1 line
No EOL
41 KiB
Text
1 line
No EOL
41 KiB
Text
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,11,19]],"date-time":"2023-11-19T13:40:24Z","timestamp":1700401224203},"reference-count":91,"publisher":"Copernicus GmbH","issue":"8","license":[{"start":{"date-parts":[[2023,5,2]],"date-time":"2023-05-02T00:00:00Z","timestamp":1682985600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/100017536","name":"Cooperative Institute for Research in Environmental Sciences","doi-asserted-by":"publisher","award":["NA17OAR4320101"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Atmos. Meas. Tech."],"abstract":"<jats:p>Abstract. This study analyzes turbulent energy fluxes in the Arctic atmospheric boundary layer (ABL) using measurements with a small uncrewed aircraft system (sUAS). Turbulent fluxes constitute a major part of the atmospheric energy budget and influence the surface heat balance by distributing energy vertically in the atmosphere. However, only few in\u00a0situ measurements of the vertical profile of turbulent fluxes in the Arctic ABL exist. The study presents a method to derive turbulent heat fluxes from DataHawk2 sUAS turbulence measurements, based on the flux gradient method with a parameterization of the turbulent exchange coefficient. This parameterization is derived from high-resolution horizontal wind speed measurements in combination with formulations for the turbulent Prandtl number and anisotropy depending on stability. Measurements were taken during the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition in the Arctic sea ice during the melt season of 2020. For three example cases from this campaign, vertical profiles of turbulence parameters and turbulent heat fluxes are presented and compared to balloon-borne, radar, and near-surface measurements. The combination of all measurements draws a consistent picture of ABL conditions and demonstrates the unique potential of the presented method for studying turbulent exchange processes in the vertical ABL profile with sUAS measurements.\n <\/jats:p>","DOI":"10.5194\/amt-16-2297-2023","type":"journal-article","created":{"date-parts":[[2023,5,2]],"date-time":"2023-05-02T13:59:35Z","timestamp":1683035975000},"page":"2297-2317","source":"Crossref","is-referenced-by-count":1,"title":["Estimating turbulent energy flux vertical profiles from uncrewed aircraft system measurements: exemplary results for the MOSAiC campaign"],"prefix":"10.5194","volume":"16","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-6107-612X","authenticated-orcid":false,"given":"Ulrike","family":"Egerer","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3176-3978","authenticated-orcid":false,"given":"John J.","family":"Cassano","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0973-9982","authenticated-orcid":false,"given":"Matthew D.","family":"Shupe","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4652-7150","authenticated-orcid":false,"given":"Gijs","family":"de Boer","sequence":"additional","affiliation":[]},{"given":"Dale","family":"Lawrence","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7838-5156","authenticated-orcid":false,"given":"Abhiram","family":"Doddi","sequence":"additional","affiliation":[]},{"given":"Holger","family":"Siebert","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9640-2180","authenticated-orcid":false,"given":"Gina","family":"Jozef","sequence":"additional","affiliation":[]},{"given":"Radiance","family":"Calmer","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3056-5315","authenticated-orcid":false,"given":"Jonathan","family":"Hamilton","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0020-1254","authenticated-orcid":false,"given":"Christian","family":"Pilz","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3245-8668","authenticated-orcid":false,"given":"Michael","family":"Lonardi","sequence":"additional","affiliation":[]}],"member":"3145","published-online":{"date-parts":[[2023,5,2]]},"reference":[{"key":"ref1","doi-asserted-by":"crossref","unstructured":"Abarbanel, H. D. I., Holm, D. D., Marsden, J. E., and Ratiu, T.: Richardson Number Criterion for the Nonlinear Stability of Three-Dimensional Stratified Flow, Phys. Rev. Lett., 52, 2352\u20132355, https:\/\/doi.org\/10.1103\/PhysRevLett.52.2352, 1984.\u2002a","DOI":"10.1103\/PhysRevLett.52.2352"},{"key":"ref2","doi-asserted-by":"crossref","unstructured":"Aliabadi, A.\u00a0A., Staebler, R., Liu, M., and Herber, A.: Characterization and Parametrization of Reynolds Stress and Turbulent Heat Flux in the Stably-Stratified Lower Arctic Troposphere Using Aircraft Measurements, Bound.-Lay. Meteorol., 161, 99\u2013126, https:\/\/doi.org\/10.1007\/s10546-016-0164-7, 2016.\u2002a, b, c, d","DOI":"10.1007\/s10546-016-0164-7"},{"key":"ref3","doi-asserted-by":"crossref","unstructured":"Balsley, B. B., Lawrence, D. A., Fritts, D. C., Wang, L., Wan, K., and Werne, J.: Fine Structure, Instabilities, and Turbulence in the Lower Atmosphere: High-Resolution In Situ Slant-Path Measurements with the DataHawk UAV and Comparisons with Numerical Modeling, J. Atmos. Ocean. Tech., 35, 619\u2013642, https:\/\/doi.org\/10.1175\/JTECH-D-16-0037.1, 2018.