1 line
No EOL
48 KiB
Text
1 line
No EOL
48 KiB
Text
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,12,14]],"date-time":"2023-12-14T15:26:50Z","timestamp":1702567610829},"reference-count":90,"publisher":"Copernicus GmbH","issue":"13","license":[{"start":{"date-parts":[[2023,7,3]],"date-time":"2023-07-03T00:00:00Z","timestamp":1688342400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","award":["SPP PROM VO 1504\/5-1"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Atmos. Chem. Phys."],"abstract":"<jats:p>Abstract. Airborne in situ cloud measurements were carried out over the northern Fram Strait between Greenland and Svalbard in spring 2019 and summer 2020.\nIn total, 811\u2009min of low-level cloud observations were performed during 20 research flights above the sea ice and the open Arctic ocean with the Polar 5 research aircraft of the Alfred Wegener Institute.\nHere, we combine the comprehensive in situ cloud data to investigate the distributions of particle number concentration N, effective diameter Deff, and cloud water content CWC (liquid and ice) of Arctic clouds below 500\u2009m altitude, measured at latitudes between 76 and 83\u2218\u2009N.\nWe developed a method to quantitatively derive the occurrence probability of their thermodynamic phase from the combination of microphysical cloud probe and Polar Nephelometer data.\nFinally, we assess changes in cloud microphysics and cloud phase related to ambient meteorological conditions in spring and summer and address effects of the sea ice and open-ocean surface conditions.\nWe find median N from 0.2 to 51.7\u2009cm\u22123 and about 2 orders of magnitude higher N for mainly liquid clouds in summer compared to ice and mixed-phase clouds measured in spring.\nA southerly flow from the sea ice in cold air outbreaks dominates cloud formation processes at temperatures mostly below \u221210\u2009\u2218C in spring, while northerly warm air intrusions favor the formation of liquid clouds at warmer temperatures in summer.\nOur results show slightly higher N in clouds over the sea ice compared to the open ocean, indicating enhanced cloud formation processes over the sea ice. The median CWC is higher in summer (0.16\u2009g\u2009m\u22123) than in spring (0.06\u2009g\u2009m\u22123), as this is dominated by the available atmospheric water content and the temperatures at cloud formation level.\nWe find large differences in the particle sizes in spring and summer and an impact of the surface conditions, which modifies the heat and moisture fluxes in the boundary layer.\nBy combining microphysical cloud data with thermodynamic phase information from the Polar Nephelometer, we find mixed-phase clouds to be the dominant thermodynamic cloud phase in spring, with a frequency of occurrence of 61\u2009% over the sea ice and 66\u2009% over the ocean.\nPure ice clouds exist almost exclusively over the open ocean in spring, and in summer the cloud particles are most likely in the liquid water state. The comprehensive low-level cloud data set will help us to better understand the role of clouds and their thermodynamic phase in the Arctic radiation budget and to assess the performance of global climate models in a region of the world with the strongest anthropogenic climate change.\n <\/jats:p>","DOI":"10.5194\/acp-23-7257-2023","type":"journal-article","created":{"date-parts":[[2023,7,3]],"date-time":"2023-07-03T05:58:28Z","timestamp":1688363908000},"page":"7257-7280","source":"Crossref","is-referenced-by-count":2,"title":["Microphysical and thermodynamic phase analyses of Arctic low-level clouds measured above the sea ice and the open ocean in spring and summer"],"prefix":"10.5194","volume":"23","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8603-2756","authenticated-orcid":false,"given":"Manuel","family":"Moser","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8925-7731","authenticated-orcid":false,"given":"Christiane","family":"Voigt","sequence":"additional","affiliation":[]},{"given":"Tina","family":"Jurkat-Witschas","sequence":"additional","affiliation":[]},{"given":"Valerian","family":"Hahn","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1462-5277","authenticated-orcid":false,"given":"Guillaume","family":"Mioche","sequence":"additional","affiliation":[]},{"given":"Olivier","family":"Jourdan","sequence":"additional","affiliation":[]},{"given":"R\u00e9gis","family":"Dupuy","sequence":"additional","affiliation":[]},{"given":"Christophe","family":"Gourbeyre","sequence":"additional","affiliation":[]},{"given":"Alfons","family":"Schwarzenboeck","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6724-864X","authenticated-orcid":false,"given":"Johannes","family":"Lucke","sequence":"additional","affiliation":[]},{"given":"Yvonne","family":"Boose","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6229-9616","authenticated-orcid":false,"given":"Mario","family":"Mech","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4774-9380","authenticated-orcid":false,"given":"Stephan","family":"Borrmann","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0860-8216","authenticated-orcid":false,"given":"Andr\u00e9","family":"Ehrlich","sequence":"additional","affiliation":[]},{"given":"Andreas","family":"Herber","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6518-0717","authenticated-orcid":false,"given":"Christof","family":"L\u00fcpkes","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4652-5561","authenticated-orcid":false,"given":"Manfred","family":"Wendisch","sequence":"additional","affiliation":[]}],"member":"3145","published-online":{"date-parts":[[2023,7,3]]},"reference":[{"key":"ref1","unstructured":"Bansemer, A.: System for OAP Data Analysis, Zenodo [code], https:\/\/doi.org\/10.5281\/zenodo.7803116, 2023.\u2002a"},{"key":"ref2","doi-asserted-by":"crossref","unstructured":"Baumgardner, D., Jonsson, H., Dawson, W., O'Connor, D., and Newton, R.: The\nCloud, Aerosol and Precipitation Spectrometer: A New Instrument for Cloud\nInvestigations, Atmos. Res., 59\u201360, 251\u2013264,\nhttps:\/\/doi.org\/10.1016\/S0169-8095(01)00119-3, 2001.