uni-leipzig-open-access/json/acp-23-4685-2023
2024-01-25 14:46:53 +01:00

1 line
No EOL
34 KiB
Text

{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T11:32:21Z","timestamp":1701430341634},"reference-count":75,"publisher":"Copernicus GmbH","issue":"8","license":[{"start":{"date-parts":[[2023,4,20]],"date-time":"2023-04-20T00:00:00Z","timestamp":1681948800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","award":["SFB\/TRR-172 (Project-ID 268020496)"]},{"DOI":"10.13039\/501100006769","name":"Russian Science Foundation","doi-asserted-by":"publisher","award":["18-77-10072-P"]},{"DOI":"10.13039\/501100003443","name":"Ministry of Education and Science of the Russian Federation","doi-asserted-by":"publisher","award":["075-15-2022-284"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Atmos. Chem. Phys."],"abstract":"<jats:p>Abstract. Clouds are assumed to play an important role in the Arctic amplification process. This motivated a detailed investigation of cloud processes, including radiative and turbulent fluxes. Data from the aircraft campaign ACLOUD were analyzed with a focus on the mean and turbulent structure of the cloudy boundary layer over the Fram Strait marginal sea ice zone in late spring and early summer 2017. Vertical profiles of turbulence moments are presented from contrasting atmospheric boundary layers (ABLs) from 4\u2009d. They differ by the magnitude of wind speed, boundary-layer height, stability, the strength of the cloud-top radiative cooling and the number of cloud layers. Turbulence statistics up to third-order moments are presented, which were obtained from horizontal-level flights and from slanted profiles. It is shown that both of these flight patterns complement each other and form a data set that resolves the vertical structure of the ABL turbulence well. The comparison of the 4\u2009d shows that especially during weak wind, even in shallow Arctic ABLs with mixing ratios below 3\u2009g\u2009kg\u22121, cloud-top cooling can serve as a main source of turbulent kinetic energy (TKE). Well-mixed ABLs are generated where TKE is increased and vertical velocity variance shows pronounced maxima in the cloud layer. Negative vertical velocity skewness points then to upside-down convection. Turbulent heat fluxes are directed upward in the cloud layer as a result of cold downdrafts. In two cases with single-layer stratocumulus, turbulent transport of heat flux and of temperature variance are both negative in the cloud layer, suggesting an important role of large eddies. In contrast, in a case with weak cloud-top cooling, these quantities are positive in the ABL due to the heating from the surface. Based on observations and results of a mixed-layer model it is shown that the maxima of turbulent fluxes are, however, smaller than the jump of the net terrestrial radiation flux across the upper part of a cloud due to the (i)\u00a0shallowness of the mixed layer and (ii)\u00a0the presence of a downward entrainment heat flux. The mixed-layer model also shows that the buoyancy production of TKE is substantially smaller in stratocumulus over the Arctic sea ice compared to subtropics due to a smaller surface moisture flux and smaller decrease in specific humidity (or even humidity inversions) right above the cloud top. In a case of strong wind, wind shear shapes the ABL turbulent structure, especially over rough sea ice, despite the presence of a strong cloud-top cooling. In the presence of mid-level clouds, cloud-top radiative cooling and thus also TKE in the lowermost cloud layer are strongly reduced, and the ABL turbulent structure becomes governed by stability, i.e., by the surface\u2013air temperature difference and wind speed. A comparison of slightly unstable and weakly stable cases shows a strong reduction of TKE due to increased stability even though the absolute value of wind speed was similar. In summary, the presented study documents vertical profiles of the ABL turbulence with a high resolution in a wide range of conditions. It can serve as a basis for turbulence closure evaluation and process studies in Arctic clouds.