1 line
No EOL
20 KiB
Text
1 line
No EOL
20 KiB
Text
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,10,19]],"date-time":"2023-10-19T05:21:47Z","timestamp":1697692907168},"reference-count":42,"publisher":"Copernicus GmbH","issue":"5","license":[{"start":{"date-parts":[[2023,10,18]],"date-time":"2023-10-18T00:00:00Z","timestamp":1697587200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","award":["268020496"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Ocean Sci."],"abstract":"<jats:p>Abstract. The Arctic Ocean halocline separates the cold surface mixed layer from the underlying warm Atlantic Water (AW), and thus provides a precondition for sea ice formation. Here, we introduce a new method in which the halocline base depth is determined from vertical stability and compare it to two existing methods. We also propose a novel method for detecting the cold halostad, a layer characterized by a small vertical salinity gradient, which is formed by the Pacific Winter Water in the Canada Basin or by meltwater off the eastern coast of Greenland and off Svalbard. Our main motivation for determining the halocline base depth depending on vertical stability was that vertical stability is closely related to vertical mixing and heat exchange. Vertical stability is a crucial parameter for determining whether the halocline can prevent vertical heat exchange and protect sea ice from warm AW. When applied to measurements from ice-tethered profilers, ships, and moorings, the new method for estimating the halocline base depth provides robust results with few artifacts. Analyzing a case in which water previously homogenized by winter convection was capped by fresh water at the surface suggests that the new method captured the beginning of new halocline formation in the Eurasian Basin. Comparatively large differences between the methods for detecting the halocline base depth were found in warm AW inflow regions for which climate models predict halocline thinning and increased net surface energy fluxes from the ocean to the atmosphere.\n <\/jats:p>","DOI":"10.5194\/os-19-1453-2023","type":"journal-article","created":{"date-parts":[[2023,10,18]],"date-time":"2023-10-18T09:31:12Z","timestamp":1697621472000},"page":"1453-1464","source":"Crossref","is-referenced-by-count":0,"title":["Technical note: Determining Arctic Ocean halocline and cold halostad depths based on vertical stability"],"prefix":"10.5194","volume":"19","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-6523-9205","authenticated-orcid":false,"given":"Enrico P.","family":"Metzner","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3987-2303","authenticated-orcid":false,"given":"Marc","family":"Salzmann","sequence":"additional","affiliation":[]}],"member":"3145","published-online":{"date-parts":[[2023,10,18]]},"reference":[{"key":"ref1","doi-asserted-by":"crossref","unstructured":"Aagaard, K., Coachman, L.\u00a0K., and Carmack, E.: On the halocline of the Arctic Ocean, Deep-Sea Res. Pt. I, 28, 529\u2013545, https:\/\/doi.org\/10.1016\/0198-0149(81)90115-1, 1981.\u2002a, b, c, d, e, f","DOI":"10.1016\/0198-0149(81)90115-1"},{"key":"ref2","unstructured":"Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research: Meereisportal, https:\/\/www.meereisportal.de, last access: 17\u00a0October\u00a02023.