uni-leipzig-open-access/json/s00222-022-01144-7
2024-01-25 14:46:53 +01:00

1 line
No EOL
24 KiB
Text

{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,7,17]],"date-time":"2023-07-17T10:30:12Z","timestamp":1689589812466},"reference-count":55,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2022,9,5]],"date-time":"2022-09-05T00:00:00Z","timestamp":1662336000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2022,9,5]],"date-time":"2022-09-05T00:00:00Z","timestamp":1662336000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"name":"Karlsruher Institut f\u00fcr Technologie (KIT)"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Invent. math."],"published-print":{"date-parts":[[2023,1]]},"abstract":"<jats:title>Abstract<\/jats:title><jats:p>There are several proofs by now for the famous Cwikel\u2013Lieb\u2013Rozenblum (CLR) bound, which is a semiclassical bound on the number of bound states for a Schr\u00f6dinger operator, proven in the 1970s. Of the rather distinct proofs by Cwikel, Lieb, and Rozenblum, the one by Lieb gives the best constant, the one by Rozenblum does not seem to yield any reasonable estimate for the constants, and Cwikel\u2019s proof is said to give a constant which is at least about 2 orders of magnitude off the truth. This situation did not change much during the last 40+ years. It turns out that this common belief, i.e, Cwikel\u2019s approach yields bad constants, is not set in stone: We give a substantial refinement of Cwikel\u2019s original approach which highlights a natural but overlooked connection of the CLR bound with bounds for maximal Fourier multipliers from harmonic analysis. Moreover, it gives an astonishingly good bound for the constant in the CLR inequality. Our proof is also quite flexible and leads to rather precise bounds for a large class of Schr\u00f6dinger-type operators with generalized kinetic energies.\n<\/jats:p>","DOI":"10.1007\/s00222-022-01144-7","type":"journal-article","created":{"date-parts":[[2022,9,5]],"date-time":"2022-09-05T12:10:45Z","timestamp":1662379845000},"page":"111-167","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Cwikel\u2019s bound reloaded"],"prefix":"10.1007","volume":"231","author":[{"given":"Dirk","family":"Hundertmark","sequence":"first","affiliation":[]},{"given":"Peer","family":"Kunstmann","sequence":"additional","affiliation":[]},{"given":"Tobias","family":"Ried","sequence":"additional","affiliation":[]},{"given":"Semjon","family":"Vugalter","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,9,5]]},"reference":[{"key":"1144_CR1","doi-asserted-by":"publisher","first-page":"195","DOI":"10.4310\/MRL.2000.v7.n2.a5","volume":"7","author":"R Benguria","year":"2000","unstructured":"Benguria, R., Loss, M.: A simple proof of a theorem of Laptev and Weidl. Math. Res. Lett. 7, 195\u2013203 (2000). https:\/\/doi.org\/10.4310\/MRL.2000.v7.n2.a5","journal-title":"Math. Res. Lett."},{"key":"1144_CR2","doi-asserted-by":"crossref","unstructured":"Birman, M.S., Karadzhov, G.E., Solomyak, M.Z.: Boundedness conditions and spectrum estimates for the operators $$b(X)a(D)$$ and their analogs. In: Estimates and Asymptotics for Discrete Spectra of Integral and Differential Equations (Leningrad, 1989\u20131990). Advances in Soviet Mathematics, vol. 7, pp. 85\u2013106. Americal Mathematical Society, Providence (1991)","DOI":"10.1090\/advsov\/007\/04"},{"key":"1144_CR3","doi-asserted-by":"publisher","first-page":"967","DOI":"10.1002\/(SICI)1097-0312(199609)49:9<967::AID-CPA3>3.0.CO;2-5","volume":"49","author":"MS Birman","year":"1996","unstructured":"Birman, M.S., Laptev, A.: The negative discrete spectrum of a two-dimensional Schr\u00f6dinger operator. Commun. Pure Appl. Math. 49, 967\u2013997 (1996)","journal-title":"Commun. Pure Appl. Math."