\n <\/jats:p>","DOI":"10.5194\/acp-23-4685-2023","type":"journal-article","created":{"date-parts":[[2023,4,20]],"date-time":"2023-04-20T11:00:40Z","timestamp":1681988440000},"page":"4685-4707","source":"Crossref","is-referenced-by-count":4,"title":["Turbulent structure of the Arctic boundary layer in early summer driven by stability, wind shear and cloud-top radiative cooling: ACLOUD airborne observations"],"prefix":"10.5194","volume":"23","author":[{"given":"Dmitry G.","family":"Chechin","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6518-0717","authenticated-orcid":false,"given":"Christof","family":"L\u00fcpkes","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5204-4652","authenticated-orcid":false,"given":"J\u00f6rg","family":"Hartmann","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0860-8216","authenticated-orcid":false,"given":"Andr\u00e9","family":"Ehrlich","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4652-5561","authenticated-orcid":false,"given":"Manfred","family":"Wendisch","sequence":"additional","affiliation":[]}],"member":"3145","published-online":{"date-parts":[[2023,4,20]]},"reference":[{"key":"ref1","doi-asserted-by":"crossref","unstructured":"Albrecht, B.\u00a0A., Cox, S.\u00a0K., and Schubert, W.\u00a0H.: Radiometric measurements of in-cloud temperature fluctuations,\nJ. Appl. Meteorol. Clim., 18, 1066\u20131071, 1979.\u2002a","DOI":"10.1175\/1520-0450(1979)018<1066:RMOICT>2.0.CO;2"},{"key":"ref2","doi-asserted-by":"crossref","unstructured":"Aliabadi, A.\u00a0A., Staebler, R.\u00a0M., Liu, M., and Herber, A.: Characterization and Parametrization of Reynolds Stress and Turbulent Heat Flux in the\nStably-Stratified Lower Arctic Troposphere Using Aircraft Measurements,\nBound.-Lay. Meteorol., 161, 99\u2013126, https:\/\/doi.org\/10.1007\/s10546-016-0164-7,\n2016.\u2002a","DOI":"10.1007\/s10546-016-0164-7"},{"key":"ref3","doi-asserted-by":"crossref","unstructured":"Brooks, I.\u00a0M., Tjernstr\u00f6m, M., Persson, P. O.\u00a0G., Shupe, M.\u00a0D., Atkinson, R.\u00a0A., Canut, G., Birch, C.\u00a0E., Mauritsen, T., Sedlar, J., and Brooks, B.\u00a0J.: The Turbulent Structure of the Arctic Summer Boundary Layer During The Arctic Summer Cloud-Ocean Study, J. Geophys. Res.-Atmos., 122,\n9685\u20139704, https:\/\/doi.org\/10.1002\/2017JD027234, 2017.\u2002a","DOI":"10.1002\/2017JD027234"},{"key":"ref4","doi-asserted-by":"crossref","unstructured":"Br\u00fcmmer, B., Busack, B., Hoeber, H., and Kruspe, G.: Boundary-layer\nobservations over water and Arctic sea-ice during on-ice air flow,\nBound.-Lay. Meteorol., 68, 75\u2013108, 1994.\u2002a, b","DOI":"10.1007\/BF00712665"},{"key":"ref5","doi-asserted-by":"crossref","unstructured":"Caughey, S.\u00a0J., Crease, B.\u00a0A., and Roach, W.\u00a0T.: A field study of nocturnal stratocumulus\u00a0II Turbulence structure and entrainment, Q. J. Roy. Meteor. Soc., 108, 125\u2013144, https:\/\/doi.org\/10.1002\/qj.49710845508, 1982.\u2002a","DOI":"10.1002\/qj.49710845508"},{"key":"ref6","unstructured":"Chechin, D.: Liquid water content measured by the Nevzorov probe during the aircraft ACLOUD campaign in the Arctic, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.906658, 2019.\u2002a"},{"key":"ref7","doi-asserted-by":"crossref","unstructured":"Chechin, D.