\u2002a, b, c, d, e","DOI":"10.1175\/JTECH-D-16-0037.1"},{"key":"ref4","doi-asserted-by":"crossref","unstructured":"Bange, J. and Roth, R.: Helicopter-borne flux measurements in the nocturnal boundary layer over land \u2013 a case study, Bound.-Lay. Meteorol., 92, 295\u2013325, https:\/\/doi.org\/10.1023\/A:1002078712313, 1999.\u2002a","DOI":"10.1023\/A:1002078712313"},{"key":"ref5","doi-asserted-by":"crossref","unstructured":"Banta, R.\u00a0M., Pichugina, Y. L., and Brewer, W. A.: Turbulent Velocity-Variance Profiles in the Stable Boundary Layer Generated by a Nocturnal Low-Level Jet, J. Atmos. Sci., 63, 2700\u20132719, https:\/\/doi.org\/10.1175\/JAS3776.1, 2006.\u2002a","DOI":"10.1175\/JAS3776.1"},{"key":"ref6","doi-asserted-by":"crossref","unstructured":"Bhumralkar, C.\u00a0M.: Parameterization of the planetary boundary layer in atmospheric general circulation models, Rev. Geophys., 14, 215\u2013226,\nhttps:\/\/doi.org\/10.1029\/RG014i002p00215, 1976.\u2002a","DOI":"10.1029\/RG014i002p00215"},{"key":"ref7","doi-asserted-by":"crossref","unstructured":"Biltoft, C. A.: Some thoughts on local isotropy and the 4\/3 lateral to longitudinal velocity spectrum ratio, Bound.-Lay. Meteorol., 100, 393\u2013404, 2001.\u2002a","DOI":"10.1023\/A:1019289915930"},{"key":"ref8","doi-asserted-by":"crossref","unstructured":"B\u00e5serud, L., Reuder, J., Jonassen, M. O., Bonin, T. A., Chilson, P. B., Jim\u00e9nez, M. A., and Durand, P.: Potential and Limitations in Estimating Sensible-Heat-Flux Profiles from Consecutive Temperature Profiles Using Remotely-Piloted Aircraft Systems, Bound.-Lay. Meteorol., 174, 145\u2013177, https:\/\/doi.org\/10.1007\/s10546-019-00478-9, 2019.\u2002a","DOI":"10.1007\/s10546-019-00478-9"},{"key":"ref9","doi-asserted-by":"crossref","unstructured":"Busch, N. E. and Panofsky, H. A.: Recent spectra of atmospheric turbulence, Q. J. Roy. Meteor. Soc., 94, 132\u2013148, https:\/\/doi.org\/10.1002\/qj.49709440003, 1968.\u2002a","DOI":"10.1002\/qj.49709440003"},{"key":"ref10","doi-asserted-by":"crossref","unstructured":"B\u00e9lair, S., Mailhot, J., Strapp, J. W., and MacPherson, J.I.: An Examination of Local versus Nonlocal Aspects of a TKE-Based Boundary Layer Scheme in Clear Convective Conditions, J. Appl. Meteorol., 38, 1499\u20131518, https:\/\/doi.org\/10.1175\/1520-0450(1999)038&lt;1499:AEOLVN&gt;2.0.CO;2, 1999.\u2002a","DOI":"10.1175\/1520-0450(1999)038<1499:AEOLVN>2.0.CO;2"},{"key":"ref11","doi-asserted-by":"crossref","unstructured":"Calmer, R., Roberts, G. C., Preissler, J., Sanchez, K. J., Derrien, S., and O'Dowd, C.: Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol\u2013cloud interactions, Atmos. Meas. Tech., 11, 2583\u20132599, https:\/\/doi.org\/10.5194\/amt-11-2583-2018, 2018.\u2002a","DOI":"10.5194\/amt-11-2583-2018"},{"key":"ref12","unstructured":"Cox, C., Gallagher, M., Shupe, M., Persson, O., Solomon, A., Blomquist, B., Brooks, I., Costa, D., Gottas, D., Hutchings, J., Osborn, J., Morris, S., Preusser, A., and Uttal, T.: 10-meter meteorological flux tower measurements (Level\u00a01 Raw), Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC), central Arctic, October 2019 - September 2020, Arctic Data Center [data set], https:\/\/doi.org\/10.18739\/A2VM42Z5F, 2021.\u2002a, b, c"},{"key":"ref13","doi-asserted-by":"crossref","unstructured":"Cuxart, J., Holtslag, A. A., Beare, R. J., Bazile, E., Beljaars, A., Cheng, A., Conangla, L., Ek, M., Freedman, F., Hamdi, R., Kerstein, A., Kitagawa, H., Lenderink, G., Lewellen, D., Mailhot, J., Mauritsen, T., Perov, V., Schayes, G., Steeneveld, G. J., Svensson, G., Taylor, P., Weng, W., Wunsch, S., and Xu, K. M.: Single-column model intercomparison for a stably stratified atmospheric boundary layer, Bound.-Lay. Meteorol., 118, 273\u2013303, https:\/\/doi.org\/10.1007\/s10546-005-3780-1, 2006.\u2002a","DOI":"10.1007\/s10546-005-3780-1"},{"key":"ref14","doi-asserted-by":"crossref","unstructured":"de Boer, G., Ivey, M., Schmid, B., Lawrence, D., Dexheimer, D., Mei, F., Hubbe, J., Bendure, A., Hardesty, J., Shupe, M. D., McComiskey, A., Telg, H., Schmitt, C., Matrosov, S. Y., Brooks, I., Creamean, J., Solomon, A., Turner, D. D., Williams, C., Maahn, M., Argrow, B., Palo, S., Long, C. N., Gao, R.-S., and Mather, J.: A Bird's-Eye View: Development of an Operational ARM Unmanned Aerial Capability for Atmospheric Research in Arctic Alaska, B. Am. Meteorol. Soc., 99, 1197\u20131212, https:\/\/doi.org\/10.1175\/BAMS-D-17-0156.1, 2018.\u2002a","DOI":"10.1175\/BAMS-D-17-0156.1"},{"key":"ref15","doi-asserted-by":"crossref","unstructured":"de\u00a0Boer, G., Calmer, R., Jozef, G., Cassano, J.\u00a0J., Hamilton, J., Lawrence, D., Borenstein, S., Doddi, A., Cox, C., Schmale, J., Preu\u00dfer, A., and Argrow, B.: Observing the Central Arctic Atmosphere and Surface with University of Colorado uncrewed aircraft systems, Scientific Data, 9, 439, https:\/\/doi.org\/10.1038\/s41597-022-01526-9, 2022.\u2002a, b, c, d","DOI":"10.1038\/s41597-022-01526-9"},{"key":"ref16","unstructured":"Doddi, A.: Insitu Sensing and Analysis of Turbulence - Investigation to Enhance Fine-Structure Turbulence Observation Capabilities of Autonomous Aircraft Systems, dissertation, CU Boulder, https:\/\/scholar.colorado.edu\/concern\/graduate_thesis_or_dissertations\/kp78gh76n (last access: 21\u00a0April 2023), 2021.