},{"key":"1144_CR4","doi-asserted-by":"publisher","first-page":"87","DOI":"10.1007\/BF02559594","volume":"35","author":"MSh Birman","year":"1997","unstructured":"Birman, MSh., Laptev, A., Solomyak, M.: The negative discrete spectrum of the operator $$(-\\Delta )^l - \\alpha V$$ in $$L_2({\\mathbb{R} }^d)$$ for $$d$$ even and $$2l\\ge d$$. Ark. Mat. 35, 87\u2013126 (1997). https:\/\/doi.org\/10.1007\/BF02559594","journal-title":"Ark. Mat."},{"key":"1144_CR5","first-page":"17","volume":"32","author":"MSh Birman","year":"1977","unstructured":"Birman, MSh., Solomyak, M.: Estimates for the singular numbers of integral operators. Uspekhi Mat. Nauk 32, 17\u201384 (1977). (Russian)","journal-title":"Uspekhi Mat. Nauk"},{"key":"1144_CR6","doi-asserted-by":"publisher","first-page":"113","DOI":"10.4064\/sm-24-2-113-190","volume":"24","author":"AP Calder\u00f3n","year":"1964","unstructured":"Calder\u00f3n, A.P.: Intermediate spaces and interpolation, the complex method. Stud. Math. 24, 113\u2013190 (1964). https:\/\/doi.org\/10.4064\/sm-24-2-113-190","journal-title":"Stud. Math."},{"key":"1144_CR7","doi-asserted-by":"publisher","unstructured":"Carbery, A.: Radial Fourier multipliers and associated maximal functions. In: Recent Progress in Fourier Analysis (El Escorial, 1983). North-Holland Mathematics Studies, vol. 111, pp. 49-56. North-Holland, Amsterdam (1985). https:\/\/doi.org\/10.1016\/S0304-0208(08)70279-2","DOI":"10.1016\/S0304-0208(08)70279-2"},{"key":"1144_CR8","doi-asserted-by":"publisher","first-page":"117","DOI":"10.1216\/RMJ-1985-15-1-117","volume":"15","author":"JG Conlon","year":"1985","unstructured":"Conlon, J.G.: A new proof of the Cwikel\u2013Lieb\u2013Rosenbljum bound. Rocky Mt. J. Math. 15, 117\u2013122 (1985). https:\/\/doi.org\/10.1216\/RMJ-1985-15-1-117","journal-title":"Rocky Mt. J. Math."},{"key":"1144_CR9","doi-asserted-by":"publisher","first-page":"93","DOI":"10.2307\/1971160","volume":"106","author":"M Cwikel","year":"1977","unstructured":"Cwikel, M.: Weak type estimates for singular values and the number of bound states of Schr\u00f6dinger operators. Ann. Math. (2) 106, 93\u2013100 (1977). https:\/\/doi.org\/10.2307\/1971160","journal-title":"Ann. Math. (2)"},{"key":"1144_CR10","unstructured":"Cwikel, M.: Private communication (2019)"},{"key":"1144_CR11","doi-asserted-by":"publisher","first-page":"241","DOI":"10.1007\/BF02384428","volume":"23","author":"H Dappa","year":"1985","unstructured":"Dappa, H., Trebels, W.: On maximal functions generated by Fourier multipliers. Ark. Mat. 23, 241\u2013259 (1985). https:\/\/doi.org\/10.1007\/BF02384428","journal-title":"Ark. Mat."},{"key":"1144_CR12","doi-asserted-by":"publisher","first-page":"511","DOI":"10.1007\/BF01216182","volume":"90","author":"I Daubechies","year":"1983","unstructured":"Daubechies, I.: An uncertainty principle for fermions with generalized kinetic energy. Commun. Math. Phys. 90, 511\u2013520 (1983). https:\/\/doi.org\/10.1007\/BF01216182","journal-title":"Commun. Math. Phys."