\u00a0G. and L\u00fcpkes, C.: Boundary-Layer Development and Low-level\nBaroclinicity during High-Latitude Cold-Air Outbreaks: A Simple Model,\nBound.-Lay. Meteorol., 162, 91\u2013116, https:\/\/doi.org\/10.1007\/s10546-016-0193-2,\n2017.\u2002a","DOI":"10.1007\/s10546-016-0193-2"},{"key":"ref8","unstructured":"Copernicus Climate Change Service: ECMWF ERA5, Copernicus Climate Change Service [data set], https:\/\/www.ecmwf.int\/en\/forecasts\/dataset\/ecmwf-reanalysis-v5, last access: 20\u00a0December 2021.\u2002a"},{"key":"ref9","doi-asserted-by":"crossref","unstructured":"Curry, J.\u00a0A.: Interactions among turbulence, radiation and microphysics in\nArctic stratus clouds, J. Atmos. Sci., 43, 90\u2013106,\n1986.\u2002a, b, c, d, e, f, g, h, i, j, k","DOI":"10.1175\/1520-0469(1986)043<0090:IATRAM>2.0.CO;2"},{"key":"ref10","doi-asserted-by":"crossref","unstructured":"Curry, J.\u00a0A., Ebert, E.\u00a0E., and Herman, G.\u00a0F.: Mean and turbulence structure of the summertime Arctic cloudy boundary layer, Q. J. Roy. Meteor. Soc., 114, 715\u2013746, https:\/\/doi.org\/10.1002\/qj.49711448109, 1988.\u2002a, b, c, d, e, f, g, h","DOI":"10.1002\/qj.49711448109"},{"key":"ref11","doi-asserted-by":"crossref","unstructured":"Curry, J.\u00a0A., Schramm, J.\u00a0L., Rossow, W.\u00a0B., and Randall, D.: Overview of\nArctic Cloud and Radiation Characteristics, J. Climate, 9,\n1731\u20131764, https:\/\/doi.org\/10.1175\/1520-0442(1996)009&amp;lt;1731:OOACAR&amp;gt;2.0.CO;2, 1996.\u2002a, b","DOI":"10.1175\/1520-0442(1996)009<1731:OOACAR>2.0.CO;2"},{"key":"ref12","doi-asserted-by":"crossref","unstructured":"Deardorff, J.\u00a0W.: Usefulness of Liquid-Water Potential Temperature in a\nShallow-Cloud Model, J. Appl. Meteorol., 15, 98\u2013102,\nhttps:\/\/doi.org\/10.1175\/1520-0450(1976)015&amp;lt;0098:UOLWPT&amp;gt;2.0.CO;2, 1976.\u2002a","DOI":"10.1175\/1520-0450(1976)015<0098:UOLWPT>2.0.CO;2"},{"key":"ref13","doi-asserted-by":"crossref","unstructured":"Deardorff, J.\u00a0W.: Stratocumulus-capped mixed layers derived from a\nthree-dimensional model, Bound.-Lay. Meteorol., 18, 495\u2013527, 1980.\u2002a, b","DOI":"10.1007\/BF00119502"},{"key":"ref14","doi-asserted-by":"crossref","unstructured":"Duynkerke, P. G., de Roode, S. R., van Zanten, M. C., Calvo, J., Cuxart, J., Cheinet, S., Chlond, A., Grenier, H., Jonker, P. J., K\u00f6hler, M., Lenderink, G., Lewellen, D., Lappen, C.-L., Lock, A. P., Moeng, C.-H., M\u00fcller, F., Olmeda, D., Piriou, J.-M., S\u00e1nchez, E., and Sednev, I.: Observations and numerical simulations of the diurnal cycle of the EUROCS stratocumulus case, Q. J. Roy. Meteor. Soc., 130, 3269\u20133296, 2004.\u2002a","DOI":"10.1256\/qj.03.139"},{"key":"ref15","doi-asserted-by":"crossref","unstructured":"Egerer, U., Gottschalk, M., Siebert, H., Ehrlich, A., and Wendisch, M.: The new BELUGA setup for collocated turbulence and radiation measurements using a tethered balloon: first applications in the cloudy Arctic boundary layer, Atmos. Meas. Tech., 12, 4019\u20134038, https:\/\/doi.org\/10.5194\/amt-12-4019-2019, 2019.\u2002a","DOI":"10.5194\/amt-12-4019-2019"},{"key":"ref16","doi-asserted-by":"crossref","unstructured":"Egerer, U., Ehrlich, A., Gottschalk, M., Griesche, H., Neggers, R. A. J., Siebert, H., and Wendisch, M.: Case study of a humidity layer above Arctic stratocumulus and potential turbulent coupling with the cloud top, Atmos. Chem. Phys., 21, 6347\u20136364, https:\/\/doi.org\/10.5194\/acp-21-6347-2021, 2021.\u2002a","DOI":"10.5194\/acp-21-6347-2021"},{"key":"ref17","doi-asserted-by":"crossref","unstructured":"Ehrlich, A., Wendisch, M., L\u00fcpkes, C., Buschmann, M., Bozem, H., Chechin, D., Clemen, H.