\u2002a"},{"key":"ref17","doi-asserted-by":"crossref","unstructured":"Doddi, A., Lawrence, D., Fritts, D., Wang, L., Lund, T., Brown, W., Zajic, D., and Kantha, L.: Instabilities, Dynamics, and Energetics accompanying Atmospheric Layering (IDEAL): high-resolution in situ observations and modeling in and above the nocturnal boundary layer, Atmos. Meas. Tech., 15, 4023\u20134045, https:\/\/doi.org\/10.5194\/amt-15-4023-2022, 2022.\u2002a, b, c, d","DOI":"10.5194\/amt-15-4023-2022"},{"key":"ref18","doi-asserted-by":"crossref","unstructured":"Dyer, A. J.: The turbulent transport of heat and water vapour in an unstable atmosphere, Q. J. Roy. Meteor. Soc., 93, 501\u2013508, https:\/\/doi.org\/10.1002\/qj.49709339809, 1967.\u2002a","DOI":"10.1002\/qj.49709339809"},{"key":"ref19","doi-asserted-by":"crossref","unstructured":"Egerer, U., Gottschalk, M., Siebert, H., Ehrlich, A., and Wendisch, M.: The new BELUGA setup for collocated turbulence and radiation measurements using a tethered balloon: first applications in the cloudy Arctic boundary layer, Atmos. Meas. Tech., 12, 4019\u20134038, https:\/\/doi.org\/10.5194\/amt-12-4019-2019, 2019a.\u2002a, b, c, d, e, f","DOI":"10.5194\/amt-12-4019-2019"},{"key":"ref20","unstructured":"Egerer, U., Gottschalk, M., Siebert, H., Wendisch, M., and Ehrlich, A.: Tethered balloon-borne measurements of turbulence and radiation during the Arctic field campaign PASCAL in June 2017, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.899803, 2019b.\u2002a"},{"key":"ref21","doi-asserted-by":"crossref","unstructured":"Egerer, U., Ehrlich, A., Gottschalk, M., Griesche, H., Neggers, R. A. J., Siebert, H., and Wendisch, M.: Case study of a humidity layer above Arctic stratocumulus and potential turbulent coupling with the cloud top, Atmos. Chem. Phys., 21, 6347\u20136364, https:\/\/doi.org\/10.5194\/acp-21-6347-2021, 2021a.\u2002a, b, c","DOI":"10.5194\/acp-21-6347-2021"},{"key":"ref22","unstructured":"Egerer, U., Pilz, C., Lonardi, M., Siebert, H., and Wendisch, M.: Tethered balloon-borne measurements of turbulence during MOSAiC leg 4 in July 2020, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.931404, 2021b.\u2002a"},{"key":"ref23","doi-asserted-by":"crossref","unstructured":"Frehlich, R., Meillier, Y., Jensen, M. L., and Balsley, B.: Turbulence Measurements with the CIRES Tethered Lifting System during CASES-99: Calibration and Spectral Analysis of Temperature and Velocity, J. Atmos. Sci., 60, 2487\u20132495, https:\/\/doi.org\/10.1175\/1520-0469(2003)060&lt;2487:TMWTCT&gt;2.0.CO;2, 2003.\u2002a, b","DOI":"10.1175\/1520-0469(2003)060<2487:TMWTCT>2.0.CO;2"},{"key":"ref24","doi-asserted-by":"crossref","unstructured":"Galperin, B., Sukoriansky, S., and Anderson, P.\u00a0S.: On the critical Richardson number in stably stratified turbulence, Atmos. Sci. Lett., 8, 65\u201369, https:\/\/doi.org\/10.1002\/asl.153, 2007.\u2002a, b","DOI":"10.1002\/asl.153"},{"key":"ref25","doi-asserted-by":"crossref","unstructured":"Grachev, A. A., Andreas, E. L., Fairall, C. W., Guest, P. S., and Persson, P.\nO. G.: On the turbulent Prandtl number in the stable atmospheric boundary layer, Bound.-Lay. Meteorol., 125, 329\u2013341, https:\/\/doi.org\/10.1007\/s10546-007-9192-7, 2007.\u2002a, b, c, d","DOI":"10.1007\/s10546-007-9192-7"},{"key":"ref26","doi-asserted-by":"crossref","unstructured":"Greene, B. R., Kral, S. T., Chilson, P. B., and Reuder, J.: Gradient-Based Turbulence Estimates from Multicopter Profiles in the Arctic Stable Boundary Layer, Bound.-Lay. Meteorol., 183, 321\u2013353, https:\/\/doi.org\/10.1007\/s10546-022-00693-x, 2022.\u2002a","DOI":"10.1007\/s10546-022-00693-x"},{"key":"ref27","doi-asserted-by":"crossref","unstructured":"Hamilton, J., de Boer, G., Doddi, A., and Lawrence, D. A.: The DataHawk2 uncrewed aircraft system for atmospheric research, Atmos. Meas. Tech., 15, 6789\u20136806, https:\/\/doi.org\/10.5194\/amt-15-6789-2022, 2022.\u2002a, b, c","DOI":"10.5194\/amt-15-6789-2022"},{"key":"ref28","unstructured":"Hanna, S. R.: A model of vertical turbulent transport in the atmosphere, dissertation, The Pennsylvania State University, 1967.\u2002a"},{"key":"ref29","doi-asserted-by":"crossref","unstructured":"Hanna, S. R.: A Method of Estimating Vertical Eddy Transport in the Planetary Boundary Layer Using Characteristics of the Vertical Velocity Spectrum, J. Atmos. Sci., 25, 1026\u20131033, https:\/\/doi.org\/10.1175\/1520-0469(1968)025&lt;1026:AMOEVE&gt;2.0.CO;2, 1968.\u2002a, b, c, d, e, f, g, h","DOI":"10.1175\/1520-0469(1968)025<1026:AMOEVE>2.0.CO;2"},{"key":"ref30","doi-asserted-by":"crossref","unstructured":"He, J., Chan, P., Li, Q., Li, L., Zhang, L., and Yang, H.: Observation of vertical eddy diffusivity and mixing length during landfalling Super Typhoons, J. Wind Eng. Ind. Aerod., 219, 104816, https:\/\/doi.org\/10.1016\/j.jweia.2021.104816, 2021.\u2002a","DOI":"10.1016\/j.jweia.2021.104816"},{"key":"ref31","unstructured":"Hinze, J.: Turbulence, McGraw-Hill, New York, ISBN\u20090070290377, 1975.