},{"key":"1144_CR13","doi-asserted-by":"publisher","first-page":"267","DOI":"10.1215\/S0012-7094-78-04516-7","volume":"45","author":"PA Deift","year":"1978","unstructured":"Deift, P.A.: Applications of a commutation formula. Duke Math. J. 45, 267\u2013310 (1978). https:\/\/doi.org\/10.1215\/S0012-7094-78-04516-7","journal-title":"Duke Math. J."},{"key":"1144_CR14","doi-asserted-by":"publisher","volume-title":"Vector Measures. Mathematical Surveys No. 15","author":"J Diestel","year":"1977","unstructured":"Diestel, J., Uhl, J.J.: Vector Measures. Mathematical Surveys No. 15. American Mathematical Society, Providence (1977)","DOI":"10.1090\/surv\/015"},{"key":"1144_CR15","doi-asserted-by":"publisher","first-page":"1121","DOI":"10.4171\/JEMS\/142","volume":"10","author":"J Dolbeault","year":"2008","unstructured":"Dolbeault, J., Laptev, A., Loss, M.: Lieb\u2013Thirring inequalities with improved constants. J. Eur. Math. Soc. 10, 1121\u20131126 (2008). https:\/\/doi.org\/10.4171\/JEMS\/142","journal-title":"J. Eur. Math. Soc."},{"key":"1144_CR16","doi-asserted-by":"publisher","first-page":"1","DOI":"10.4171\/JST\/59","volume":"4","author":"RL Frank","year":"2014","unstructured":"Frank, R.L.: Cwikel\u2019s theorem and the CLR inequality. J. Spectr. Theory 4, 1\u201321 (2014). https:\/\/doi.org\/10.4171\/JST\/59","journal-title":"J. Spectr. Theory"},{"key":"1144_CR17","doi-asserted-by":"publisher","first-page":"210","DOI":"10.1515\/9783110571561","volume-title":"Recent Developments in Nonlocal Theory","author":"RL Frank","year":"2017","unstructured":"Frank, R.L.: Eigenvalue bounds for the fractional Laplacian: a review. In: Palatucci, G., Kuusi, T. (eds.) Recent Developments in Nonlocal Theory, pp. 210\u2013235. De Gruyter Open, Warsaw (2017). https:\/\/doi.org\/10.1515\/9783110571561"},{"issue":"8","key":"1144_CR18","doi-asserted-by":"publisher","first-page":"2583","DOI":"10.4171\/jems\/1062","volume":"23","author":"RL Frank","year":"2021","unstructured":"Frank, R.L., Hundertmark, D., Jex, M., Nam, P.T.: The Lieb\u2013Thirring inequality revisited. J. Eur. Math. Soc. 23(8), 2583\u20132600 (2021). https:\/\/doi.org\/10.4171\/jems\/1062","journal-title":"J. Eur. Math. Soc."},{"key":"1144_CR19","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1007\/s11005-007-0211-x","volume":"82","author":"RL Frank","year":"2007","unstructured":"Frank, R.L., Lieb, E.H., Seiringer, R.: Number of bound states of Schr\u00f6dinger operators with matrix-valued potentials. Lett. Math. Phys. 82, 107\u2013116 (2007). https:\/\/doi.org\/10.1007\/s11005-007-0211-x","journal-title":"Lett. Math. Phys."},{"key":"1144_CR20","unstructured":"Hoang, V., Hundertmark, D., Richter, J., Vugalter, S.: Quantitative bounds versus existence of weakly coupled bound states for Schr\u00f6dinger type operators. arXiv:1610.09891"},{"key":"1144_CR21","doi-asserted-by":"publisher","first-page":"73","DOI":"10.1007\/BF02384503","volume":"40","author":"D Hundertmark","year":"2002","unstructured":"Hundertmark, D.: On the number of bound states for Schr\u00f6dinger operators with operator-valued potentials. Ark. Mat. 40, 73\u201387 (2002). https:\/\/doi.org\/10.1007\/BF02384503","journal-title":"Ark. Mat."