\u2002a"},{"key":"ref3","doi-asserted-by":"crossref","unstructured":"Alkire, M. B., Polyakov, I., Rember, R., Pnyushkov, A., Ivanov, V., and Ashik, I.: Combining physical and geochemical methods to investigate lower halocline water formation and modification along the Siberian continental slope, Ocean Sci., 13, 983\u2013995, https:\/\/doi.org\/10.5194\/os-13-983-2017, 2017.\u2002a, b","DOI":"10.5194\/os-13-983-2017"},{"key":"ref4","doi-asserted-by":"crossref","unstructured":"Anderson, L.\u00a0G., Andersson, P.\u00a0S., Bj\u00f6rk, G., Jones, E.\u00a0P., Jutterstr\u00f6m, S., and W\u00e5hlstr\u00f6m, I.: Source and formation of the upper halocline of the Arctic Ocean, J. Geophys. Res.-Oceans, 118, 410\u2013421, https:\/\/doi.org\/10.1029\/2012jc008291, 2013.\u2002a, b","DOI":"10.1029\/2012JC008291"},{"key":"ref5","doi-asserted-by":"crossref","unstructured":"Athanase, M., Provost, C., Artana, C., P\u00e9rez-Hern\u00e1ndez, M.\u00a0D., Senn\u00e9chael, N., Bertosio, C., Garric, G., Lellouche, J.-M., and Prandi, P.: Changes in Atlantic Water circulation patterns and volume transports north of Svalbard over the last 12\u00a0years (2008\u20132020), J. Geophys. Res.-Oceans, 126, e2020JC016825, https:\/\/doi.org\/10.1029\/2020jc016825, 2021.\u2002a","DOI":"10.1029\/2020JC016825"},{"key":"ref6","unstructured":"Behrendt, A., Sumata, H., Rabe, B., and Schauer, U.: A comprehensive, quality-controlled and up-to-date data set of temperature and salinity data for the Arctic Mediterranean Sea (Version 1.0), PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.872931, 2017.\u2002a, b"},{"key":"ref7","doi-asserted-by":"crossref","unstructured":"Behrendt, A., Sumata, H., Rabe, B., and Schauer, U.: UDASH \u2013 Unified Database for Arctic and Subarctic Hydrography, Earth Syst. Sci. Data, 10, 1119\u20131138, https:\/\/doi.org\/10.5194\/essd-10-1119-2018, 2018.\u2002a, b, c","DOI":"10.5194\/essd-10-1119-2018"},{"key":"ref8","doi-asserted-by":"crossref","unstructured":"Bertosio, C., Provost, C., Senn\u00e9chael, N., Artana, C., Athanase, M., Boles, E., Lellouche, J.-M., and Garric, G.: The western Eurasian Basin halocline in 2017: Insights from autonomous NO measurements and the Mercator Physical System, J. Geophys. Res.-Oceans, 125, e2020JC016204, https:\/\/doi.org\/10.1029\/2020JC016204, 2020.\u2002a","DOI":"10.1029\/2020JC016204"},{"key":"ref9","doi-asserted-by":"crossref","unstructured":"Bertosio, C., Provost, C., Athanase, M., Senn\u00e9chael, N., Garric, G., Lellouche, J.-M., Kim, J.-H., Cho, K.-H., and Park, T.: Changes in Arctic halocline waters along the East Siberian Slope and in the Makarov Basin from 2007 to 2020, J. Geophys. Res.-Oceans, 127, e2021JC018082, https:\/\/doi.org\/10.1029\/2021jc018082, 2022.\u2002a","DOI":"10.1029\/2021JC018082"},{"key":"ref10","doi-asserted-by":"crossref","unstructured":"Bj\u00f6rk, G., S\u00f6derkvist, J., Winsor, P., Nikolopoulos, A., and Steele, M.: Return of the cold halocline layer to the Amundsen Basin of the Arctic Ocean: Implication for the sea ice mass balance, Geophys. Res. Lett., 29, 1513, https:\/\/doi.org\/10.1029\/2001GL014157, 2002.