\u2002a"},{"key":"ref32","doi-asserted-by":"crossref","unstructured":"Holt, T. and Raman, S.: A review and comparative evaluation of multilevel boundary layer parameterizations for first-order and turbulent kinetic energy closure schemes, Rev. Geophys., 26, 761\u2013780, https:\/\/doi.org\/10.1029\/RG026i004p00761, 1988.\u2002a","DOI":"10.1029\/RG026i004p00761"},{"key":"ref33","doi-asserted-by":"crossref","unstructured":"Howell, J. F. and Sun, J.: Surface-layer fluxes in stable conditions, Bound.-Lay. Meteorol., 90, 495\u2013520, https:\/\/doi.org\/10.1023\/A:1001788515355, 1999.\u2002a","DOI":"10.1023\/A:1001788515355"},{"key":"ref34","doi-asserted-by":"crossref","unstructured":"H\u00f6gstr\u00f6m, U., Hunt, J. C., and Smedman, A. S.: Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer, Bound.-Lay. Meteorol., 103, 101\u2013124, https:\/\/doi.org\/10.1023\/A:1014579828712, 2002.\u2002a","DOI":"10.1023\/A:1014579828712"},{"key":"ref35","unstructured":"Johnson, K., Giangrande, S., and Toto, T.: Active Remote Sensing of Cloud Layers (ARSCL) Product using Ka-Band ARM Zenith Radars (ARSCLKAZR1KOLLIAS), ARM [data set], https:\/\/doi.org\/10.5439\/1393437, 2021.\u2002a, b, c, d"},{"key":"ref36","doi-asserted-by":"crossref","unstructured":"Jonassen, M.\u00a0O., Tisler, P., Altst\u00e4dter, B., Scholtz, A., Vihma, T., Lampert, A., K\u00f6nig-Langlo, G., and L\u00fcpkes, C.: Application of remotely piloted aircraft systems in observing the atmospheric boundary layer over Antarctic sea ice in winter, Polar Res., 34, 25651, https:\/\/doi.org\/10.3402\/polar.v34.25651, 2015.\u2002a","DOI":"10.3402\/polar.v34.25651"},{"key":"ref37","unstructured":"Jozef, G., de\u00a0Boer, G., Cassano, J., Calmer, R., Hamilton, J., Lawrence, D., Borenstein, S., Doddi, A., Schmale, J., Preu\u00dfer, A., and Argrow, B.: DataHawk2 Uncrewed Aircraft System data from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) campaign, A1 level, Arctic Data Center [data set], https:\/\/doi.org\/10.18739\/A22Z12Q8X, 2021.\u2002a, b"},{"key":"ref38","doi-asserted-by":"crossref","unstructured":"Jozef, G., Cassano, J., Dahlke, S., and de Boer, G.: Testing the efficacy of atmospheric boundary layer height detection algorithms using uncrewed aircraft system data from MOSAiC, Atmos. Meas. Tech., 15, 4001\u20134022, https:\/\/doi.org\/10.5194\/amt-15-4001-2022, 2022a.\u2002a, b","DOI":"10.5194\/amt-15-4001-2022"},{"key":"ref39","unstructured":"Jozef, G., de\u00a0Boer, G., Cassano, J., Calmer, R., Hamilton, J., Lawrence, D., Borenstein, S., Doddi, A., Schmale, J., Preu\u00dfer, A., and Argrow, B.: DataHawk2 Uncrewed Aircraft System data from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) campaign, raw data, Arctic Data Center [data set], https:\/\/doi.org\/10.18739\/A2Z31NQ11, 2022b.\u2002a, b"},{"key":"ref40","doi-asserted-by":"crossref","unstructured":"Kantha, L., Lawrence, D., Luce, H., Hashiguchi, H., Tsuda, T., Wilson, R., Mixa, T., and Yabuki, M.: Shigaraki UAV-Radar Experiment (ShUREX): overview of the campaign with some preliminary results, Progress in Earth and Planetary Science, 4, 19, https:\/\/doi.org\/10.1186\/s40645-017-0133-x, 2017.\u2002a","DOI":"10.1186\/s40645-017-0133-x"},{"key":"ref41","doi-asserted-by":"crossref","unstructured":"Kim, J. and Mahrt, L.: Simple formulation of turbulent mixing in the stable free atmosphere and nocturnal boundary layer, Tellus\u00a0A, 44, 381\u2013394, https:\/\/doi.org\/10.3402\/tellusa.v44i5.14969, 1992.\u2002a","DOI":"10.1034\/j.1600-0870.1992.t01-4-00003.x"},{"key":"ref42","doi-asserted-by":"crossref","unstructured":"Knust, R.: Polar research and supply vessel POLARSTERN operated by the Alfred-Wegener-Institute, Journal of large-scale research facilities, 3, A119, https:\/\/doi.org\/10.17815\/jlsrf-3-163, 2017.\u2002a","DOI":"10.17815\/jlsrf-3-163"},{"key":"ref43","doi-asserted-by":"crossref","unstructured":"Knuth, S. L. and Cassano, J. J.: Estimating Sensible and Latent Heat Fluxes Using the Integral Method from in situ Aircraft Measurements, J. Atmos. Ocean. Tech., 31, 1964\u20131981, https:\/\/doi.org\/10.1175\/JTECH-D-14-00008.1, 2014.\u2002a","DOI":"10.1175\/JTECH-D-14-00008.1"},{"key":"ref44","unstructured":"Kolmogorov, A. N.: Dissipation of Energy in Locally Isotropic Turbulence, Dokl. Akad. Nauk SSSR+, 32, 16\u00a0pp., 1941.\u2002a, b"},{"key":"ref45","doi-asserted-by":"crossref","unstructured":"Kondo, J., Kanechika, O., and Yasuda, N.: Heat and Momentum Transfers under Strong Stability in the Atmospheric Surface Layer, J. Atmos. Sci., 35, 1012\u20131021, https:\/\/doi.org\/10.1175\/1520-0469(1978)035&lt;1012:HAMTUS&gt;2.0.CO;2, 1978.\u2002a, b","DOI":"10.1175\/1520-0469(1978)035<1012:HAMTUS>2.0.CO;2"},{"key":"ref46","doi-asserted-by":"crossref","unstructured":"Kral, S. T., Reuder, J., Vihma, T., Suomi, I., Haualand, K. F., Urbancic, G. H., Greene, B. R., Steeneveld, G.-J., Lorenz, T., Maronga, B., Jonassen, M. O., Ajosenp\u00e4\u00e4, H., B\u00e5serud, L., Chilson, P. B., Holtslag, A. A. M., Jenkins, A. D., Kouznetsov, R., Mayer, S., Pillar-Little, E. A., Rautenberg, A., Schwenkel, J., Seidl, A. W., and Wrenger, B.: The Innovative Strategies for Observations in the Arctic Atmospheric Boundary Layer Project (ISOBAR) \u2013 Unique fine-scale observations under stable and very stable conditions, B. Am. Meteorol. Soc., 102, E218\u2013E243, https:\/\/doi.org\/10.1175\/BAMS-D-19-0212.1, 2020.