},{"key":"1144_CR22","doi-asserted-by":"publisher","unstructured":"Hundertmark, D.: Some bound state problems in quantum mechanics. In: Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon\u2019s 60th Birthday. Proceedings of Symposia in Pure Mathematics, vol. 76, Part 1, pp. 463\u2013496. American Mathematical Society, Providence (2007). https:\/\/doi.org\/10.1090\/pspum\/076.1","DOI":"10.1090\/pspum\/076.1"},{"key":"1144_CR23","doi-asserted-by":"publisher","first-page":"693","DOI":"10.1007\/s002220000077","volume":"140","author":"D Hundertmark","year":"2000","unstructured":"Hundertmark, D., Laptev, A., Weidl, T.: New bounds on the Lieb\u2013Thirring constants. Invent. Math. 140, 693\u2013704 (2000). https:\/\/doi.org\/10.1007\/s002220000077","journal-title":"Invent. Math."},{"key":"1144_CR24","doi-asserted-by":"publisher","unstructured":"Landau, L.D., Lifshitz, E.M.: Quantum mechanics: non-relativistic theory. In: Course of Theoretical Physics, vol. 3. Translated from the Russian by J.B. Sykes and J.S. Bell. 3rd edn. Pergamon Press, London (1977). https:\/\/doi.org\/10.1016\/C2013-0-02793-4","DOI":"10.1016\/C2013-0-02793-4"},{"key":"1144_CR25","doi-asserted-by":"publisher","first-page":"531","DOI":"10.1006\/jfan.1997.3155","volume":"151","author":"A Laptev","year":"1997","unstructured":"Laptev, A.: Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces. J. Funct. Anal. 151, 531\u2013545 (1997). https:\/\/doi.org\/10.1006\/jfan.1997.3155","journal-title":"J. Funct. Anal."},{"key":"1144_CR26","doi-asserted-by":"publisher","unstructured":"Laptev, A., Safronov, O., Weidl, T.: Bound state asymptotics for elliptic operators with strongly degenerated symbols. In: Nonlinear Problems in Mathematical Physics and Related Topics I, pp. 233\u2013245. Kluwer, New York (2002). https:\/\/doi.org\/10.1007\/978-1-4615-0777-2_14","DOI":"10.1007\/978-1-4615-0777-2_14"},{"key":"1144_CR27","doi-asserted-by":"publisher","first-page":"87","DOI":"10.1007\/BF02392782","volume":"184","author":"A Laptev","year":"2000","unstructured":"Laptev, A., Weidl, T.: Sharp Lieb\u2013Thirring inequalities in high dimensions. Acta Math. 184, 87\u2013111 (2000). https:\/\/doi.org\/10.1007\/BF02392782","journal-title":"Acta Math."},{"key":"1144_CR28","doi-asserted-by":"publisher","first-page":"265","DOI":"10.1112\/plms.12301","volume":"120","author":"G Levitina","year":"2020","unstructured":"Levitina, G., Sukochev, F., Zanin, D.: Cwikel estimates revisited. Proc. Lond. Math. Soc. Third Ser. 120, 265\u2013304 (2020). https:\/\/doi.org\/10.1112\/plms.12301","journal-title":"Proc. Lond. Math. Soc. Third Ser."},{"key":"1144_CR29","doi-asserted-by":"crossref","unstructured":"Laptev, A., Weidl, T.: Recent results on Lieb\u2013Thirring inequalities. Journ\u00e9es \u201c\u00c9quations aux d\u00e9riv\u00e9es partielles\u201d (2000) Exp. No. 20, 14 p. Universit\u00e9 de Nantes, Nantes (2000). http:\/\/www.numdam.org\/item?id=JEDP_2000_A20_0","DOI":"10.5802\/jedp.584"},{"key":"1144_CR30","doi-asserted-by":"publisher","first-page":"309","DOI":"10.1007\/BF01213210","volume":"88","author":"P Li","year":"1983","unstructured":"Li, P., Yau, S.T.: On the Schr\u00f6dinger equation and the eigenvalue problem. Commun. Math. Phys. 88, 309\u2013318 (1983). https:\/\/doi.org\/10.1007\/BF01213210","journal-title":"Commun. Math. Phys."},{"key":"1144_CR31","doi-asserted-by":"publisher","first-page":"751","DOI":"10.1090\/S0002-9904-1976-14149-3","volume":"82","author":"EH Lieb","year":"1976","unstructured":"Lieb, E.H.: Bounds on the eigenvalues of the Laplace and Schroedinger operators. Bull. Am. Math. Soc. 82, 751\u2013753 (1976). https:\/\/doi.org\/10.1090\/S0002-9904-1976-14149-3","journal-title":"Bull. Am. Math. Soc."