org\/10.1371\/journal.pone.0127037","journal-title":"Plos One"},{"key":"2130_CR75","doi-asserted-by":"publisher","first-page":"9893","DOI":"10.1073\/pnas.1014497108","volume":"108","author":"CG Becker","year":"2011","unstructured":"Becker CG, Zamudio KR (2011) Tropical amphibian populations experience higher disease risk in natural habitats. Proc Natl Acad Sci USA 108:9893\u20139898. https:\/\/doi.org\/10.1073\/pnas.1014497108","journal-title":"Proc Natl Acad Sci USA"},{"key":"2130_CR76","first-page":"9","volume-title":"Ranaviruses","author":"ALJ Duffus","year":"2015","unstructured":"Duffus ALJ, Waltzek TB, St\u00f6hr AC et al (2015) Distribution and host range of ranaviruses. In: Gray MJ, Chinchar VG (eds) Ranaviruses. Springer International Publishing, Cham, pp 9\u201357"},{"key":"2130_CR77","doi-asserted-by":"publisher","first-page":"46","DOI":"10.1007\/s10393-011-0682-1","volume":"8","author":"JL Kerby","year":"2011","unstructured":"Kerby JL, Hart AJ, Storfer A (2011) Combined effects of virus, pesticide, and predator cue on the larval tiger salamander (Ambystoma tigrinum). EcoHealth 8:46\u201354. https:\/\/doi.org\/10.1007\/s10393-011-0682-1","journal-title":"EcoHealth"},{"key":"2130_CR78","doi-asserted-by":"publisher","first-page":"173","DOI":"10.1017\/S0266467400003448","volume":"5","author":"V Kapos","year":"1989","unstructured":"Kapos V (1989) Effects of isolation on the water status of forest patches in the Brazilian Amazon. J Trop Ecol 5:173\u2013185. https:\/\/doi.org\/10.1017\/S0266467400003448","journal-title":"J Trop Ecol"},{"key":"2130_CR79","doi-asserted-by":"publisher","first-page":"e58093","DOI":"10.1371\/journal.pone.0058093","volume":"8","author":"RM Ewers","year":"2013","unstructured":"Ewers RM, Banks-Leite C (2013) Fragmentation impairs the microclimate buffering effect of tropical forests. Plos One 8:e58093. https:\/\/doi.org\/10.1371\/journal.pone.0058093","journal-title":"Plos One"},{"key":"2130_CR80","doi-asserted-by":"publisher","first-page":"2648","DOI":"10.1111\/gcb.14651","volume":"25","author":"SJ Price","year":"2019","unstructured":"Price SJ, Leung WTM, Owen CJ et al (2019) Effects of historic and projected climate change on the range and impacts of an emerging wildlife disease. Glob Change Biol 25:2648\u20132660. https:\/\/doi.org\/10.1111\/gcb.14651","journal-title":"Glob Change Biol"},{"key":"2130_CR81","doi-asserted-by":"publisher","first-page":"649","DOI":"10.1111\/j.1365-2427.2008.02013.x","volume":"54","author":"C Griebler","year":"2009","unstructured":"Griebler C, Lueders T (2009) Microbial biodiversity in groundwater ecosystems. Freshw Biol 54:649\u2013677. https:\/\/doi.org\/10.1111\/j.1365-2427.2008.02013.x","journal-title":"Freshw Biol"},{"key":"2130_CR82","doi-asserted-by":"publisher","first-page":"479","DOI":"10.1038\/s41564-020-00852-1","volume":"6","author":"T Shabarova","year":"2021","unstructured":"Shabarova T, Salcher MM, Porcal P et al (2021) Recovery of freshwater microbial communities after extreme rain events is mediated by cyclic succession. Nat Microbiol 6:479\u2013488. https:\/\/doi.org\/10.1038\/s41564-020-00852-1","journal-title":"Nat Microbiol"},{"key":"2130_CR83","doi-asserted-by":"publisher","first-page":"155345","DOI":"10.1016\/j.scitotenv.2022.155345","volume":"834","author":"L Ji","year":"2022","unstructured":"Ji L, Zhang L, Wang Z et al (2022) High biodiversity and distinct assembly patterns of microbial communities in groundwater compared with surface water. Sci Total Environ 834:155345. https:\/\/doi.org\/10.1016\/j.scitotenv.2022.155345","journal-title":"Sci Total Environ"},{"key":"2130_CR84","doi-asserted-by":"publisher","first-page":"e11532","DOI":"10.7717\/peerj.11532","volume":"9","author":"B Santos","year":"2021","unstructured":"Santos B, Bletz MC, Sabino-Pinto J et al (2021) Characterization of the microbiome of the invasive Asian toad in Madagascar across the expansion range and comparison with a native co-occurring species. PeerJ 9:e11532. https:\/\/doi.org\/10.7717\/peerj.11532","journal-title":"PeerJ"},{"key":"2130_CR85","doi-asserted-by":"publisher","first-page":"82","DOI":"10.1186\/s40168-020-00857-2","volume":"8","author":"B Ma","year":"2020","unstructured":"Ma B, Wang Y, Ye S et al (2020) Earth microbial co-occurrence network reveals interconnection pattern across microbiomes. Microbiome 8:82. https:\/\/doi.org\/10.1186\/s40168-020-00857-2","journal-title":"Microbiome"},{"key":"2130_CR86","doi-asserted-by":"publisher","first-page":"934","DOI":"10.1038\/ismej.2015.168","volume":"10","author":"JG Kueneman","year":"2016","unstructured":"Kueneman JG, Woodhams DC, Van Treuren W et al (2016) Inhibitory bacteria reduce fungi on early life stages of endangered Colorado boreal toads (Anaxyrus boreas). ISME J 10:934\u2013944. https:\/\/doi.org\/10.1038\/ismej.2015.168","journal-title":"ISME J"},{"key":"2130_CR87","doi-asserted-by":"publisher","first-page":"1238","DOI":"10.1111\/mec.12510","volume":"23","author":"JG Kueneman","year":"2014","unstructured":"Kueneman JG, Parfrey LW, Woodhams DC et al (2014) The amphibian skin-associated microbiome across species, space and life history stages. Mol Ecol 23:1238\u20131250. https:\/\/doi.org\/10.1111\/mec.12510","journal-title":"Mol Ecol"},{"key":"2130_CR88","doi-asserted-by":"publisher","first-page":"1992","DOI":"10.1111\/mec.14507","volume":"27","author":"TL Prest","year":"2018","unstructured":"Prest TL, Kimball AK, Kueneman JG, McKenzie VJ (2018) Host-associated bacterial community succession during amphibian development. Mol Ecol 27:1992\u20132006. https:\/\/doi.org\/10.1111\/mec.14507","journal-title":"Mol Ecol"},{"key":"2130_CR89","doi-asserted-by":"crossref","unstructured":"Mart\u00ednez-Ugalde E, \u00c1vila-Akerberg VD, Mart\u00ednez TMG et al (2022) The skin microbiota of the axolotl Ambystoma altamirani is highly influenced by metamorphosis and seasonality but not by pathogen infection. In Review","DOI":"10.21203\/rs.3.rs-1552016\/v1"},{"key":"2130_CR90","doi-asserted-by":"publisher","first-page":"2060","DOI":"10.3389\/fmicb.2019.02060","volume":"10","author":"RR Jim\u00e9nez","year":"2019","unstructured":"Jim\u00e9nez RR, Alvarado G, Estrella J, Sommer S (2019) Moving beyond the host: unraveling the skin microbiome of endangered Costa Rican amphibians. Front Microbiol 10:2060. https:\/\/doi.org\/10.3389\/fmicb.2019.02060","journal-title":"Front Microbiol"},{"key":"2130_CR91","doi-asserted-by":"publisher","first-page":"20","DOI":"10.1016\/j.ydbio.2007.03.021","volume":"306","author":"DD Brown","year":"2007","unstructured":"Brown DD, Cai L (2007) Amphibian metamorphosis. Dev Biol 306:20\u201333. https:\/\/doi.org\/10.1016\/j.ydbio.2007.03.021","journal-title":"Dev Biol"},{"key":"2130_CR92","doi-asserted-by":"publisher","first-page":"607","DOI":"10.1111\/j.1440-169X.1992.tb00028.x","volume":"34","author":"K Yoshizato","year":"1992","unstructured":"Yoshizato K (1992) Death and transformation of larval cells during metamorphosis of anura. Dev Growth Differ 34:607\u2013612. https:\/\/doi.org\/10.1111\/j.1440-169X.1992.tb00028.x","journal-title":"Dev Growth Differ"}],"container-title":["Microbial Ecology"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00248-022-02130-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s00248-022-02130-5\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00248-022-02130-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,7,11]],"date-time":"2023-07-11T09:08:49Z","timestamp":1689066529000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s00248-022-02130-5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,11,29]]},"references-count":92,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2023,8]]}},"alternative-id":["2130"],"URL":"http:\/\/dx.doi.org\/10.1007\/s00248-022-02130-5","relation":{},"ISSN":["0095-3628","1432-184X"],"issn-type":[{"value":"0095-3628","type":"print"},{"value":"1432-184X","type":"electronic"}],"subject":["Soil Science","Ecology","Ecology, Evolution, Behavior and Systematics"],"published":{"date-parts":[[2022,11,29]]},"assertion":[{"value":"2 June 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"23 October 2022","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"29 November 2022","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"N\/A","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethics Approval"}},{"value":"The authors declare no competing interests.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of Interest"}}]}}