\u2002a, b","DOI":"10.1175\/BAMS-D-19-0212.1"},{"key":"ref47","doi-asserted-by":"crossref","unstructured":"Lampert, A., Altst\u00e4dter, B., B\u00e4rfuss, K., Bretschneider, L., Sandgaard, J., Michaelis, J., Lobitz, L., Asmussen, M., Damm, E., K\u00e4thner, R., Kr\u00fcger, T., L\u00fcpkes, C., Nowak, S., Peuker, A., Rausch, T., Reiser, F., Scholtz, A., Sotomayor\u00a0Zakharov, D., Gaus, D., Bansmer, S., Wehner, B., and P\u00e4tzold, F.: Unmanned Aerial Systems for Investigating the Polar Atmospheric Boundary Layer\u2014Technical Challenges and Examples of Applications, Atmosphere, 11, 416,\nhttps:\/\/doi.org\/10.3390\/atmos11040416, 2020.\u2002a","DOI":"10.3390\/atmos11040416"},{"key":"ref48","doi-asserted-by":"crossref","unstructured":"Lawrence, D.\u00a0A. and Balsley, B.\u00a0B.: High-Resolution Atmospheric Sensing of Multiple Atmospheric Variables Using the DataHawk Small Airborne Measurement System, J. Atmos. Ocean. Tech., 30, 2352\u20132366, https:\/\/doi.org\/10.1175\/JTECH-D-12-00089.1, 2013.\u2002a","DOI":"10.1175\/JTECH-D-12-00089.1"},{"key":"ref49","doi-asserted-by":"crossref","unstructured":"Lee, X.: Turbulence Spectra and Eddy Diffusivity over Forests, J. Appl. Meteorol. Clim., 35, 1307\u20131318, https:\/\/doi.org\/10.1175\/1520-0450(1996)035&lt;1307:TSAEDO&gt;2.0.CO;2, 1996.\u2002a","DOI":"10.1175\/1520-0450(1996)035<1307:TSAEDO>2.0.CO;2"},{"key":"ref50","doi-asserted-by":"crossref","unstructured":"Lenschow, D.\u00a0H., Mann, J., and Kristensen, L.: How Long Is Long Enough When Measuring Fluxes and Other Turbulence Statistics?, J. Atmos. Ocean. Tech., 11, 661\u2013673, https:\/\/doi.org\/10.1175\/1520-0426(1994)011&lt;0661:HLILEW&gt;2.0.CO;2, 1994.\u2002a","DOI":"10.1175\/1520-0426(1994)011<0661:HLILEW>2.0.CO;2"},{"key":"ref51","doi-asserted-by":"crossref","unstructured":"Li, D.: Turbulent Prandtl number in the atmospheric boundary layer \u2013 where are we now?, Atmos. Res., 216, 86\u2013105, https:\/\/doi.org\/10.1016\/j.atmosres.2018.09.015, 2019.\u2002a, b, c","DOI":"10.1016\/j.atmosres.2018.09.015"},{"key":"ref52","doi-asserted-by":"crossref","unstructured":"Lonardi, M., Pilz, C., Akansu, E. F., Dahlke, S., Egerer, U., Ehrlich, A., Griesche, H., Heymsfield, A. J., Kirbus, B., Schmitt, C. G., Shupe, M. D.,\nSiebert, H., Wehner, B., and Wendisch, M.: Tethered balloon-borne profile measurements of atmospheric properties in the cloudy atmospheric boundary layer over the Arctic sea ice during MOSAiC: Overview and first results, Elementa: Science of the Anthropocene, 10, 000120, https:\/\/doi.org\/10.1525\/elementa.2021.000120, 2022.\u2002a, b, c, d, e, f","DOI":"10.1525\/elementa.2021.000120"},{"key":"ref53","doi-asserted-by":"crossref","unstructured":"Lovejoy, S., Tuck, A. F., Hovde, S. J., and Schertzer, D.: Is isotropic turbulence relevant in the atmosphere?, Geophys. Res. Lett., 34, L15802, https:\/\/doi.org\/10.1029\/2007GL029359, 2007.\u2002a","DOI":"10.1029\/2007GL029359"},{"key":"ref54","doi-asserted-by":"crossref","unstructured":"Luce, H., Kantha, L., Hashiguchi, H., Lawrence, D., and Doddi, A.: Turbulence kinetic energy dissipation rates estimated from concurrent UAV and MU radar measurements, Earth Planets Space, 70, 207, https:\/\/doi.org\/10.1186\/s40623-018-0979-1, 2018.\u2002a, b","DOI":"10.1186\/s40623-018-0979-1"},{"key":"ref55","doi-asserted-by":"crossref","unstructured":"Luce, H., Kantha, L., Hashiguchi, H., and Lawrence, D.: Estimation of Turbulence Parameters in the Lower Troposphere from ShUREX (2016\u20132017) UAV Data, Atmosphere, 10, 384, https:\/\/doi.org\/10.3390\/atmos10070384, 2019.\u2002a, b, c, d, e","DOI":"10.3390\/atmos10070384"},{"key":"ref56","doi-asserted-by":"crossref","unstructured":"Mack, S. A. and Schoeberlein, H. C.: Richardson Number and Ocean Mixing: Towed Chain Observations, J. Phys. Oceanogr., 34, 736\u2013754, https:\/\/doi.org\/10.1175\/1520-0485(2004)034&lt;0736:RNAOMT&gt;2.0.CO;2, 2004.\u2002a","DOI":"10.1175\/1520-0485(2004)034<0736:RNAOMT>2.0.CO;2"},{"key":"ref57","doi-asserted-by":"crossref","unstructured":"Mahrt, L. and Vickers, D.: Formulation of Turbulent Fluxes in the Stable Boundary Layer, J. Atmos. Sci., 60, 2538\u20132548, https:\/\/doi.org\/10.1175\/1520-0469(2003)060&lt;2538:FOTFIT&gt;2.0.CO;2, 2003.\u2002a","DOI":"10.1175\/1520-0469(2003)060<2538:FOTFIT>2.0.CO;2"},{"key":"ref58","doi-asserted-by":"crossref","unstructured":"Mauritsen, T. and Svensson, G.: Observations of Stably Stratified Shear-Driven Atmospheric Turbulence at Low and High Richardson Numbers, J. Atmos. Sci., 64, 645\u2013655, https:\/\/doi.org\/10.1175\/JAS3856.1, 2007.\u2002a, b","DOI":"10.1175\/JAS3856.1"},{"key":"ref59","doi-asserted-by":"crossref","unstructured":"McNider, R.\u00a0T. and Pour-Biazar, A.: Meteorological modeling relevant to mesoscale and regional air quality applications: a review, J. Air Waste Manage., 70, 2\u201343, https:\/\/doi.org\/10.1080\/10962247.2019.1694602, 2020.