\u2002a","DOI":"10.1029\/2001GL014157"},{"key":"ref11","doi-asserted-by":"crossref","unstructured":"Bourgain, P. and Gascard, J.\u00a0C.: The Arctic Ocean halocline and its interannual variability from 1997 to 2008, Deep-Sea Res. Pt. I, 58, 745\u2013756, https:\/\/doi.org\/10.1016\/j.dsr.2011.05.001, 2011.\u2002a, b, c, d, e, f, g, h, i","DOI":"10.1016\/j.dsr.2011.05.001"},{"key":"ref12","doi-asserted-by":"crossref","unstructured":"Deng, G. and Cahill, L.: An adaptive Gaussian filter for noise reduction and edge detection, in: 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference, vol.\u00a03, IEEE, San Francisco, CA, USA, 31\u00a0October to 6\u00a0November\u00a01993, 1615\u20131619, https:\/\/doi.org\/10.1109\/nssmic.1993.373563, 1993.\u2002a","DOI":"10.1109\/NSSMIC.1993.373563"},{"key":"ref13","doi-asserted-by":"crossref","unstructured":"Dmitrenko, I.\u00a0A., Kirillov, S.\u00a0A., Rudels, B., Babb, D.\u00a0G., Pedersen, L.\u00a0T., Rysgaard, S., Kristoffersen, Y., and Barber, D.\u00a0G.: Arctic Ocean outflow and glacier\u2013ocean interactions modify water over the Wandel Sea shelf (northeastern Greenland), Ocean Sci., 13, 1045\u20131060, https:\/\/doi.org\/10.5194\/os-13-1045-2017, 2017.\u2002a, b","DOI":"10.5194\/os-13-1045-2017"},{"key":"ref14","unstructured":"GEBCO Bathymetric Compilation Group 2021: The GEBCO_2021 grid \u2013 a continuous terrain model of the global oceans and land, NERC EDS British Oceanographic Data Centre NOC [data set], https:\/\/doi.org\/10.5285\/c6612cbe-50b3-0cff-e053-6c86abc09f8f, 2021.\u2002a"},{"key":"ref15","unstructured":"Gill, A.\u00a0E.: Atmosphere-ocean dynamics (International Geophysics Series, Volume 30), Academic Press, ISBN\u00a010\u00a00122835220, ISBN\u00a013\u00a09780122835223, 1982.\u2002a, b"},{"key":"ref16","unstructured":"Grosfeld, K., Treffeisen, R.<span id="page1464"\/>, Asseng, J., Bartsch, A., Br\u00e4uer, B., Fritzsch, B., Gerdes, R., Hendricks, S., Hiller, W., Heygster, G., Krumpen, T., Lemke, P., Melsheimer, C., Nicolaus, M., Ricker, R., and Weigelt, M.: Online Sea-Ice Knowledge and Data Platform, Polarforschung, 85, 143\u2013155, https:\/\/doi.org\/10.2312\/POLFOR.2016.011, 2016.\u2002a"},{"key":"ref17","unstructured":"Janzen, C., Larson, N., and Murphy, D.: Long-term accuracy, stability of Argo CTDs, Sea Technology, 44\u201348, https:\/\/www.seabird.com\/asset-get.download.jsa?code=251103 (last access: 20\u00a0July\u00a02023), 2016.\u2002a"},{"key":"ref18","doi-asserted-by":"crossref","unstructured":"Johnson, G.\u00a0C., Toole, J.\u00a0M., and Larson, N.\u00a0G.: Sensor corrections for Sea-Bird SBE-41CP and SBE-41 CTDs, J. Atmos. Ocean. Tech., 24, 1117\u20131130, https:\/\/doi.org\/10.1175\/jtech2016.1, 2007.\u2002a","DOI":"10.1175\/JTECH2016.1"},{"key":"ref19","doi-asserted-by":"crossref","unstructured":"Jones, E.\u00a0P. and Anderson, L.\u00a0G.: On the origin of the chemical properties of the Arctic Ocean halocline, J. Geophys. Res., 91, 10759, https:\/\/doi.org\/10.1029\/jc091ic09p10759, 1986.\u2002a","DOI":"10.1029\/JC091iC09p10759"},{"key":"ref20","doi-asserted-by":"crossref","unstructured":"Krishfield, R., Toole, J., Proshutinsky, A., and Timmermans, M.