\u2002a, b","DOI":"10.1016\/S0169-8095(01)00119-3"},{"key":"ref3","doi-asserted-by":"crossref","unstructured":"Baumgardner, D., Brenguier, J., Bucholtz, A., Coe, H., DeMott, P., Garrett, T.,\nGayet, J., Hermann, M., Heymsfield, A., Korolev, A., Kr\u00e4mer, M., Petzold,\nA., Strapp, W., Pilewskie, P., Taylor, J., Twohy, C., and Wendisch, M.:\nAirborne Instruments to Measure Atmospheric Aerosol Particles, Clouds and\nRadiation: A Cook's Tour of Mature and Emerging Technology, Atmos. Res.,\n102, 10\u201329, https:\/\/doi.org\/10.1016\/j.atmosres.2011.06.021, 2011.\u2002a","DOI":"10.1016\/j.atmosres.2011.06.021"},{"key":"ref4","doi-asserted-by":"crossref","unstructured":"Baumgardner, D., Abel, S.\u00a0J., Axisa, D., Cotton, R., Crosier, J., Field, P.,\nGurganus, C., Heymsfield, A., Korolev, A., Kr\u00e4mer, M., Lawson, P.,\nMcFarquhar, G., Ulanowski, Z., and Um, J.: Cloud Ice Properties: In Situ\nMeasurement Challenges, Meteorol. Monogr., 58, 9.1\u20139.23,\nhttps:\/\/doi.org\/10.1175\/amsmonographs-d-16-0011.1, 2017.\u2002a, b, c, d","DOI":"10.1175\/AMSMONOGRAPHS-D-16-0011.1"},{"key":"ref5","unstructured":"Bergeron, T.: On the physics of clouds and precipitation, Proces Verbaux de\nl\u2019Association de M\u00e9t\u00e9orologie, International Union of Geodesy and\nGeophysics, Imprimerie Paul Dupont, Paris, France, 156\u2013178, 1935.\u2002a"},{"key":"ref6","doi-asserted-by":"crossref","unstructured":"Blanchard, D.\u00a0C.: The Ejection of Drops from the Sea and Their Enrichment with\nBacteria and Other Materials: A Review, Estuaries, 12, 127\u2013137,\nhttps:\/\/doi.org\/10.2307\/1351816, 1989.\u2002a","DOI":"10.2307\/1351816"},{"key":"ref7","doi-asserted-by":"crossref","unstructured":"Bock, L., Lauer, A., Schlund, M., Barreiro, M., Bellouin, N., Jones, C., Meehl,\nG.\u00a0A., Predoi, V., Roberts, M.\u00a0J., and Eyring, V.: Quantifying Progress\nAcross Different CMIP Phases With the ESMValTool, J. Geophys.\nRes.-Atmos., 125, e2019JD032321, https:\/\/doi.org\/10.1029\/2019jd032321, 2020.\u2002a","DOI":"10.1029\/2019JD032321"},{"key":"ref8","doi-asserted-by":"crossref","unstructured":"Bodas-Salcedo, A., Hill, P.\u00a0G., Furtado, K., Williams, K.\u00a0D., Field, P.\u00a0R.,\nManners, J.\u00a0C., Hyder, P., and Kato, S.: Large Contribution of Supercooled\nLiquid Clouds to the Solar Radiation Budget of the Southern Ocean, J.\nClimate, 29, 4213\u20134228, https:\/\/doi.org\/10.1175\/jcli-d-15-0564.1, 2016.\u2002a","DOI":"10.1175\/JCLI-D-15-0564.1"},{"key":"ref9","doi-asserted-by":"crossref","unstructured":"Curry, J.\u00a0A., Schramm, J.\u00a0L., Rossow, W.\u00a0B., and Randall, D.: Overview of\nArctic Cloud and Radiation Characteristics, J. Climate, 9, 1731\u20131764, https:\/\/doi.org\/10.1175\/1520-0442(1996)009&lt;1731:OOACAR&gt;2.0.CO;2, 1996.\u2002a","DOI":"10.1175\/1520-0442(1996)009<1731:OOACAR>2.0.CO;2"},{"key":"ref10","doi-asserted-by":"crossref","unstructured":"Dahlke, S., Solb\u00e8s, A., and Maturilli, M.: Cold Air Outbreaks in Fram\nStrait: Climatology, Trends, and Observations During an Extreme Season in\n2020, J. Geophys. Res.-Atmos., 127, e2021JD035741,\nhttps:\/\/doi.org\/10.1029\/2021jd035741, 2022.\u2002a","DOI":"10.1029\/2021JD035741"},{"key":"ref11","doi-asserted-by":"crossref","unstructured":"D'Alessandro, J.\u00a0J., Diao, M., Wu, C., Liu, X., Jensen, J.\u00a0<span id="page7276"\/>B., and Stephens,\nB.\u00a0B.: Cloud Phase and Relative Humidity Distributions over the Southern\nOcean in Austral Summer Based on In Situ Observations and CAM5 Simulations,\nJ. Climate, 32, 2781\u20132805, https:\/\/doi.org\/10.1175\/jcli-d-18-0232.1, 2019.\u2002a","DOI":"10.1175\/JCLI-D-18-0232.1"},{"key":"ref12","doi-asserted-by":"crossref","unstructured":"Dall'Osto, M., Beddows, D. C.\u00a0S., Tunved, P., Krejci, R.,\nStr\u00f6m, J., Hansson, H.-C., Yoon, Y.\u00a0J., Park, K.-T., Becagli, S., Udisti,\nR., Onasch, T., O'Dowd, C.\u00a0D., Sim\u00f3, R., and Harrison,\nR.\u00a0M.: Arctic sea ice melt leads to atmospheric new particle formation,\nSci. Rep., 7, 3318, https:\/\/doi.org\/10.1038\/s41598-017-03328-1, 2017.\u2002a","DOI":"10.1038\/s41598-017-03328-1"},{"key":"ref13","doi-asserted-by":"crossref","unstructured":"Dodson, J. B., Taylor, P. C., Moore, R. H., Bromwich, D. H., Hines, K. M., Thornhill, K. L., Corr, C. A., Anderson, B. E., Winstead, E. L., and Bennett, J. R.: Evaluation of simulated cloud liquid water in low clouds over the Beaufort Sea in the Arctic System Reanalysis using ARISE airborne in situ observations, Atmos. Chem. Phys., 21, 11563\u201311580, https:\/\/doi.org\/10.5194\/acp-21-11563-2021, 2021.\u2002a","DOI":"10.5194\/acp-21-11563-2021"},{"key":"ref14","unstructured":"Dupuy, R., Gourbeyre, C., Mioche, G., and Jourdan, O.: French Airborne\nMeasurement Platform (PMA) cloud particle size distribution and volumic cloud\nparticle diffusion properties dataset near Svalbard for AFLUX measurement\ncampaign with POLAR 5 in 2019, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.941498,\n2022a.\u2002a, b"},{"key":"ref15","unstructured":"Dupuy, R., Gourbeyre, C., Mioche, G., Moser, M., and Jourdan, O.: French\nAirborne Measurement Platform (PMA) cloud particle size distribution and\nvolumic cloud particle diffusion properties dataset near Svalbard for\nMOSAIC-ACA measurement campaign in 2020, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.941538,\n2022b.\u2002a, b"},{"key":"ref16","doi-asserted-by":"crossref","unstructured":"Eirund, G.\u00a0K., Possner, A., and Lohmann, U.: The Impact of Warm and Moist\nAirmass Perturbations on Arctic Mixed-Phase Stratocumulus, J.\nClimate, 33, 9615\u20139628, https:\/\/doi.org\/10.1175\/jcli-d-20-0163.1, 2020.\u2002a","DOI":"10.1175\/JCLI-D-20-0163.1"},{"key":"ref17","doi-asserted-by":"crossref","unstructured":"Elvidge, A.\u00a0D., Renfrew, I.\u00a0A., Brooks, I.\u00a0M., Srivastava, P., Yelland, M.