\u2002a","DOI":"10.1080\/10962247.2019.1694602"},{"key":"ref60","doi-asserted-by":"crossref","unstructured":"Miles, J. W.: On the stability of heterogeneous shear flows, J. Fluid Mech., 10, 496\u2013508, https:\/\/doi.org\/10.1017\/S0022112061000305, 1961.\u2002a","DOI":"10.1017\/S0022112061000305"},{"key":"ref61","doi-asserted-by":"crossref","unstructured":"Monti, P., Fernando, H. J. S., Princevac, M., Chan, W. C., Kowalewski, T. A., and Pardyjak, E.\u00a0R.: Observations of Flow and Turbulence in the Nocturnal Boundary Layer over a Slope, J. Atmos. Sci., 59, 2513\u20132534, https:\/\/doi.org\/10.1175\/1520-0469(2002)059&lt;2513:OOFATI&gt;2.0.CO;2, 2002.\u2002a","DOI":"10.1175\/1520-0469(2002)059<2513:OOFATI>2.0.CO;2"},{"key":"ref62","doi-asserted-by":"crossref","unstructured":"Muschinski, A., Frehlich, R.\u00a0G., and Balsley, B.\u00a0B.: Small-scale and large-scale intermittency in the nocturnal boundary layer and the residual layer, J. Fluid Mech., 515, 319\u2013351, https:\/\/doi.org\/10.1017\/S0022112004000412, 2004.\u2002a","DOI":"10.1017\/S0022112004000412"},{"key":"ref63","doi-asserted-by":"crossref","unstructured":"Neggers, R. A.\u00a0J., Chylik, J., Egerer, U., Griesche, H., Schemann, V., Seifert, P., Siebert, H., and Macke, A.: Local and Remote Controls on Arctic Mixed-Layer Evolution, J. Adv. Model. Earth Sy., 11, 2214\u20132237, https:\/\/doi.org\/10.1029\/2019MS001671, 2019.\u2002a","DOI":"10.1029\/2019MS001671"},{"key":"ref64","doi-asserted-by":"crossref","unstructured":"Nieuwstadt, F. T. M.: The turbulent structure of the stable nocturnal boundary layer, J. Atmos. Sci., 41, 2202\u20132216, 1984.\u2002a","DOI":"10.1175\/1520-0469(1984)041<2202:TTSOTS>2.0.CO;2"},{"key":"ref65","unstructured":"Nixdorf, U., Dethloff, K., Rex, M., Shupe, M., Sommerfeld, A., Perovich, D. K., Nicolaus, M., Heuz\u00e9, C., Rabe, B., Loose, B., Damm, E., Gradinger, R., Fong, A., Maslowski, W., Rinke, A., Kwok, R., Spreen, G., Wendisch, M., Herber, A., Hirsekorn, M., Mohaupt, V., Frickenhaus, S., Immerz, A., Weiss-Tuider, K., K\u00f6nig, B., Mengedoht, D., Regnery, J., Gerchow, P., Ransby, D., Krumpen, T., Morgenstern, A., Haas, C., Kanzow, T., Rack, F.\u00a0R., Saitzev, V., Sokolov, V., Makarov, A., Schwarze, S., Wunderlich, T., Wurr, K., and Boetius, A.: MOSAiC Extended Acknowledgement, Version\u00a02, Zenodo, https:\/\/doi.org\/10.5281\/zenodo.5541624, 2021.\u2002a"},{"key":"ref66","doi-asserted-by":"crossref","unstructured":"Nowak, J. L., Siebert, H., Szodry, K.-E., and Malinowski, S. P.: Coupled and decoupled stratocumulus-topped boundary layers: turbulence properties, Atmos. Chem. Phys., 21, 10965\u201310991, https:\/\/doi.org\/10.5194\/acp-21-10965-2021, 2021.\u2002a","DOI":"10.5194\/acp-21-10965-2021"},{"key":"ref67","doi-asserted-by":"crossref","unstructured":"Panofsky, H.\u00a0A., Blackadar, A.\u00a0K., and McVehil, G.\u00a0E.: The diabatic wind profile, Q. J. Roy. Meteor. Society, 86, 390\u2013398, https:\/\/doi.org\/10.1002\/qj.49708636911, 1960.\u2002a","DOI":"10.1002\/qj.49708636911"},{"key":"ref68","doi-asserted-by":"crossref","unstructured":"Platis, A., Altst\u00e4dter, B., Wehner, B., Wildmann, N., Lampert, A., Hermann, M., Birmili, W., and Bange, J.: An Observational Case Study on the Influence of Atmospheric Boundary-Layer Dynamics on New Particle Formation, Bound.-Lay. Meteorol., 158, 67\u201392, https:\/\/doi.org\/10.1007\/s10546-015-0084-y, 2016.\u2002a, b","DOI":"10.1007\/s10546-015-0084-y"},{"key":"ref69","doi-asserted-by":"crossref","unstructured":"Pope, S. B.: Turbulent Flows, Cambridge University Press, https:\/\/doi.org\/10.1017\/CBO9780511840531, 2000.\u2002a, b","DOI":"10.1017\/CBO9780511840531"},{"key":"ref70","doi-asserted-by":"crossref","unstructured":"Rautenberg, A., Allgeier, J., Jung, S., and Bange, J.: Calibration Procedure and Accuracy of Wind and Turbulence Measurements with Five-Hole Probes on Fixed-Wing Unmanned Aircraft in the Atmospheric Boundary Layer and Wind Turbine Wakes, Atmosphere, 10, 124, https:\/\/doi.org\/10.3390\/atmos10030124, 2019.\u2002a","DOI":"10.3390\/atmos10030124"},{"key":"ref71","doi-asserted-by":"crossref","unstructured":"Rinke, A., Cassano, J.\u00a0J., Cassano, E.\u00a0N., Jaiser, R., and Handorf, D.: Meteorological conditions during the MOSAiC expedition: Normal or anomalous?, Elementa: Science of the Anthropocene, 9, 00023, https:\/\/doi.org\/10.1525\/elementa.2021.00023, 00023, 2021.\u2002a","DOI":"10.1525\/elementa.2021.00023"},{"key":"ref72","unstructured":"Schmith\u00fcsen, H.: Continuous meteorological surface measurement during\nPOLARSTERN cruise PS122\/3, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.935223, 2021.\u2002a, b"},{"key":"ref73","doi-asserted-by":"crossref","unstructured":"Schumann, U. and Gerz, T.: Turbulent Mixing in Stably Stratified Shear Flows, J. Appl. Meteorol. Clim., 34, 33\u201348, https:\/\/doi.org\/10.1175\/1520-0450-34.1.33, 1995.\u2002a","DOI":"10.1175\/1520-0450-34.1.33"},{"key":"ref74","doi-asserted-by":"crossref","unstructured":"Shupe, M. D., Persson, P. O. G., Brooks, I. M., Tjernstr\u00f6m, M., Sedlar, J., Mauritsen, T., Sjogren, S., and Leck, C.: Cloud and boundary layer interactions over the Arctic sea ice in late summer, Atmos. Chem. Phys., 13, 9379\u20139399, https:\/\/doi.org\/10.5194\/acp-13-9379-2013, 2013.