},{"key":"1144_CR32","doi-asserted-by":"crossref","unstructured":"Lieb, E.H.: The number of bound states of one-body Schroedinger operators and the Weyl problem. In: Geometry of the Laplace operator, Honolulu\/Hawaii: Proceedings of Symposia in Pure Mathematics, vol. 36 (1980), pp. 241\u2013252 (1979)","DOI":"10.1090\/pspum\/036\/573436"},{"key":"1144_CR33","doi-asserted-by":"publisher","unstructured":"Lieb, E.H., Thirring, W.E.: Bound for the kinetic energy of fermions which proves the stability of matter. Phys. Rev. Lett. 35, 687\u2013689 (1975). https:\/\/doi.org\/10.1103\/PhysRevLett.35.687. Erratum Phys. Rev. Lett. 35, 1116. https:\/\/doi.org\/10.1103\/PhysRevLett.35.1116","DOI":"10.1103\/PhysRevLett.35.687 10.1103\/PhysRevLett.35.1116"},{"key":"1144_CR34","first-page":"269","volume-title":"Studies in Mathematical Physics, Essays in Honor of Valentine Bargmann","author":"EH Lieb","year":"1976","unstructured":"Lieb, E.H., Thirring, W.E.: Inequalities for the moments of the eigenvalues of the Schrodinger Hamiltonian and their Relation to Sobolev inequalities. In: Lieb, E.H., et al. (eds.) Studies in Mathematical Physics, Essays in Honor of Valentine Bargmann, pp. 269\u2013303. Princeton University Press, Princeton (1976)"},{"key":"1144_CR35","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1007\/BF02684796","volume":"19","author":"JL Lions","year":"1964","unstructured":"Lions, J.L., Peetre, J.: Sur une classe d\u2019espaces d\u2019interpolation. Publ. Math. l\u2019IH\u00c9S 19, 5\u201368 (1964)","journal-title":"Publ. Math. l\u2019IH\u00c9S"},{"key":"1144_CR36","doi-asserted-by":"publisher","volume-title":"Classical and Multilinear Harmonic Analysis, Volume 1. Cambridge Studies in Advanced Mathematics","author":"C Muscalu","year":"2013","unstructured":"Muscalu, C., Schlag, W.: Classical and Multilinear Harmonic Analysis, Volume 1. Cambridge Studies in Advanced Mathematics, vol. 137. Cambridge University Press, Cambridge (2013). https:\/\/doi.org\/10.1017\/CBO9781139047081","DOI":"10.1017\/CBO9781139047081"},{"key":"1144_CR37","doi-asserted-by":"publisher","first-page":"355","DOI":"10.1007\/BF02517894","volume":"182","author":"Y Netrusov","year":"1996","unstructured":"Netrusov, Y., Weidl, T.: On Lieb\u2013Thirring inequalities for higher order operators with critical and subcritical powers. Commun. Math. Phys. 182, 355\u2013370 (1996). https:\/\/doi.org\/10.1007\/BF02517894","journal-title":"Commun. Math. Phys."},{"key":"1144_CR38","unstructured":"NIST Digital Library of Mathematical Functions. http:\/\/dlmf.nist.gov\/. Release 1.1.5 of 2022-03-15. F.W.J. Olver, A.B. Olde Daalhuis, D.W. Lozier, B.I. Schneider, R.F. Boisvert, C.W. Clark, B.R. Miller, B.V. Saunders, H.S. Cohl, M.A.McClain (eds.)"},{"key":"1144_CR39","doi-asserted-by":"publisher","first-page":"231","DOI":"10.1142\/9789812832382_0016","volume-title":"Mathematical Results in Quantum Mechanics","author":"K Pankrashkin","year":"2008","unstructured":"Pankrashkin, K.: Variational principle for Hamiltonians with degenerate bottom. In: Beltita, I., Nenciu, G., Purice, R. (eds.) Mathematical Results in Quantum Mechanics, pp. 231\u2013240. World Scientific Publishing, Hackensack (2008). https:\/\/doi.org\/10.1142\/9789812832382_0016"},{"key":"1144_CR40","doi-asserted-by":"publisher","first-page":"277","DOI":"10.2307\/1989973","volume":"44","author":"BJ Pettis","year":"1938","unstructured":"Pettis, B.J.: On integration in vector spaces. Trans. Am. Math. Soc. 44, 277\u2013304 (1938). https:\/\/doi.org\/10.2307\/1989973","journal-title":"Trans. Am. Math. Soc."