\u00a0J.,\nand Prytherch, J.: Surface Heat and Moisture Exchange in the Marginal Ice\nZone: Observations and a New Parameterization Scheme for Weather and Climate\nModels, J. Geophys. Res.-Atmos., 126, e2021JD034827,\nhttps:\/\/doi.org\/10.1029\/2021jd034827, 2021.\u2002a","DOI":"10.1029\/2021JD034827"},{"key":"ref18","doi-asserted-by":"crossref","unstructured":"Faber, S., French, J. R., and Jackson, R.: Laboratory and in-flight evaluation of measurement uncertainties from a commercial Cloud Droplet Probe (CDP), Atmos. Meas. Tech., 11, 3645\u20133659, https:\/\/doi.org\/10.5194\/amt-11-3645-2018, 2018.\u2002a","DOI":"10.5194\/amt-11-3645-2018"},{"key":"ref19","unstructured":"Findeisen, F.: Kolloid-meteorologische Vorg\u00e4nge bei Niederschlagsbildung,\nMeteorol. Z., 55, 121\u2013133, 1938.\u2002a"},{"key":"ref20","doi-asserted-by":"crossref","unstructured":"Gayet, J. F., Cr\u00e9pel, O., Fournol, J. F., and Oshchepkov, S.: A new airborne polar Nephelometer for the measurements of optical and microphysical cloud properties. Part I: Theoretical design, Ann. Geophys., 15, 451\u2013459, https:\/\/doi.org\/10.1007\/s00585-997-0451-1, 1997.\u2002a","DOI":"10.1007\/s00585-997-0451-1"},{"key":"ref21","doi-asserted-by":"crossref","unstructured":"Gayet, J.-F., Auriol, F., Minikin, A., Str\u00f6m, J., Seifert, M., Krejci, R.,\nPetzold, A., Febvre, G., and Schumann, U.: Quantitative Measurement of the\nMicrophysical and Optical Properties of Cirrus Clouds with Four Different in\nSitu Probes: Evidence of Small Ice Crystals, Geophys. Res.\nLett., 29, 2230, https:\/\/doi.org\/10.1029\/2001GL014342, 2002.\u2002a","DOI":"10.1029\/2001GL014342"},{"key":"ref22","doi-asserted-by":"crossref","unstructured":"Gayet, J.-F., Shcherbakov, V., Voigt, C., Schumann, U., Sch\u00e4uble, D., Jessberger, P., Petzold, A., Minikin, A., Schlager, H., Dubovik, O., and Lapyonok, T.: The evolution of microphysical and optical properties of an A380 contrail in the vortex phase, Atmos. Chem. Phys., 12, 6629\u20136643, https:\/\/doi.org\/10.5194\/acp-12-6629-2012, 2012.\u2002a","DOI":"10.5194\/acp-12-6629-2012"},{"key":"ref23","doi-asserted-by":"crossref","unstructured":"Gerber, H., Takano, Y., Garrett, T.\u00a0J., and Hobbs, P.\u00a0V.: Nephelometer\nMeasurements of the Asymmetry Parameter, Volume Extinction Coefficient, and\nBackscatter Ratio in Arctic Clouds, J. Atmos. Sci.,\n57, 3021\u20133034, https:\/\/doi.org\/10.1175\/1520-0469(2000)057&lt;3021:NMOTAP&gt;2.0.CO;2, 2000.\u2002a","DOI":"10.1175\/1520-0469(2000)057<3021:NMOTAP>2.0.CO;2"},{"key":"ref24","doi-asserted-by":"crossref","unstructured":"Gerum, R.: pylustrator: code generation for reproducible figures for\npublication, Journal of Open Source Software, 5, 1989,\nhttps:\/\/doi.org\/10.21105\/joss.01989, 2020.\u2002a","DOI":"10.21105\/joss.01989"},{"key":"ref25","doi-asserted-by":"crossref","unstructured":"Gurganus, C. and Lawson, P.: Laboratory and Flight Tests of 2D Imaging Probes:\nToward a Better Understanding of Instrument Performance and the Impact on\nArchived Data, J. Atmos. Ocean. Tech., 35, 1533\u20131553,\nhttps:\/\/doi.org\/10.1175\/jtech-d-17-0202.1, 2018.\u2002a","DOI":"10.1175\/JTECH-D-17-0202.1"},{"key":"ref26","doi-asserted-by":"crossref","unstructured":"Hartmann, M., Adachi, K., Eppers, O., Haas, C., Herber, A., Holzinger, R.,\nH\u00fcnerbein, A., J\u00e4kel, E., Jentzsch, C., Pinxteren, M., Wex, H.,\nWillmes, S., and Stratmann, F.: Wintertime Airborne Measurements of Ice\nNucleating Particles in the High Arctic: A Hint to a Marine, Biogenic Source\nfor Ice Nucleating Particles, Geophys. Res. Lett., 47, e2020GL087770,\nhttps:\/\/doi.org\/10.1029\/2020gl087770, 2020.\u2002a, b, c","DOI":"10.1029\/2020GL087770"},{"key":"ref27","unstructured":"Herber, A., Becker, S., Belter, H.\u00a0J., Brauchle, J., Ehrlich, A., Klingebiel,\nM., Krumpen, T., L\u00fcpkes, C., Mech, M., Moser, M., and Wendisch, M.: MOSAiC\nExpedition: Airborne Surveys with Research Aircraft POLAR 5 and POLAR 6 in\n2020 , Berichte zur Polar- und Meeresforschung\u2009=\u2009Reports on Polar and Marine\nResearch, https:\/\/doi.org\/10.48433\/BzPM_0754_2021, 2021.\u2002a"},{"key":"ref28","doi-asserted-by":"crossref","unstructured":"Heymsfield, A., Bansemer, A., Heymsfield, G., Noone, D., Grecu, M., and Toohey,\nD.: Relationship of Multiwavelength Radar Measurements to Ice Microphysics\nfrom the IMPACTS Field Program, J. Appl. Meteorol.\nClim., 62, 289\u2013315, https:\/\/doi.org\/10.1175\/jamc-d-22-0057.1, 2023.\u2002a","DOI":"10.1175\/JAMC-D-22-0057.1"},{"key":"ref29","doi-asserted-by":"crossref","unstructured":"Heymsfield, A.\u00a0J., Schmitt, C., Bansemer, A., and Twohy, C.\u00a0H.: Improved\nRepresentation of Ice Particle Masses Based on Observations in Natural\nClouds, J. Atmos. Sci., 67, 3303\u20133318,\nhttps:\/\/doi.org\/10.1175\/2010jas3507.1, 2010.\u2002a, b","DOI":"10.1175\/2010JAS3507.1"},{"key":"ref30","doi-asserted-by":"crossref","unstructured":"Hogan, R.\u00a0J., Tian, L., Brown, P. R.\u00a0A., Westbrook, C.\u00a0D., Heymsfield, A.\u00a0J.,\nand Eastment, J.\u00a0D.: Radar Scattering from Ice Aggregates Using the\nHorizontally Aligned Oblate Spheroid Approximation, J. Appl.\nMeteorol. Clim., 51, 655\u2013671, https:\/\/doi.org\/10.1175\/jamc-d-11-074.1,\n2012.\u2002a","DOI":"10.1175\/JAMC-D-11-074.1"},{"key":"ref31","doi-asserted-by":"crossref","unstructured":"Huang, J. and Jaegl\u00e9, L.: Wintertime enhancements of sea salt aerosol in polar regions consistent with a sea ice source from blowing snow, Atmos. Chem. Phys., 17, 3699\u20133712, https:\/\/doi.org\/10.5194\/acp-17-3699-2017, 2017.\u2002a","DOI":"10.5194\/acp-17-3699-2017"},{"key":"ref32","doi-asserted-by":"crossref","unstructured":"Jourdan, O., Oshchepkov, S., Shcherbakov, V., Gayet, J.-F., and Isaka, H.:\nAssessment of Cloud Optical Parameters in the Solar Region: Retrievals\nfrom Airborne Measurements of Scattering Phase Functions, J.\nGeophys. Res.-Atmos., 108, 4572, https:\/\/doi.org\/10.1029\/2003JD003493, 2003.\u2002a","DOI":"10.1029\/2003JD003493"},{"key":"ref33","doi-asserted-by":"crossref","unstructured":"Jourdan, O., Mioche, G., Garrett, T.