-C., Dupuy, R., Eppers, O., Hartmann, J., Herber, A., J\u00e4kel, E., J\u00e4rvinen, E., Jourdan, O., K\u00e4stner, U., Kliesch, L.-L., K\u00f6llner, F., Mech, M., Mertes, S., Neuber, R., Ruiz-Donoso, E., Schnaiter, M., Schneider, J., Stapf, J., and Zanatta, M.: A comprehensive in situ and remote sensing- data set from the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign, Earth Syst. Sci. Data, 11, 1853\u20131881, https:\/\/doi.org\/10.5194\/essd-11-1853-2019, 2019.\u2002a, b, c","DOI":"10.5194\/essd-11-1853-2019"},{"key":"ref18","doi-asserted-by":"crossref","unstructured":"Fedorovich, E. and Conzemius, R.: Effects of wind shear on the atmospheric convective boundary layer structure and evolution, Acta Geophys., 56, 114\u2013141, https:\/\/doi.org\/10.2478\/s11600-007-0040-4, 2008.\u2002a","DOI":"10.2478\/s11600-007-0040-4"},{"key":"ref19","doi-asserted-by":"crossref","unstructured":"Finger, J.\u00a0E. and Wendling, P.: Turbulence structure of Arctic stratus clouds\nderived from measurements and calculations, J. Atmos. Sci.,\n47, 1351\u20131373, 1990.\u2002a, b, c, d, e, f, g, h","DOI":"10.1175\/1520-0469(1990)047<1351:TSOASC>2.0.CO;2"},{"key":"ref20","doi-asserted-by":"crossref","unstructured":"Friehe, C., Shaw, W., Rogers, D., Davidson, K., Large, W., Stage, S.,\nCrescenti, G., Khalsa, S., Greenhut, G., and Li, F.: Air-sea fluxes and\nsurface layer turbulence around a sea surface temperature front, J.\nGeophys. Res.-Oceans, 96, 8593\u20138609, 1991.\u2002a, b, c","DOI":"10.1029\/90JC02062"},{"key":"ref21","doi-asserted-by":"crossref","unstructured":"Golder, D.: Relations among stability parameters in the surface layer,\nBound.-Lay. Meteorol., 3, 47\u201358, 1972.\u2002a","DOI":"10.1007\/BF00769106"},{"key":"ref22","doi-asserted-by":"crossref","unstructured":"Goosse, H., Kay, J. E., Armour, K. C., Bodas-Salcedo, A., Chepfer, H., Docquier, D., Jonko, A., Kushner, P. J., Lecomte, O., Massonnet, F., and Park, H. S.: Quantifying climate feedbacks in polar regions, Nat. Commun., 9,\n1\u201313, 2018.\u2002a","DOI":"10.1038\/s41467-018-04173-0"},{"key":"ref23","doi-asserted-by":"crossref","unstructured":"Graversen, R.\u00a0G., Mauritsen, T., Tjernstr\u00f6m, M., K\u00e4ll\u00e9n, E., and\nSvensson, G.: Vertical structure of recent Arctic warming, Nature, 451,\n53\u201356, 2008.\u2002a","DOI":"10.1038\/nature06502"},{"key":"ref24","doi-asserted-by":"crossref","unstructured":"Gryanik, V.\u00a0M. and Hartmann, J.: A Turbulence Closure for the Convective Boundary Layer Based on a Two-Scale Mass-Flux Approach, J. Atmos. Sci., 59, 729\u20132744, https:\/\/doi.org\/10.1175\/1520-0469(2002)059&amp;lt;2729:ATCFTC&amp;gt;2.0.CO;2, 2002.\u2002a","DOI":"10.1175\/1520-0469(2002)059<2729:ATCFTC>2.0.CO;2"},{"key":"ref25","doi-asserted-by":"crossref","unstructured":"Hartmann, J., Gehrmann, M., Kohnert, K., Metzger, S., and Sachs, T.: New calibration procedures for airborne turbulence measurements and accuracy of the methane fluxes during the AirMeth campaigns, Atmos. Meas. Tech., 11, 4567\u20134581, https:\/\/doi.org\/10.5194\/amt-11-4567-2018, 2018.\u2002a","DOI":"10.5194\/amt-11-4567-2018"},{"key":"ref26","unstructured":"Hartmann, J., L\u00fcpkes, C., and Chechin, D.: 1\u2009Hz resolution aircraft\nmeasurements of wind and temperature during the ACLOUD campaign in 2017, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.902849, 2019a.\u2002a"},{"key":"ref27","unstructured":"Hartmann, J., L\u00fcpkes, C., and Chechin, D.: High resolution aircraft\nmeasurements of wind and temperature during the ACLOUD campaign in 2017, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.900880, 2019b.