},{"key":"1144_CR41","volume-title":"Methods of Modern Mathematical Physics. I. Functional Analysis","author":"M Reed","year":"1980","unstructured":"Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I. Functional Analysis, 2nd edn. Academic Press, New York (1980)","edition":"2"},{"key":"1144_CR42","doi-asserted-by":"publisher","volume-title":"Path Integral Approach to Quantum Physics. An introduction. Texts and Monographs in Physics","author":"G Roepstorff","year":"1994","unstructured":"Roepstorff, G.: Path Integral Approach to Quantum Physics. An introduction. Texts and Monographs in Physics. Springer, Berlin (1994). https:\/\/doi.org\/10.1007\/978-3-642-57886-1","DOI":"10.1007\/978-3-642-57886-1"},{"key":"1144_CR43","unstructured":"Rozenblum, G.V.: Distribution of the discrete spectrum of singular differential operators. Dokl. Akad. Nauk SSSR 202, 1012\u20131015 (1972) (Russian). English translation: Soviet Math. Dokl. 13(1972), 245\u2013249"},{"key":"1144_CR44","unstructured":"Rozenblum, G.V.: Distribution of the discrete spectrum of singular differential operators. Izv. Vys\u0161. U\u010debn. Zaved. Mat. 1(164), 75\u201386 (1976) (Russian). English translation: Sov. Math. (Iz. VUZ) 20(1), 63\u201371 (1976)"},{"key":"1144_CR45","doi-asserted-by":"publisher","first-page":"395","DOI":"10.1215\/S0012-7094-86-05324-X","volume":"53","author":"JL Rubio de Francia","year":"1986","unstructured":"Rubio de Francia, J.L.: Maximal functions and Fourier transforms. Duke Math. J. 53, 395\u2013404 (1986). https:\/\/doi.org\/10.1215\/S0012-7094-86-05324-X","journal-title":"Duke Math. J."},{"key":"1144_CR46","doi-asserted-by":"publisher","first-page":"817","DOI":"10.1007\/s00039-010-0075-6","volume":"20","author":"M Rumin","year":"2010","unstructured":"Rumin, M.: Spectral density and Sobolev inequalities for pure and mixed states. Geom. Funct. Anal. 20, 817\u2013844 (2010). https:\/\/doi.org\/10.1007\/s00039-010-0075-6","journal-title":"Geom. Funct. Anal."},{"key":"1144_CR47","doi-asserted-by":"publisher","first-page":"567","DOI":"10.1215\/00127094-1444305","volume":"160","author":"M Rumin","year":"2011","unstructured":"Rumin, M.: Balanced distribution-energy inequalities and related entropy bounds. Duke Math. J. 160, 567\u2013597 (2011). https:\/\/doi.org\/10.1215\/00127094-1444305","journal-title":"Duke Math. J."},{"key":"1144_CR48","doi-asserted-by":"publisher","first-page":"279","DOI":"10.1016\/0003-4916(76)90038-5","volume":"97","author":"B Simon","year":"1976","unstructured":"Simon, B.: The bound state of weakly coupled Schr\u00f6dinger operators in one and two dimensions. Ann. Phys. 97, 279\u2013288 (1976). https:\/\/doi.org\/10.1016\/0003-4916(76)90038-5","journal-title":"Ann. Phys."},{"issue":"2","key":"1144_CR49","doi-asserted-by":"publisher","first-page":"367","DOI":"10.2307\/1997482","volume":"224","author":"B Simon","year":"1976","unstructured":"Simon, B.: Analysis with weak trace ideals and the number of bound states of Schr\u00f6dinger operators. Trans. Am. Math. Soc. 224(2), 367\u2013380 (1976). https:\/\/doi.org\/10.2307\/1997482","journal-title":"Trans. Am. Math. Soc."