\u00a0J., Schwarzenb\u00f6ck, A., Vidot, J., Xie,\nY., Shcherbakov, V., Yang, P., and Gayet, J.-F.: Coupling of the\nMicrophysical and Optical Properties of an Arctic Nimbostratus Cloud\nduring the ASTAR 2004 Experiment: Implications for Light-Scattering\nModeling, J. Geophys. Res., 115, D23206, https:\/\/doi.org\/10.1029\/2010JD014016,\n2010.\u2002a","DOI":"10.1029\/2010JD014016"},{"key":"ref34","doi-asserted-by":"crossref","unstructured":"Kirpes, R. M., Bondy, A. L., Bonanno, D., Moffet, R. C., Wang, B., Laski<span id="page7277"\/>n, A., Ault, A. P., and Pratt, K. A.: Secondary sulfate is internally mixed with sea spray aerosol and organic aerosol in the winter Arctic, Atmos. Chem. Phys., 18, 3937\u20133949, https:\/\/doi.org\/10.5194\/acp-18-3937-2018, 2018.\u2002a","DOI":"10.5194\/acp-18-3937-2018"},{"key":"ref35","doi-asserted-by":"crossref","unstructured":"Kirschler, S., Voigt, C., Anderson, B., Campos Braga, R., Chen, G., Corral, A. F., Crosbie, E., Dadashazar, H., Ferrare, R. A., Hahn, V., Hendricks, J., Kaufmann, S., Moore, R., P\u00f6hlker, M. L., Robinson, C., Scarino, A. J., Schollmayer, D., Shook, M. A., Thornhill, K. L., Winstead, E., Ziemba, L. D., and Sorooshian, A.: Seasonal updraft speeds change cloud droplet number concentrations in low-level clouds over the western North Atlantic, Atmos. Chem. Phys., 22, 8299\u20138319, https:\/\/doi.org\/10.5194\/acp-22-8299-2022, 2022.\u2002a","DOI":"10.5194\/acp-22-8299-2022"},{"key":"ref36","doi-asserted-by":"crossref","unstructured":"Kleine, J., Voigt, C., Sauer, D., Schlager, H., Scheibe, M., Jurkat-Witschas,\nT., Kaufmann, S., K\u00e4rcher, B., and Anderson, B.\u00a0E.: In Situ Observations\nof Ice Particle Losses in a Young Persistent Contrail, Geophys. Res.\nLett., 45, 13553\u201313561, https:\/\/doi.org\/10.1029\/2018gl079390, 2018.\u2002a","DOI":"10.1029\/2018GL079390"},{"key":"ref37","doi-asserted-by":"crossref","unstructured":"Klingebiel, M., de Lozar, A., Molleker, S., Weigel, R., Roth, A., Schmidt, L., Meyer, J., Ehrlich, A., Neuber, R., Wendisch, M., and Borrmann, S.: Arctic low-level boundary layer clouds: in situ measurements and simulations of mono- and bimodal supercooled droplet size distributions at the top layer of liquid phase clouds, Atmos. Chem. Phys., 15, 617\u2013631, https:\/\/doi.org\/10.5194\/acp-15-617-2015, 2015.\u2002a, b","DOI":"10.5194\/acp-15-617-2015"},{"key":"ref38","doi-asserted-by":"crossref","unstructured":"Knust, R.: Polar Research and Supply Vessel POLARSTERN operated by the\nAlfred-Wegener-Institute, Journal of large-scale research facilities,\n3, A119, https:\/\/doi.org\/10.17815\/jlsrf-3-163, 2017.\u2002a","DOI":"10.17815\/jlsrf-3-163"},{"key":"ref39","doi-asserted-by":"crossref","unstructured":"K\u00f6llner, F., Schneider, J., Willis, M. D., Schulz, H., Kunkel, D., Bozem, H., Hoor, P., Klimach, T., Helleis, F., Burkart, J., Leaitch, W. R., Aliabadi, A. A., Abbatt, J. P. D., Herber, A. B., and Borrmann, S.: Chemical composition and source attribution of sub-micrometre aerosol particles in the summertime Arctic lower troposphere, Atmos. Chem. Phys., 21, 6509\u20136539, https:\/\/doi.org\/10.5194\/acp-21-6509-2021, 2021.\u2002a","DOI":"10.5194\/acp-21-6509-2021"},{"key":"ref40","doi-asserted-by":"crossref","unstructured":"Korolev, A., McFarquhar, G., Field, P.\u00a0R., Franklin, C., Lawson, P., Wang, Z.,\nWilliams, E., Abel, S.\u00a0J., Axisa, D., Borrmann, S., Crosier, J., Fugal, J.,\nKr\u00e4mer, M., Lohmann, U., Schlenczek, O., Schnaiter, M., and Wendisch, M.:\nMixed-Phase Clouds: Progress and Challenges, Meteorol. Monogr., 58,\n5.1\u20135.50, https:\/\/doi.org\/10.1175\/amsmonographs-d-17-0001.1, 2017.\u2002a, b","DOI":"10.1175\/AMSMONOGRAPHS-D-17-0001.1"},{"key":"ref41","doi-asserted-by":"crossref","unstructured":"Kretzschmar, J., Stapf, J., Klocke, D., Wendisch, M., and Quaas, J.: Employing airborne radiation and cloud microphysics observations to improve cloud representation in ICON at kilometer-scale resolution in the Arctic, Atmos. Chem. Phys., 20, 13145\u201313165, https:\/\/doi.org\/10.5194\/acp-20-13145-2020, 2020.\u2002a","DOI":"10.5194\/acp-20-13145-2020"},{"key":"ref42","doi-asserted-by":"crossref","unstructured":"Lance, S., Brock, C. A., Rogers, D., and Gordon, J. A.: Water droplet calibration of the Cloud Droplet Probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC, Atmos. Meas. Tech., 3, 1683\u20131706, https:\/\/doi.org\/10.5194\/amt-3-1683-2010, 2010.\u2002a","DOI":"10.5194\/amt-3-1683-2010"},{"key":"ref43","doi-asserted-by":"crossref","unstructured":"Lawson, R.\u00a0P. and Zuidema, P.: Aircraft Microphysical and Surface-Based Radar\nObservations of Summertime Arctic Clouds, J. Atmos.\nSci., 66, 3505\u20133529, https:\/\/doi.org\/10.1175\/2009jas3177.1, 2009.\u2002a, b, c","DOI":"10.1175\/2009JAS3177.1"},{"key":"ref44","doi-asserted-by":"crossref","unstructured":"Lawson, R.\u00a0P., O\u2019Connor, D., Zmarzly, P., Weaver, K., Baker, B., Mo, Q., and\nJonsson, H.: The 2D-S (Stereo) Probe: Design and Preliminary Tests of a New\nAirborne, High-Speed, High-Resolution Particle Imaging Probe, J.\nAtmos. Ocean. Tech., 23, 1462\u20131477,\nhttps:\/\/doi.org\/10.1175\/JTECH1927.1, 2006.\u2002a","DOI":"10.1175\/JTECH1927.1"},{"key":"ref45","doi-asserted-by":"crossref","unstructured":"L\u00fcpkes, C., Vihma, T., Birnbaum, G., Dierer, S., Garbrecht, T., Gryanik,\nV.\u00a0M., Gryschka, M., Hartmann, J., Heinemann, G., Kaleschke, L., Raasch, S.,\nSavij\u00e4rvi, H., Schl\u00fcnzen, K.\u00a0H., and Wacker, U.: Mesoscale Modelling\nof the Arctic Atmospheric Boundary Layer and Its Interaction with Sea Ice,\nin: Arctic Climate Change, 279\u2013324, Springer Netherlands,\nhttps:\/\/doi.org\/10.1007\/978-94-007-2027-5_7, 2011.\u2002a","DOI":"10.1007\/978-94-007-2027-5_7"},{"key":"ref46","doi-asserted-by":"crossref","unstructured":"McCoy, D.\u00a0T., Tan, I., Hartmann, D.\u00a0L., Zelinka, M.\u00a0D., and Storelvmo, T.: On\nthe relationships among cloud cover, mixed-phase partitioning, and planetary\nalbedo in GCMs, J. Adv. Model. Earth Sy., 8, 650\u2013668,\nhttps:\/\/doi.org\/10.1002\/2015ms000589, 2016.