\u2002a, b","DOI":"10.5194\/acp-13-9379-2013"},{"key":"ref75","doi-asserted-by":"crossref","unstructured":"Shupe, M. D., Rex, M., Blomquist, B., Persson, P. O. G., Schmale, J., Uttal, T., Althausen, D., Angot, H., Archer, S., Bariteau, L., Beck, I., Bilberry, J., Bucci, S., Buck, C., Boyer, M., Brasseur, Z., Brooks, I. M., Calmer, R., Cassano, J., Castro, V., Chu, D., Costa, D., Cox, C. J., Creamean, J., Crewell, S., Dahlke, S., Damm, E., de Boer, G., Deckelmann, H., Dethloff, K., D\u00fctsch, M., Ebell, K., Ehrlich, A., Ellis, J., Engelmann, R., Fong, A. A., Frey, M. M., Gallagher, M. R., Ganzeveld, L., Gradinger, R., Graeser, J., Greenamyer, V., Griesche, H., Griffiths, S., Hamilton, J., Heinemann, G., Helmig, D., Herber, A., Heuz\u00e9, C., Hofer, J., Houchens, T., Howard, D., Inoue, J., Jacobi, H.-W., Jaiser, R., Jokinen, T., Jourdan, O., Jozef, G., King, W., Kirchgaessner, A., Klingebiel, M., Krassovski, M., Krumpen, T., Lampert, A., Landing, W., Laurila, T., Lawrence, D., Lonardi, M., Loose, B., L\u00fcpkes, C., Maahn, M., Macke, A., Maslowski, W., Marsay, C., Maturilli, M., Mech, M., Morris, S., Moser, M., Nicolaus, M., Ortega, P., Osborn, J., P\u00e4tzold, F., Perovich, D. K., Pet\u00e4j\u00e4, T., Pilz, C., Pirazzini, R., Posman, K., Powers, H., Pratt, K. A., Preu\u00dfer, A., Qu\u00e9l\u00e9ver, L., Radenz, M., Rabe, B., Rinke, A., Sachs, T., Schulz, A., Siebert, H., Silva, T., Solomon, A., Sommerfeld, A., Spreen, G., Stephens, M., Stohl, A., Svensson, G., Uin, J., Viegas, J., Voigt, C., von der Gathen, P., Wehner, B., Welker, J. M., Wendisch, M., Werner, M., Xie, Z., and Yue, F.: Overview of the MOSAiC expedition: Atmosphere, Elementa: Science of the Anthropocene, 10, https:\/\/doi.org\/10.1525\/elementa.2021.00060, 00060, 2022.\u2002a, b, c, d","DOI":"10.1525\/elementa.2021.00060"},{"key":"ref76","doi-asserted-by":"crossref","unstructured":"Siebert, H., Lehmann, K., and Wendisch, M.: Observations of small-scale turbulence and energy dissipation rates in the cloudy boundary layer, J. Atmos. Sci., 63, 1451\u20131466, https:\/\/doi.org\/10.1175\/JAS3687.1, 2006.\u2002a, b","DOI":"10.1175\/JAS3687.1"},{"key":"ref77","doi-asserted-by":"crossref","unstructured":"Smedman, A.-S., Tjernstr\u00f6m, M., and H\u00f6gstr\u00f6m, U.: Analsyis of the turbulence structure of a marine Low-Level Jet, Bound.-Lay. Meteorol., 66, 195\u2013126, 1993.\u2002a","DOI":"10.1007\/BF00705462"},{"key":"ref78","doi-asserted-by":"crossref","unstructured":"Solomon, A., Shupe, M.\u00a0D., Persson, O., Morrison, H., Yamaguchi, T., Caldwell, P. M., and de\u00a0Boer, G.: The Sensitivity of Springtime Arctic Mixed-Phase Stratocumulus Clouds to Surface-Layer and Cloud-Top Inversion-Layer Moisture Sources, J. Atmos. Sci., 71, 574\u2013595, https:\/\/doi.org\/10.1175\/JAS-D-13-0179.1, 2014.\u2002a","DOI":"10.1175\/JAS-D-13-0179.1"},{"key":"ref79","doi-asserted-by":"crossref","unstructured":"Sorbjan, Z. and Grachev, A.\u00a0A.: An evaluation of the flux-gradient relationship in the stable boundary layer, Bound.-Lay. Meteorol., 135, 385\u2013405, https:\/\/doi.org\/10.1007\/s10546-010-9482-3, 2010.\u2002a, b","DOI":"10.1007\/s10546-010-9482-3"},{"key":"ref80","doi-asserted-by":"crossref","unstructured":"Sotiropoulou, G., Sedlar, J., Tjernstr\u00f6m, M., Shupe, M. D., Brooks, I. M., and Persson, P. O. G.: The thermodynamic structure of summer Arctic stratocumulus and the dynamic coupling to the surface, Atmos. Chem. Phys., 14, 12573\u201312592, https:\/\/doi.org\/10.5194\/acp-14-12573-2014, 2014.\u2002a","DOI":"10.5194\/acp-14-12573-2014"},{"key":"ref81","unstructured":"Stull, R. B.: An introduction to boundary layer meteorology, Kluwer Academic Publishers, Dordrecht, The Netherlands, ISBN\u2009978-90-277-2769-5, 1988.\u2002a, b, c"},{"key":"ref82","doi-asserted-by":"crossref","unstructured":"Sukoriansky, S., Galperin, B., and Perov, V.: A quasi-normal scale elimination model of turbulence and its application to stably stratified flows, Nonlin. Processes Geophys., 13, 9\u201322, https:\/\/doi.org\/10.5194\/npg-13-9-2006, 2006.\u2002a","DOI":"10.5194\/npg-13-9-2006"},{"key":"ref83","doi-asserted-by":"crossref","unstructured":"Tjernstr\u00f6m, M.: Turbulence Length Scales in Stably Stratified Free Shear Flow Analyzed from Slant Aircraft Profiles, J. Appl. Meteorol., 32, 948\u2013963, https:\/\/doi.org\/10.1175\/1520-0450(1993)032&lt;0948:TLSISS&gt;2.0.CO;2, 1993.\u2002a","DOI":"10.1175\/1520-0450(1993)032<0948:TLSISS>2.0.CO;2"},{"key":"ref84","doi-asserted-by":"crossref","unstructured":"Tomasi, E., Giovannini, L., Falocchi, M., Antonacci, G., Jim\u00e9nez, P.\u00a0A., Kosovic, B., Alessandrini, S., Zardi, D., Delle Monache, L., and Ferrero, E.: Turbulence parameterizations for dispersion in sub-kilometer horizontally non-homogeneous flows, Atmos. Res., 228, 122\u2013136, https:\/\/doi.org\/10.1016\/j.atmosres.2019.05.018, 2019.\n\u2002a","DOI":"10.1016\/j.atmosres.2019.05.018"},{"key":"ref85","doi-asserted-by":"crossref","unstructured":"van\u00a0den Kroonenberg, A., Martin, T., Buschmann, M., Bange, J., and V\u00f6rsmann, P.: Measuring the Wind Vector Using the Autonomous Mini Aerial Vehicle M2AV, J. Atmos. Ocean. Tech., 25, 1969\u20131982, https:\/\/doi.org\/10.1175\/2008JTECHA1114.1, 2008.