-L.: Automated ice-tethered profilers for seawater observations under pack ice in all seasons, J. Atmos. Ocean Tech., 25, 2091\u20132105, https:\/\/doi.org\/10.1175\/2008JTECHO587.1, 2008.\u2002a, b, c","DOI":"10.1175\/2008JTECHO587.1"},{"key":"ref21","doi-asserted-by":"crossref","unstructured":"Lind, S., Ingvaldsen, R.\u00a0B., and Furevik, T.: Arctic layer salinity controls heat loss from deep Atlantic layer in seasonally ice-covered areas of the Barents Sea, Geophys. Res. Lett., 43, 5233\u20135242, https:\/\/doi.org\/10.1002\/2016GL068421, 2016.\u2002a","DOI":"10.1002\/2016GL068421"},{"key":"ref22","doi-asserted-by":"crossref","unstructured":"Macdonald, R.\u00a0W., Kuzyk, Z.\u00a0A., and Johannessen, S.\u00a0C.: It is not just about the ice: a geochemical perspective on the changing Arctic Ocean, J. Environ. Stud. Sci., 5, 288\u2013301, https:\/\/doi.org\/10.1007\/s13412-015-0302-4, 2015.\u2002a","DOI":"10.1007\/s13412-015-0302-4"},{"key":"ref23","unstructured":"McDougall, T.\u00a0J., Feistel, R., Wright, D.\u00a0G., Pawlowicz, R., Millero, F.\u00a0J., Jackett, D.\u00a0R., King, B.\u00a0A., Marion, G.\u00a0M., Seitz, S., Spitzer, P., and Chen, C.-T.: The international thermodynamic equation of seawater \u2013 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO, https:\/\/doi.org\/10.25607\/OBP-1338, 2010.\u2002a"},{"key":"ref24","doi-asserted-by":"crossref","unstructured":"Metzner, E.\u00a0P., Salzmann, M., and Gerdes, R.: Arctic Ocean surface energy flux and the cold halocline in future climate projections, J. Geophys. Res.-Oceans, 125, e2019JC015554, https:\/\/doi.org\/10.1029\/2019JC015554, 2020.\u2002a, b, c, d, e, f","DOI":"10.1029\/2019JC015554"},{"key":"ref25","doi-asserted-by":"crossref","unstructured":"Peralta-Ferriz, C. and Woodgate, R.\u00a0A.: Seasonal and interannual variability of pan-Arctic surface mixed layer properties from 1979 to 2012 from hydrographic data, and the dominance of stratification for multiyear mixed layer depth shoaling, Prog. Oceanogr., 134, 19\u201353, https:\/\/doi.org\/10.1016\/j.pocean.2014.12.005, 2015.\u2002a","DOI":"10.1016\/j.pocean.2014.12.005"},{"key":"ref26","doi-asserted-by":"crossref","unstructured":"Polyakov, I.\u00a0V., Pnyushkov, A.\u00a0V., Alkire, M.\u00a0B., Ashik, I.\u00a0M., Baumann, T.\u00a0M., Carmack, E.\u00a0C., Goszczko, I., Guthrie, J., Ivanov, V.\u00a0V., Kanzow, T., Krishfield, R., Kwok, R., Sundfjord, A., Morison, J., Rember, R., and Yulin, A.: Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean, Science, 356, 285\u2013291, https:\/\/doi.org\/10.1126\/science.aai8204, 2017.\u2002a, b, c, d, e, f","DOI":"10.1126\/science.aai8204"},{"key":"ref27","doi-asserted-by":"crossref","unstructured":"Polyakov, I.\u00a0V., Pnyushkov, A.\u00a0V., and Carmack, E.\u00a0C.: Stability of the Arctic halocline: a new indicator of Arctic climate change, Environ. Res. Lett., 13, 125008, https:\/\/doi.org\/10.1088\/1748-9326\/aaec1e, 2018.\u2002a, b, c, d, e, f, g","DOI":"10.1088\/1748-9326\/aaec1e"},{"key":"ref28","doi-asserted-by":"crossref","unstructured":"Polyakov, I.\u00a0V., Rippeth, T.\u00a0P., Fer, I., Alkire, M.\u00a0B., Baumann, T.\u00a0M., Carmack, E.\u00a0C., Ingvaldsen, R., Ivanov, V.\u00a0V., Janout, M., Lind, S., Padman, L., Pnyushkov, A.