\u2002a","DOI":"10.1002\/2015MS000589"},{"key":"ref47","doi-asserted-by":"crossref","unstructured":"McFarquhar, G.\u00a0M., Zhang, G., Poellot, M.\u00a0R., Kok, G.\u00a0L., McCoy, R., Tooman,\nT., Fridlind, A., and Heymsfield, A.\u00a0J.: Ice properties of single-layer\nstratocumulus during the Mixed-Phase Arctic Cloud Experiment: 1.\nObservations, J. Geophys. Res., 112, D24201,\nhttps:\/\/doi.org\/10.1029\/2007jd008633, 2007.\u2002a, b, c","DOI":"10.1029\/2007JD008633"},{"key":"ref48","doi-asserted-by":"crossref","unstructured":"McFarquhar, G.\u00a0M., Baumgardner, D., Bansemer, A., Abel, S.\u00a0J., Crosier, J.,\nFrench, J., Rosenberg, P., Korolev, A., Schwarzoenboeck, A., Leroy, D., Um,\nJ., Wu, W., Heymsfield, A.\u00a0J., Twohy, C., Detwiler, A., Field, P., Neumann,\nA., Cotton, R., Axisa, D., and Dong, J.: Processing of Ice Cloud In Situ Data\nCollected by Bulk Water, Scattering, and Imaging Probes: Fundamentals,\nUncertainties, and Efforts toward Consistency, Meteorol. Monogr., 58,\n11.1\u201311.33, https:\/\/doi.org\/10.1175\/amsmonographs-d-16-0007.1, 2017.\u2002a","DOI":"10.1175\/AMSMONOGRAPHS-D-16-0007.1"},{"key":"ref49","doi-asserted-by":"crossref","unstructured":"Mech, M., Maahn, M., Kneifel, S., Ori, D., Orlandi, E., Kollias, P., Schemann, V., and Crewell, S.: PAMTRA 1.0: the Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere, Geosci. Model Dev., 13, 4229\u20134251, https:\/\/doi.org\/10.5194\/gmd-13-4229-2020, 2020.\u2002a","DOI":"10.5194\/gmd-13-4229-2020"},{"key":"ref50","doi-asserted-by":"crossref","unstructured":"Mech, M., Ehrlich, A., Herber, A., L\u00fcpkes, C., Wendisch, M., Becker, S.,\nBoose, Y., Chechin, D., Crewell, S., Dupuy, R., Gourbeyre, C., Hartmann, J.,\nJ\u00e4kel, E., Jourdan, O., Kliesch, L.-L., Klingebiel, M., Kulla, B.\u00a0S.,\nMioche, G., Moser, M., Risse, N., Ruiz-Donoso, E., Sch\u00e4fer, M., Stapf,\nJ., and Voigt, C.: MOSAiC-ACA and AFLUX \u2013 Arctic airborne campaigns\ncharacterizing the exit area of MOSAiC, Sci. Data, 9, 790,\nhttps:\/\/doi.org\/10.1038\/s41597-022-01900-7, 2022a.\u2002a, b","DOI":"10.1038\/s41597-022-01900-7"},{"key":"ref51","unstructured":"Mech, M., Risse, N., Marrollo, G., and Paul, D.: Ac3airborne, Zenodo [code],\nhttps:\/\/doi.org\/10.5281\/zenodo.7305585, 2022b.\u2002a"},{"key":"ref52","doi-asserted-by":"crossref","unstructured":"Michaelis, J. and L\u00fcpkes, C.: The Impact of Lead Patterns on Mean Profiles\nof Wind, Temperature, and Turbulent Fluxes in the Atmospheric Boundary Layer\nover Sea Ice, Atmosphere, 13, 148, https:\/\/doi.org\/10.3390\/atmos13010148, 2022.\u2002a","DOI":"10.3390\/atmos13010148"},{"key":"ref53","doi-asserted-by":"crossref","unstructured":"Mioche, G., Jourdan, O., Ceccaldi, M., and Delano\u00eb, J.: Variability of mixed-phase clouds in the Arctic with a focus on the Svalbard region: a study based on spaceborne active remote sensing, Atmos. Chem. Phys., 15, 2445\u20132461, https:\/\/doi.org\/10.5194\/acp-15-2445-2015, 2015.\u2002a","DOI":"10.5194\/acp-15-2445-2015"},{"key":"ref54","doi-asserted-by":"crossref","unstructured":"Mioche, G., Jourdan, O., Delano\u00eb, J., Gourbeyre, C., Febvre, G., Dupuy, R., Monier, M., Szczap, F., Schwarzenboeck, A., and Gayet, J.-F.: Vertical distribution of microphysical properties of Arctic springtime low-level mixed-phase clouds over the Greenland and Norwegian seas, Atmos. Chem. Phys., 17, 12845\u201312869, https:\/\/doi.org\/10.5194\/acp-17-12845-2017, 2017.\u2002a, b, c","DOI":"10.5194\/acp-17-12845-2017"},{"key":"ref55","doi-asserted-by":"crossref","unstructured":"Morrison, H., de\u00a0Boer, G., Feingold, G., Harrington, J., Shupe, M.\u00a0D., and\nSulia, K.: Resilience of persistent Arctic mixed-phase clouds, Nat.\nGeosci., 5, 11\u201317, https:\/\/doi.org\/10.1038\/ngeo1332, 2011.\u2002a","DOI":"10.1038\/ngeo1332"},{"key":"ref56","doi-asserted-by":"crossref","unstructured":"Moschos, V., Dzepina, K., Bhattu, D., Lamkaddam, H., Casotto, R., Daellenbach,\nK.\u00a0R., Canonaco, F., Rai, P., Aas, W., Becagli, S., Calzolai, G.,\nEleftheriadis, K., Moffett, C.\u00a0E., Schnelle-Kreis, J., Severi, M., Sharma,\nS., Skov, H., Vestenius, M., Zhang, W., Hakola, H., Hell\u00e9n, H., Huang,\nL., Jaffrezo, J.-L., Massling, A., N\u00f8jgaard, J.\u00a0K., Pet\u00e4j\u00e4, T.,\nPopovicheva, O., Sheesley, R.\u00a0J., Traversi, R., Yttri, K.\u00a0E., Schmale, J.,\nPr\u00e9v\u00f4t, A. S.\u00a0H., Baltensperger, U., and Haddad, I.\u00a0E.: Equal\nabundance of summertime natural and wintertime anthropogenic Arctic organic\naerosols, Nat. Geosci., 15, 196\u2013202, https:\/\/doi.org\/10.1038\/s41561-021-00891-1,\n2022.\u2002a","DOI":"10.1038\/s41561-021-00891-1"},{"key":"ref57","unstructured":"Moser, M. and Voigt, C.: DLR in-situ cloud measurements during AFLUX Arctic\nairborne campaign, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.940564, 2022.\u2002a, b"},{"key":"ref58","unstructured":"Moser, M., Voigt, C., and Hahn, V.: DLR in-situ cloud measurements during\nMOSAiC-ACA Arctic airborne campaign, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.940557, 2022.\u2002a, b"},{"key":"ref59","doi-asserted-by":"crossref","unstructured":"Naud, C.\u00a0M., Booth, J.\u00a0F., and Genio, A. D.\u00a0D.: Evaluation of ERA-Interim and\nMERRA Cloudiness in the Southern Ocean, J. Climate, 27, 2109\u20132124,\nhttps:\/\/doi.org\/10.1175\/jcli-d-13-00432.1, 2014.\u2002a","DOI":"10.1175\/JCLI-D-13-00432.1"},{"key":"ref60","doi-asserted-by":"crossref","unstructured":"Nomokonova, T., Ebell, K., L\u00f6hnert, U., Maturilli, M., Ritter, C., and O'Connor, E.: Statistics on clouds and their relation to thermodynamic conditions at Ny-\u00c5lesund using ground-based sensor synergy, Atmos. Chem. Phys., 19, 4105\u20134126, https:\/\/doi.org\/10.5194\/acp-19-4105-2019, 2019.\u2002a","DOI":"10.5194\/acp-19-4105-2019"},{"key":"ref61","doi-asserted-by":"crossref","unstructured":"Porter, G. C.\u00a0E., Adams, M.\u00a0P., Brooks, I.