\u2002a","DOI":"10.1175\/2008JTECHA1114.1"},{"key":"ref86","doi-asserted-by":"crossref","unstructured":"Vasil'ev, O., Voropaeva, O., and Kurbatskii, A.: Turbulent mixing in stably stratified flows of the environment: The current state of the problem\n(Review), Izv. Atmos. Ocean Phys.+, 47, 265\u2013280, https:\/\/doi.org\/10.1134\/S000143381103011X, 2011.\u2002a","DOI":"10.1134\/S000143381103011X"},{"key":"ref87","doi-asserted-by":"crossref","unstructured":"Venayagamoorthy, S. K. and Stretch, D. D.: On the turbulent Prandtl number in homogeneous stably stratified turbulence, J. Fluid Mech., 644, 359\u2013369, https:\/\/doi.org\/10.1017\/S002211200999293X, 2010.\u2002a","DOI":"10.1017\/S002211200999293X"},{"key":"ref88","doi-asserted-by":"crossref","unstructured":"Wendisch, M., Macke, A., Ehrlich, A., L\u00fcpkes, C., Mech, M., Chechin, D., Dethloff, K., Velasco, C.\u00a0B., Bozem, H., Br\u00fcckner, M., Clemen, H.-C., Crewell, S., Donth, T., Dupuy, R., Ebell, K., Egerer, U., Engelmann, R., Engler, C., Eppers, O., Gehrmann, M., Gong, X., Gottschalk, M., Gourbeyre, C., Griesche, H., Hartmann, J., Hartmann, M., Heinold, B., Herber, A., Herrmann, H., Heygster, G., Hoor, P., Jafariserajehlou, S., J\u00e4kel, E., J\u00e4rvinen, E., Jourdan, O., K\u00e4stner, U., Kecorius, S., Knudsen, E.\u00a0M., K\u00f6llner, F., Kretzschmar, J., Lelli, L., Leroy, D., Maturilli, M., Mei, L., Mertes, S., Mioche, G., Neuber, R., Nicolaus, M., Nomokonova, T., Notholt, J., Palm, M., van Pinxteren, M., Quaas, J., Richter, P., Ruiz-Donoso, E., Sch\u00e4fer, M., Schmieder, K., Schnaiter, M., Schneider, J., Schwarzenb\u00f6ck, A., Seifert, P., Shupe, M.\u00a0D., Siebert, H., Spreen, G., Stapf, J., Stratmann, F., Vogl, T., Welti, A., Wex, H., Wiedensohler, A., Zanatta, M., and Zeppenfeld, S.: The Arctic Cloud Puzzle: Using ACLOUD\/PASCAL Multiplatform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification, B. Am. Meteorol. Soc., 100, 841\u2013871, https:\/\/doi.org\/10.1175\/BAMS-D-18-0072.1, 2019.\u2002a","DOI":"10.1175\/BAMS-D-18-0072.1"},{"key":"ref89","doi-asserted-by":"crossref","unstructured":"Yag\u00fce, C., Maqueda, G., and Rees, J.: Characteristics of turbulence in the lower atmosphere at Halley IV station, Antarctica, Dynam. Atmos. Oceans, 34, 205\u2013223, https:\/\/doi.org\/10.1016\/S0377-0265(01)00068-9, 2001.\u2002a, b, c","DOI":"10.1016\/S0377-0265(01)00068-9"},{"key":"ref90","doi-asserted-by":"crossref","unstructured":"Yeung, P. K. and Zhou, Y.: Universality of the Kolmogorov constant in numerical simulations of turbulence, Phys. Rev.\u00a0E, 56, 1746\u20131752, https:\/\/doi.org\/10.1103\/PhysRevE.56.1746, 1997.\u2002a","DOI":"10.1103\/PhysRevE.56.1746"},{"key":"ref91","doi-asserted-by":"crossref","unstructured":"Zhang, J. A., Marks, F. D., Montgomery, M. T., and Lorsolo, S.: An Estimation of Turbulent Characteristics in the Low-Level Region of Intense Hurricanes Allen (1980) and Hugo (1989), Mon. Weather Rev., 139, 1447\u20131462, https:\/\/doi.org\/10.1175\/2010MWR3435.1, 2010.\u2002a","DOI":"10.1175\/2010MWR3435.1"}],"container-title":["Atmospheric Measurement Techniques"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/amt.copernicus.org\/articles\/16\/2297\/2023\/amt-16-2297-2023.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,5,2]],"date-time":"2023-05-02T14:00:01Z","timestamp":1683036001000},"score":1,"resource":{"primary":{"URL":"https:\/\/amt.copernicus.org\/articles\/16\/2297\/2023\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5,2]]},"references-count":91,"journal-issue":{"issue":"8","published-online":{"date-parts":[[2023]]}},"URL":"http:\/\/dx.doi.org\/10.5194\/amt-16-2297-2023","relation":{"has-preprint":[{"id-type":"doi","id":"10.5194\/amt-2022-314","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/amt-2022-314","asserted-by":"object"}],"has-review":[{"id-type":"doi","id":"10.5194\/amt-2022-314-RC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/amt-2022-314-AC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/amt-2022-314-RC2","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/amt-2022-314-AC2","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/amt-2022-314-AC1","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/amt-2022-314-RC2","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/amt-2022-314-AC2","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/amt-2022-314-RC1","asserted-by":"object"}],"is-part-of":[{"id-type":"doi","id":"10.18739\/A2VM42Z5F","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.899803","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.931404","asserted-by":"subject"},{"id-type":"doi","id":"10.5439\/1393437","asserted-by":"subject"},{"id-type":"doi","id":"10.18739\/A22Z12Q8X","asserted-by":"subject"},{"id-type":"doi","id":"10.18739\/A2Z31NQ11","asserted-by":"subject"}]},"ISSN":["1867-8548"],"issn-type":[{"value":"1867-8548","type":"electronic"}],"subject":["Atmospheric Science"],"published":{"date-parts":[[2023,5,2]]}}} |