},{"key":"1144_CR50","volume-title":"Functional Integration and Quantum Physics","author":"B Simon","year":"2005","unstructured":"Simon, B.: Functional Integration and Quantum Physics, 2nd edn. AMS Chelsea Publishing, Providence (2005)","edition":"2"},{"key":"1144_CR51","doi-asserted-by":"publisher","DOI":"10.1090\/surv\/120","volume-title":"Trace Ideals and Their Applications. Mathematical Surveys and Monographs","author":"B Simon","year":"2005","unstructured":"Simon, B.: Trace Ideals and Their Applications. Mathematical Surveys and Monographs, vol. 120, 2nd edn. American Mathematical Society, Providence (2005). https:\/\/doi.org\/10.1090\/surv\/120","edition":"2"},{"key":"1144_CR52","doi-asserted-by":"publisher","first-page":"253","DOI":"10.1007\/BF02773681","volume":"86","author":"M Solomyak","year":"1994","unstructured":"Solomyak, M.: Piecewise-polynomial approximation of functions from $$H^{\\ell }((0,1)^d)$$, $$2\\ell =d$$, and applications to the spectral theory of the Schr\u00f6dinger operator. Isr. J. Math. 86, 253\u2013275 (1994). https:\/\/doi.org\/10.1007\/BF02773681","journal-title":"Isr. J. Math."},{"key":"1144_CR53","doi-asserted-by":"publisher","unstructured":"Weidl, T.: Another look at Cwikel\u2019s inequality. In: Differential Operators and Spectral Theory. American Mathematical Society Translations: Series 2, vol. 189, pp. 247\u2013254. American Mathematical Society, Providence (1999). https:\/\/doi.org\/10.1090\/trans2\/189","DOI":"10.1090\/trans2\/189"},{"key":"1144_CR54","doi-asserted-by":"publisher","unstructured":"Weidl, T.: Nonstandard Cwikel type estimates. In: Interpolation Theory and Applications. Contemporary Mathematics, vol. 445, pp. 337\u2013357. American Mathematical Society, Providence (2007). https:\/\/doi.org\/10.1090\/conm\/445\/08611","DOI":"10.1090\/conm\/445\/08611"},{"key":"1144_CR55","doi-asserted-by":"publisher","volume-title":"Banach Spaces for Analysts. Cambridge Studies in Advanced Mathematics","author":"P Wojtaszczyk","year":"1991","unstructured":"Wojtaszczyk, P.: Banach Spaces for Analysts. Cambridge Studies in Advanced Mathematics, vol. 25. Cambridge University Press, Cambridge (1991). https:\/\/doi.org\/10.1017\/CBO9780511608735","DOI":"10.1017\/CBO9780511608735"}],"container-title":["Inventiones mathematicae"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00222-022-01144-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s00222-022-01144-7\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00222-022-01144-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,28]],"date-time":"2022-12-28T22:04:17Z","timestamp":1672265057000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s00222-022-01144-7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,9,5]]},"references-count":55,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2023,1]]}},"alternative-id":["1144"],"URL":"http:\/\/dx.doi.org\/10.1007\/s00222-022-01144-7","relation":{},"ISSN":["0020-9910","1432-1297"],"issn-type":[{"value":"0020-9910","type":"print"},{"value":"1432-1297","type":"electronic"}],"subject":["General Mathematics"],"published":{"date-parts":[[2022,9,5]]},"assertion":[{"value":"25 December 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"13 July 2022","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"5 September 2022","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}