\u00a0M., Ickes, L., Karlsson, L., Leck,\nC., Salter, M.\u00a0E., Schmale, J., Siegel, K., Sikora, S. N.\u00a0F., Tarn, M.\u00a0D.,\nV\u00fcllers, J., Wernli, H., Zieger, P., Zinke, J., and Murray, B.\u00a0J.: Highly\nActive Ice-Nucleating Particles at the Summer North Pole, J.\nGeophys. Res.-Atmos., 127, e2021JD036059, https:\/\/doi.org\/10.1029\/2021jd036059, 2022.\u2002a","DOI":"10.1029\/2021JD036059"},{"key":"ref62","unstructured":"Risse, N., Marrollo, G., Paul, D., and Mech, M.: Ac3airborne \u2013\nFlight-Phase-Separation, Zenodo [code], https:\/\/doi.org\/10.5281\/zenodo.7305558, 2022.\u2002a"},{"key":"ref63","doi-asserted-by":"crossref","unstructured":"Rolph, G., Stein, A., and Stunder, B.: Real-time environmental applications and\ndisplay sYstem: READY, Environ. Model. Softw., 95, 210\u2013228, 2017.\u2002a","DOI":"10.1016\/j.envsoft.2017.06.025"},{"key":"ref64","doi-asserted-by":"crossref","unstructured":"Ruiz-Donoso, E., Ehrlich, A., Sch\u00e4fer, M., J\u00e4kel, E., Schemann, V., Crewell, S., Mech, M., Kulla, B. S., Kliesch, L.-L., Neuber, R., and Wendisch, M.: Small-scale structure of thermodynamic phase in Arctic mixed-phase clouds observed by airborne remote sensing during a cold air outbreak and a warm air advection event, Atmos. Chem. Phys., 20, 5487\u20135511, https:\/\/doi.org\/10.5194\/acp-20-5487-2020, 2020.\u2002a","DOI":"10.5194\/acp-20-5487-2020"},{"key":"ref65","doi-asserted-by":"crossref","unstructured":"Schmale, J., Zieger, P., and Ekman, A. M.\u00a0L.: Aerosols in current and future\nArctic climate, Nat. Clim. Change, 11, 95\u2013105,\nhttps:\/\/doi.org\/10.1038\/s41558-020-00969-5, 2021.\u2002a","DOI":"10.1038\/s41558-020-00969-5"},{"key":"ref66","doi-asserted-by":"crossref","unstructured":"Schumann, U., Mayer, B., Gierens, K., Unterstrasser, S., Jessberger, P.,\nPetzold, A., Voigt, C., and Gayet, J.-F.: Effective Radius of Ice Particles\nin Cirrus and Contrails, J. Atmos. Sci., 68, 300\u2013321,\nhttps:\/\/doi.org\/10.1175\/2010jas3562.1, 2011.\u2002a","DOI":"10.1175\/2010JAS3562.1"},{"key":"ref67","doi-asserted-by":"crossref","unstructured":"Seguin, A.\u00a0M., Norman, A.-L., and Barrie, L.: Evidence of sea ice source in\naerosol sulfate loading and size distribution in the Canadian High Arctic\nfrom isotopic analysis, J. Geophys. Res.-Atmos., 119,\n1087\u20131096, https:\/\/doi.org\/10.1002\/2013jd020461, 2014.\u2002a","DOI":"10.1002\/2013JD020461"},{"key":"ref68","doi-asserted-by":"crossref","unstructured":"Serreze, M.\u00a0C. and Francis, J.\u00a0A.: The Arctic Amplification Debate, Climatic\nChange, 76, 241\u2013264, https:\/\/doi.org\/10.1007\/s10584-005-9017-y, 2006.\u2002a","DOI":"10.1007\/s10584-005-9017-y"},{"key":"ref69","doi-asserted-by":"crossref","unstructured":"Shcherbakov, V., Gayet, J.-F., Baker, B., and Lawson, P.: Light Scattering by\nSingle Natural Ice Crystals, J. Atmos. Sci., 63,\n1513\u20131525, https:\/\/doi.org\/10.1175\/JAS3690.1, 2006.\u2002a","DOI":"10.1175\/JAS3690.1"},{"key":"ref70","doi-asserted-by":"crossref","unstructured":"Shupe, M.\u00a0D., Matrosov, S.\u00a0Y., and Uttal, T.: Arctic Mixed-Phase Cloud\nProperties Derived from Surface-Based Sensors at SHEBA, J.\nAtmos. Sci., 63, 697\u2013711, https:\/\/doi.org\/10.1175\/JAS3659.1, 2006.\u2002a","DOI":"10.1175\/JAS3659.1"},{"key":"ref71","doi-asserted-by":"crossref","unstructured":"Shupe, M.\u00a0D., Rex, M., Blomquist, B., Persson, P. O.\u00a0G., Schmale, J., Uttal,\nT., Althausen, D., Angot, H., Archer, S., Bariteau, L., Beck, I., Bilberry,\nJ., Bucci, S., Buck, C., Boyer, M., Brasseur, Z., Brooks, I.\u00a0M., Calmer, R.,\nCassano, J., Castro, V., Chu, D., Costa, D., Cox, C.\u00a0J., Creamean, J.,\nCrewell, S., Dahlke, S., Damm, E., de\u00a0Boer, G., Deckelmann, H., Dethloff, K.,\nD\u00fctsch, M., Ebell, K., Ehrlich, A., Ellis, J., Engelmann, R., Fong,\nA.\u00a0A., Frey, M.\u00a0M., Gallagher, M.\u00a0R., Ganzeveld, L., Gradinger, R., Graeser,\nJ., Greenamyer, V., Griesche, H., Griffiths, S., Hamilton, J., Heinemann, G.,\nHelmig, D., Herber, A., Heuz\u00e9, C., Hofer, J., Houchens, T., Howard, D.,\nInoue, J., Jacobi, H.-W., Jaiser, R., Jokinen, T., Jourdan, O., Jozef, G.,\nKing, W., Kirchgaessner, A., Klingebiel, M., Krassovski, M., Krumpen, T.,\nLampert, A., Landing, W., Laurila, T., Lawrence, D., Lonardi, M., Loose, B.,\nL\u00fcpkes, C., Maahn, M., Macke, A., Maslowski, W., Marsay, C., Maturilli,\nM., Mech, M., Morris, S., Moser, M., Nicolaus, M., Ortega, P., Osborn, J.,\nP\u00e4tzold, F., Perovich, D.\u00a0K., Pet\u00e4j\u00e4, T., Pilz, C., Pirazzini,\nR., Posman, K., Powers, H., Pratt, K.\u00a0A., Preu\u00dfer, A.,\nQu\u00e9l\u00e9ver, L., Radenz, M., Rabe, B., Rinke, A., Sachs, T., Schulz,\nA., Siebert, H., Silva, T., Solomon, A., Sommerfeld, A., Spreen, G.,\nStephens, M., Stohl, A., Svensson, G., Uin, J., Viegas, J., Voigt, C.,\nvon\u00a0der Gathen, P., Wehner, B., Welker, J.\u00a0M., Wendisch, M., Werner, M., Xie,\nZ., and Yue, F.: Overview of the MOSAiC expedition\u2013Atmosphere,\nElementa, 10, 00060, https:\/\/doi.org\/10.1525\/elementa.2021.00060,\n2022.\u2002a, b","DOI":"10.1525\/elementa.2021.00060"},{"key":"ref72","doi-asserted-by":"crossref","unstructured":"Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using\nAMSR-E 89-GHz channels, J. Geophys. Res., 113, C02S03,\nhttps:\/\/doi.org\/10.1029\/2005jc003384, 2008.\u2002a","DOI":"10.1029\/2005JC003384"},{"key":"ref73","doi-asserted-by":"crossref","unstructured":"Stapf, J., Ehrlich, A., J\u00e4kel, E., L\u00fcpkes, C., and Wendisch, M.: Reassessment of shortwave surface cloud radiative forcing in the Arctic: consideration of surface-albedo\u2013cloud interactions, Atmos. Chem. Phys., 20, 9895\u20139914, https:\/\/doi.org\/10.5194\/acp-20-9895-2020, 2020.\u2002a","DOI":"10.5194\/acp-20-9895-2020"},{"key":"ref74","doi-asserted-by":"crossref","unstructured":"Stein, A.\u00a0F., Draxler, R.\u00a0R., Rolph, G.\u00a0D., Stunder, B. J.\u00a0B., Cohen, M.\u00a0D.,\nand Ngan, F.: NOAA's HYSPLIT atmospheric transport and dispersion\nmodeling system, B. Am. Meteorol. Soc., 96, 2059\u20132077, 2015.