\u00a0V., and Rember, R.: Weakening of cold halocline layer exposes sea ice to oceanic heat in the eastern Arctic Ocean, J. Climate, 33, 8107\u20138123, https:\/\/doi.org\/10.1175\/JCLI-D-19-0976.1, 2020.\u2002a","DOI":"10.1175\/JCLI-D-19-0976.1"},{"key":"ref29","doi-asserted-by":"crossref","unstructured":"Roquet, F., Ferreira, D., Caneill, R., Schlesinger, D., and Madec, G.: Unique thermal expansion properties of water key to the formation of sea ice on Earth, Sci. Adv., 8, eabq0793, https:\/\/doi.org\/10.1126\/sciadv.abq0793, 2022.\u2002a","DOI":"10.1126\/sciadv.abq0793"},{"key":"ref30","doi-asserted-by":"crossref","unstructured":"Rudels, B., Anderson, L.\u00a0G., and Jones, E.\u00a0P.: Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean, J. Geophys. Res.-Oceans, 101, 8807\u20138821, https:\/\/doi.org\/10.1029\/96JC00143, 1996.\u2002a, b, c, d, e, f, g","DOI":"10.1029\/96JC00143"},{"key":"ref31","doi-asserted-by":"crossref","unstructured":"Rudels, B., Jones, E.\u00a0P., Schauer, U., and Eriksson, P.: Atlantic sources of the Arctic Ocean surface and halocline waters, Polar Res., 23, 181\u2013208, https:\/\/doi.org\/10.3402\/polar.v23i2.6278, 2004.\u2002a, b, c, d, e","DOI":"10.3402\/polar.v23i2.6278"},{"key":"ref32","doi-asserted-by":"crossref","unstructured":"Shimada, K., Itoh, M., Nishino, S., McLoaughlin, F., Carmack, E., and Proshutinsky, A.: Halocline structure in the Canada Basin of the Arctic Ocean, Geophys. Res. Lett., 32, L03605, https:\/\/doi.org\/10.1029\/2004GL021358, 2005.\u2002a, b","DOI":"10.1029\/2004GL021358"},{"key":"ref33","doi-asserted-by":"crossref","unstructured":"Shimada, K., Kamoshida, T., Itoh, M., Nishino, S., Carmack, E., McLaughlin, F., Zimmermann, S., and Proshutinsky, A.: Pacific Ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean, Geophys. Res. Lett., 33, L08605, https:\/\/doi.org\/10.1029\/2005gl025624, 2006.\u2002a","DOI":"10.1029\/2005GL025624"},{"key":"ref34","doi-asserted-by":"crossref","unstructured":"Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using AMSR-E 89-GHz channels, J. Geophys. Res., 113, C02S03, https:\/\/doi.org\/10.1029\/2005jc003384, 2008.\u2002a","DOI":"10.1029\/2005JC003384"},{"key":"ref35","doi-asserted-by":"crossref","unstructured":"Steele, M. and Boyd, T.: Retreat of the cold halocline layer in the Arctic Ocean, J. Geophys. Res., 103, 10419\u201310435, https:\/\/doi.org\/10.1029\/98JC00580, 1998.\u2002a, b, c, d, e","DOI":"10.1029\/98JC00580"},{"key":"ref36","doi-asserted-by":"crossref","unstructured":"Steele, M., Morison, J., and Curtin, T.: Halocline water formation in the Barents Sea, J. Geophys. Res., 100, 881\u2013894, 1995.\u2002a","DOI":"10.1029\/94JC02310"},{"key":"ref37","doi-asserted-by":"crossref","unstructured":"Timmermans, M.-L., Proshutinsky, A., Golubeva, E., Jackson, J.\u00a0M., Krishfield, R., McCall, M., Platov, G., Toole, J., Williams, W., Kikuchi, T., and Nishino, S.: Mechanisms of Pacific Summer Water variability in the Arctic's Central Canada Basin, J. Geophys. Res.-Oceans, 119, 7523\u20137548, https:\/\/doi.org\/10.1002\/2014jc010273, 2014.\u2002a, b","DOI":"10.1002\/2014JC010273"},{"key":"ref38","doi-asserted-by":"crossref","unstructured":"Toole, J.\u00a0M., Krishfield, R.\u00a0A., Timmermans, M.