\u2002a","DOI":"10.1175\/BAMS-D-14-00110.1"},{"key":"ref75","doi-asserted-by":"crossref","unstructured":"Tan, I. and Storelvmo, T.: Evidence of Strong Contributions From Mixed-Phase\nClouds to Arctic Climate Change, Geophys. Res. Lett., 46,\n2894\u20132902, https:\/\/doi.org\/10.1029\/2018gl081871, 2019.\u2002a","DOI":"10.1029\/2018GL081871"},{"key":"ref76","doi-asserted-by":"crossref","unstructured":"Vihma, T., Pirazzini, R., Fer, I., Renfrew, I. A., Sedlar, J., Tjernstr\u00f6m, M., L\u00fcpkes, C., Nyg\u00e5rd, T., Notz, D., Weiss, J., Marsan, D., Cheng, B., Birnbaum, G., Gerland, S., Chechin, D., and Gascard, J. C.: Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: a review, Atmos. Chem. Phys., 14, 9403\u20139450, https:\/\/doi.org\/10.5194\/acp-14-9403-2014, 2014.\u2002a","DOI":"10.5194\/acp-14-9403-2014"},{"key":"ref77","doi-asserted-by":"crossref","unstructured":"Voigt, C., Schumann, U., Minikin, A., Abdelmonem, A., Afchine, A., Borrmann,\nS., Boettcher, M., Buchholz, B., Bugliaro, L., Costa, A., Curtius, J.,\nDollner, M., D\u00f6rnbrack, A., Dreiling, V., Ebert, V., Ehrlich, A., Fix,\nA., Forster, L., Frank, F., F\u00fctterer, D., Giez, A., Graf, K., Groo\u00df,\nJ.-U., Gro\u00df, S., Heimerl, K., Heinold, B., H\u00fcneke, T., J\u00e4rvinen,\nE., Jurkat, T., Kaufmann, S., Kenntner, M., Klingebiel, M., Klimach, T.,\nKohl, R., Kr\u00e4mer, M., Krisna, T.\u00a0C., Luebke, A., Mayer, B., Mertes, S.,\nMolleker, S., Petzold, A., Pfeilsticker, K., Port, M., Rapp, M., Reutter, P.,\nRolf, C., Rose, D., Sauer, D., Sch\u00e4fler, A., Schlage, R., Schnaiter, M.,\nSchneider, J., Spelten, N., Spichtinger, P., Stock, P., Walser, A., Weigel,\nR., Weinzierl, B., Wendisch, M., Werner, F., Wernli, H., Wirth, M., Zahn, A.,\nZiereis, H., and Z\u00f6ger, M.: ML-CIRRUS: The Airborne Experiment on\nNatural Cirrus and Contrail Cirrus with the High-Altitude Long-Range Research\nAircraft HALO, B. Am. Meteorol. Soc., 98,\n271\u2013288, https:\/\/doi.org\/10.1175\/bams-d-15-00213.1, 2017.\u2002a","DOI":"10.1175\/BAMS-D-15-00213.1"},{"key":"ref78","doi-asserted-by":"crossref","unstructured":"Voigt, C., Kleine, J., Sauer, D., Moore, R.\u00a0H., Br\u00e4uer, T., Clercq, P.\u00a0L.,\nKaufmann, S., Scheibe, M., Jurkat-Witschas, T., Aigner, M., Bauder, U.,\nBoose, Y., Borrmann, S., Crosbie, E., Diskin, G.\u00a0S., DiGangi, J., Hahn, V.,\nHeckl, C., Huber, F., Nowak, J.\u00a0B., Rapp, M., Rauch, B., Robinson, C.,\nSchripp, T., Shook, M., Winstead, E., Ziemba, L., Schlager, H., and Anderson,\nB.\u00a0E.: Cleaner burning aviation fuels can reduce contrail cloudiness,\nCommunications Earth &amp; Environment, 2, 114,\nhttps:\/\/doi.org\/10.1038\/s43247-021-00174-y, 2021.\u2002a","DOI":"10.1038\/s43247-021-00174-y"},{"key":"ref79","doi-asserted-by":"crossref","unstructured":"Wegener, A.: Thermodynamik der Atmosph\u00e4re, Nature, 90, 31\u201331,\nhttps:\/\/doi.org\/10.1038\/090031a0, 1912.\u2002a","DOI":"10.1038\/090031a0"},{"key":"ref80","doi-asserted-by":"crossref","unstructured":"Wendisch, M. and Brenguier, J.: Airborne Measurements for Environmental\nResearch \u2013 Methods and Instruments, Wiley\u2013VCH Verlag\nGmbH &amp; Co. KGaA, Weinheim, Germany, Weinheim, Germany, https:\/\/doi.org\/10.1002\/9783527653218, 2013.\u2002a","DOI":"10.1002\/9783527653218"},{"key":"ref81","doi-asserted-by":"crossref","unstructured":"Wendisch, M., Keil, A., and Korolev, A.\u00a0V.: FSSP Characterization with\nMonodisperse Water Droplets, J. Atmos. Ocean. Tech.,\n13, 1152\u20131165, https:\/\/doi.org\/10.1175\/1520-0426(1996)013&lt;1152:fcwmwd&gt;2.0.co;2, 1996.\u2002a","DOI":"10.1175\/1520-0426(1996)013<1152:FCWMWD>2.0.CO;2"},{"key":"ref82","doi-asserted-by":"crossref","unstructured":"Wendisch, M., Br\u00fcckner, M., Burrows, J., Crewell, S., Dethloff, K., Ebell,\nK., L\u00fcpkes, C., Macke, A., Notholt, J., Quaas, J., Rinke, A., and Tegen,\nI.: Understanding Causes and Effects of Rapid Warming in the Arctic, EOS,\n98, 22-26, https:\/\/doi.org\/10.1029\/2017eo064803, 2017.\u2002a","DOI":"10.1029\/2017EO064803"},{"key":"ref83","doi-asserted-by":"crossref","unstructured":"Wendisch, M., Macke, A., Ehrlich, A., L\u00fcpkes, C., Mech, M., Chechin, D.,\nDethloff, K., Velasco, C.\u00a0B., Bozem, H., Br\u00fcckner, M., Clemen, H.-C.,\nCrewell, S., Donth, T., Dupuy, R., Ebell, K., Egerer, U., Engelmann, R.,\nEngler, C., Eppers, O., Gehrmann, M., Gong, X., Gottschalk, M., Gourbeyre,\nC., Griesche, H., Hartmann, J., Hartmann, M., Heinold, B., Herber, A.,\nHerrmann, H., Heygster, G., Hoor, P., Jafariserajehlou, S., J\u00e4kel, E.,\nJ\u00e4rvinen, E., Jourdan, O., K\u00e4stner, U., Kecorius, S., Knudsen, E.\u00a0M.,\nK\u00f6llner, F., Kretzschmar, J., Lelli, L., Leroy, D., Maturilli, M., Mei,\nL., Mertes, S., Mioche, G., Neuber, R., Nicolaus, M., Nomokonova, T.,\nNotholt, J., Palm, M., van Pinxteren, M., Quaas, J., Richter, P.,\nRuiz-Donoso, E., Sch\u00e4fer, M., Schmieder, K., Schnaiter, M., Schneider,\nJ., Schwarzenb\u00f6ck, A., Seifert, P., Shupe, M.\u00a0D., Siebert, H., Spreen,\nG., Stapf, J., Stratmann, F., Vogl, T., Welti, A., Wex, H., Wiedensohler, A.,\nZanatta, M., and Zeppenfeld, S.: The Arctic Cloud Puzzle: Using\nACLOUD\/PASCAL Multiplatform Observations to Unravel the Role of Clouds\nand Aerosol Particles in Arctic Amplification, B. Am.\nMeteorol. Soc., 100, 841\u2013871, https:\/\/doi.org\/10.1175\/bams-d-18-0072.1, 2019.\u2002a, b","DOI":"10.1175\/BAMS-D-18-0072.1"},{"key":"ref84","doi-asserted-by":"crossref","unstructured":"Wendisch, M., Br\u00fcckner, M., Crewell, S., Ehrlich, A., Notholt, J.,\nL\u00fcpkes, C., Macke, A., Burrows, J.\u00a0P., Rinke, A., Quaas, J., Maturilli,\nM., Schemann, V., Shupe, M.\u00a0D., Akansu, E.\u00a0F., Barrientos-Velasco, C.,\nB\u00e4rfuss, K., Blechschmidt, A.-M., Block, K., Bougoudis, I., Bozem, H.,\nB\u00f6ckmann, C., Bracher, A., Bresson, H., Bretschneider, L., Buschmann, M.,\nChechin, D.\u00a0G., Chylik, J., Dahlke, S., Deneke, H., Dethloff, K., Donth, T.,\nDorn, W., Dupuy, R., Ebell, K., Egerer, U., Engelmann, R., Eppers, O.,\nGerdes, R., Gierens, R., Gorodetskaya, I.\u00a0V., Gottschalk, M., Griesche, H.,\nGryanik, V.\u00a0M., Handorf, D., Harm-Altst\u00e4dter, B., Hartmann, J., Hartmann,\nM., Heinold, B., Herber, A., Herrmann, H., Heygster, G., H\u00f6schel, I.,\nHofmann, Z., H\u00f6lemann, J., H\u00fcnerbein, A., Jafariserajehlou, S.,\nJ\u00e4kel, E., Jacobi, C., Janout, M., Jansen, F., Jourdan, O.,\nJur\u00e1nyi, Z., Kalesse-Los, H., Kanzow, T., K\u00e4thner, R., Kliesch,\nL.\u00a0L., Klingebiel, M., Knudsen, E.\u00a0M., Kov\u00e1cs, T., K\u00f6rtke, W.,\nKrampe, D., Kretzschmar, J., Kreyling, D., Kulla, B., Kunkel, D., Lampert,\nA., Lauer, M., Lelli, L., von Lerber, A., Linke, O., L\u00f6hnert, U.,\nLonardi, M., Losa, S.\u00a0N., Losch, M., Maahn, M., Mech, M., Mei, L., Mertes,\nS., Metzner, E., Mewes, D., Michaelis, J., Mioche, G., Moser, M., Nakoudi,\nK., Neggers, R., Neuber, R., Nomokonova, T., Oelker, J.,\nPapakonstantinou-Presvelou, I., P\u00e4tzold, F., Pefanis, V., Pohl, C., van\nPinxteren, M., Radovan, A., Rhein, M., Rex, M., Richter, A., Risse, N.,\nRitter, C., Rostosky, P., Rozanov, V.\u00a0V., Donoso, E.\u00a0R., Saavedra-Garfias,\nP., Salzmann, M., Schacht, J., Sch\u00e4fer, M., Schneider, J., Schnierstein,\nN., Seifert, P., Seo, S., Siebert, H., Soppa, M.\u00a0A., Spreen, G., Stachlewska,\nI.\u00a0S., Stapf, J., Stratmann, F., Tegen, I., Viceto, C., Voigt, C., Vountas,\nM., Walbr\u00f6l, A., Walter, M., Wehner, B., Wex, H., Willmes, S., Zanatta,\nM., and Zeppenfeld, S.: Atmospheric and Surface Processes, and Feedback\nMechanisms Determining Arctic Amplification: A Review of First Results and\nProspects of the (AC)3 Project, B. Am. Meteorol.\nSoc., 104, E208\u2013E242, https:\/\/doi.org\/10.1175\/bams-d-21-0218.1, 2022.\u2002a, b, c","DOI":"10.1175\/BAMS-D-21-0218.1"},{"key":"ref85","doi-asserted-by":"crossref","unstructured":"Wesche, C., Steinhage, D., and Nixdorf, U.: Polar aircraft Polar5 and Polar6\noperated by the Alfred Wegener Institute, Journal of large-scale research\nfacilities, 2, A87, https:\/\/doi.org\/10.17815\/jlsrf-2-153, 2016.\u2002a","DOI":"10.17815\/jlsrf-2-153"},{"key":"ref86","doi-asserted-by":"crossref","unstructured":"Willis, M.\u00a0D., Leaitch, W.\u00a0R., and Abbatt, J.\u00a0P.: Processes Controlling the\nComposition and Abundance of Arctic Aerosol, Rev. Geophys., 56,\n621\u2013671, https:\/\/doi.org\/10.1029\/2018rg000602, 2018.\u2002a","DOI":"10.1029\/2018RG000602"},{"key":"ref87","doi-asserted-by":"crossref","unstructured":"Xu, L., Russell, L.\u00a0M., and Burrows, S.\u00a0M.: Potential sea salt aerosol sources\nfrom frost flowers in the pan-Arctic region, J. Geophys. Res., 121,\n10840\u201310856, 2016.\u2002a","DOI":"10.1002\/2015JD024713"},{"key":"ref88","doi-asserted-by":"crossref","unstructured":"Yang, C.\u00a0A., Diao, M., Gettelman, A., Zhang, K., Sun, J., McFarquhar, G., and\nWu, W.: Ice and Supercooled Liquid Water Distributions Over the Southern\nOcean Based on In Situ Observations and Climate Model Simulations, J.\nGeophys. Res.-Atmos., 126, e2021JD036045, https:\/\/doi.org\/10.1029\/2021jd036045, 2021.\u2002a","DOI":"10.1029\/2021JD036045"},{"key":"ref89","doi-asserted-by":"crossref","unstructured":"Yang, X., Pyle, J.\u00a0A., and Cox, R.\u00a0A.: Sea salt aerosol production and bromine\nrelease: Role of snow on sea ice, Geophys. Res. Lett., 35, L16815,\nhttps:\/\/doi.org\/10.1029\/2008gl034536, 2008.\u2002a","DOI":"10.1029\/2008GL034536"},{"key":"ref90","doi-asserted-by":"crossref","unstructured":"Young, G., Jones, H. M., Choularton, T. W., Crosier, J., Bower, K. N., Gallagher, M. W., Davies, R. S., Renfrew, I. A., Elvidge, A. D., Darbyshire, E<span id="page7280"\/>., Marenco, F., Brown, P. R. A., Ricketts, H. M. A., Connolly, P. J., Lloyd, G., Williams, P. I., Allan, J. D., Taylor, J. W., Liu, D., and Flynn, M. J.: Observed microphysical changes in Arctic mixed-phase clouds when transitioning from sea ice to open ocean, Atmos. Chem. Phys., 16, 13945\u201313967, https:\/\/doi.org\/10.5194\/acp-16-13945-2016, 2016.\u2002a, b, c","DOI":"10.5194\/acp-16-13945-2016"}],"container-title":["Atmospheric Chemistry and Physics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/acp.copernicus.org\/articles\/23\/7257\/2023\/acp-23-7257-2023.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,7,3]],"date-time":"2023-07-03T05:58:58Z","timestamp":1688363938000},"score":1,"resource":{"primary":{"URL":"https:\/\/acp.copernicus.org\/articles\/23\/7257\/2023\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,7,3]]},"references-count":90,"journal-issue":{"issue":"13","published-online":{"date-parts":[[2023]]}},"URL":"http:\/\/dx.doi.org\/10.5194\/acp-23-7257-2023","relation":{"has-preprint":[{"id-type":"doi","id":"10.5194\/acp-2023-44","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2023-44","asserted-by":"object"}],"has-review":[{"id-type":"doi","id":"10.5194\/acp-2023-44-RC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2023-44-AC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2023-44-RC2","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2023-44-AC2","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2023-44-AC1","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/acp-2023-44-AC2","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/acp-2023-44-RC1","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/acp-2023-44-RC2","asserted-by":"object"}],"is-part-of":[{"id-type":"doi","id":"10.1594\/PANGAEA.940564","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.940557","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.941498","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.941538","asserted-by":"subject"},{"id-type":"doi","id":"10.5281\/zenodo.7305586","asserted-by":"subject"},{"id-type":"doi","id":"10.5281\/zenodo.7305559","asserted-by":"subject"}]},"ISSN":["1680-7324"],"issn-type":[{"value":"1680-7324","type":"electronic"}],"subject":["Atmospheric Science"],"published":{"date-parts":[[2023,7,3]]}}} |