-L., and Proshutinsky, A.: The ice-tethered profiler: ARGO of the Arctic, Oceanography, 24, 126\u2013135, http:\/\/www.jstor.org\/stable\/24861307 (last access: 29\u00a0November\u00a02022), 2011.\u2002a, b","DOI":"10.5670\/oceanog.2011.64"},{"key":"ref39","unstructured":"Toole, J. M., Krishfield, R., O'Brien, J. K., Houk, A. E., and Cole, S. T.: Woods Hole Oceanographic Institution Ice-Tethered Profiler Program (2016), Ice-Tethered Profiler observations: Vertical profiles of temperature, salinity, oxygen, and ocean velocity from an Ice-Tethered Profiler buoy system, NOAA National Centers for Environmental Information [data set], https:\/\/doi.org\/10.7289\/v5mw2f7x, 2016.\u2002a, b"},{"key":"ref40","unstructured":"Wong, A., Keeley, R., Carval, T., and Argo Data Management Team: Argo quality control manual for CTD and trajectory data, Tech. rep., https:\/\/doi.org\/10.13155\/33951, 2023a.\u2002a"},{"key":"ref41","doi-asserted-by":"crossref","unstructured":"Wong, A. P. S., Gilson, J., and Cabanes, C.: Argo salinity: bias and uncertainty evaluation, Earth Syst. Sci. Data, 15, 383\u2013393, https:\/\/doi.org\/10.5194\/essd-15-383-2023, 2023b.\u2002a","DOI":"10.5194\/essd-15-383-2023"},{"key":"ref42","unstructured":"Woods Hole Oceanographic Institution: Ice Tethered Profilers, https:\/\/www2.whoi.edu\/site\/itp\/, last access: 23\u00a0January\u00a02023.\u2002a"}],"container-title":["Ocean Science"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/os.copernicus.org\/articles\/19\/1453\/2023\/os-19-1453-2023.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,10,18]],"date-time":"2023-10-18T09:31:29Z","timestamp":1697621489000},"score":1,"resource":{"primary":{"URL":"https:\/\/os.copernicus.org\/articles\/19\/1453\/2023\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,10,18]]},"references-count":42,"journal-issue":{"issue":"5","published-online":{"date-parts":[[2023]]}},"URL":"http:\/\/dx.doi.org\/10.5194\/os-19-1453-2023","relation":{"has-preprint":[{"id-type":"doi","id":"10.5194\/egusphere-2023-106","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/egusphere-2023-106","asserted-by":"object"}],"has-review":[{"id-type":"doi","id":"10.5194\/egusphere-2023-106-CC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/egusphere-2023-106-RC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/egusphere-2023-106-AC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/egusphere-2023-106-RC2","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/egusphere-2023-106-AC2","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/egusphere-2023-106-CC1","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/egusphere-2023-106-AC1","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/egusphere-2023-106-RC2","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/egusphere-2023-106-AC2","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/egusphere-2023-106-RC1","asserted-by":"object"}],"is-part-of":[{"id-type":"doi","id":"10.7289\/v5mw2f7x","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.872931","asserted-by":"subject"}]},"ISSN":["1812-0792"],"issn-type":[{"value":"1812-0792","type":"electronic"}],"subject":["Cell Biology","Developmental Biology","Embryology","Anatomy"],"published":{"date-parts":[[2023,10,18]]}}} |