\u2002a"},{"key":"ref28","doi-asserted-by":"crossref","unstructured":"Heinze, R., Mironov, D., and Raasch, S.: Second-moment budgets in cloud topped boundary layers: A large-eddy simulation study, J. Adv. Model. Earth Syst., 7, 510\u2013536, 2015.\u2002a","DOI":"10.1002\/2014MS000376"},{"key":"ref29","unstructured":"Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Hor\u00e1nyi, A., Mu\u00f1oz\u2010Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., and Simmons, A.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999\u20132049, 2020.\u2002a"},{"key":"ref30","doi-asserted-by":"crossref","unstructured":"Hogan, R.\u00a0J., Grant, A.\u00a0L., Illingworth, A.\u00a0J., Pearson, G.\u00a0N., and O'Connor,\nE.\u00a0J.: Vertical velocity variance and skewness in clear and cloud-topped\nboundary layers as revealed by Doppler lidar, Q. J. Roy. Meteor. Soc., 135, 635\u2013643, 2009.\u2002a","DOI":"10.1002\/qj.413"},{"key":"ref31","doi-asserted-by":"crossref","unstructured":"Inoue, J., Kosovi\u0107, B., and Curry, J.\u00a0A.: Evolution of a storm-driven\ncloudy boundary layer in the Arctic, Bound.-Lay. Meteorol., 117,\n213\u2013230, 2005.\u2002a, b, c, d, e","DOI":"10.1007\/s10546-004-6003-2"},{"key":"ref32","doi-asserted-by":"crossref","unstructured":"Knudsen, E. M., Heinold, B., Dahlke, S., Bozem, H., Crewell, S., Gorodetskaya, I. V., Heygster, G., Kunkel, D., Maturilli, M., Mech, M., Viceto, C., Rinke, A., Schmith\u00fcsen, H., Ehrlich, A., Macke, A., L\u00fcpkes, C., and Wendisch, M.: Meteorological conditions during the ACLOUD\/PASCAL field campaign near Svalbard in early summer 2017, Atmos. Chem. Phys., 18, 17995\u201318022, https:\/\/doi.org\/10.5194\/acp-18-17995-2018, 2018.\u2002a","DOI":"10.5194\/acp-18-17995-2018"},{"key":"ref33","doi-asserted-by":"crossref","unstructured":"Korolev, A.\u00a0V., Strapp, J.\u00a0W., Isaac, G.\u00a0A., and Nevzorov, A.\u00a0N.: The Nevzorov Airborne Hot-Wire LWC\u2013TWC Probe: Principle of Operation and Performance Characteristics, J. Atmos. Ocean. Tech., 15, 1495\u20131510, https:\/\/doi.org\/10.1175\/1520-0426(1998)015&amp;lt;1495:TNAHWL&amp;gt;2.0.CO;2, 1998.\u2002a","DOI":"10.1175\/1520-0426(1998)015<1495:TNAHWL>2.0.CO;2"},{"key":"ref34","doi-asserted-by":"crossref","unstructured":"Lemone, M.\u00a0A.: On the difficulty of measuring temperature and humidity in cloud: Comments on \u201cShallow convection on day 261 of GATE: Mesoscale arcs\u201d,\nMon. Weather Rev., 108, 1702\u20131705, 1980.\u2002a","DOI":"10.1175\/1520-0493(1980)108<1703:OTDOMT>2.0.CO;2"},{"key":"ref35","doi-asserted-by":"crossref","unstructured":"Lenschow, D., Wyngaard, J.\u00a0C., and Pennell, W.\u00a0T.: Mean-field and second-moment budgets in a baroclinic, convective boundary layer, J. Atmos. Sci., 37, 1313\u20131326, 1980.\u2002a, b, c, d, e, f","DOI":"10.1175\/1520-0469(1980)037<1313:MFASMB>2.0.CO;2"},{"key":"ref36","doi-asserted-by":"crossref","unstructured":"Lenschow, D. H.: Aircraft measurements in the boundary layer, in: Probing the atmospheric boundary layer, American Meteorological Society, Boston, MA, 39\u201355, https:\/\/doi.org\/10.1007\/978-1-944970-14-7_5, 1986.\u2002a","DOI":"10.1007\/978-1-944970-14-7_5"},{"key":"ref37","doi-asserted-by":"crossref","unstructured":"Lenschow, D.\u00a0H. and Pennell, W.\u00a0T.: On the Measurement of In-Cloud and Wet-Bulb Temperatures from an Aircraft, Mon. Weather Rev. 102, 447\u2013454,\nhttps:\/\/doi.org\/10.1175\/1520-0493(1974)102&amp;lt;0447:OTMOIC&amp;gt;2.0.CO;2, 1974.\u2002a","DOI":"10.1175\/1520-0493(1974)102<0447:OTMOIC>2.0.CO;2"},{"key":"ref38","doi-asserted-by":"crossref","unstructured":"Lenschow, D.\u00a0H. and Stankov, B.\u00a0B.: Length scales in the convective boundary\nlayer, J. Atmos. Sci., 43, 1198\u20131209, 1986.\u2002a, b, c","DOI":"10.1175\/1520-0469(1986)043<1198:LSITCB>2.0.CO;2"},{"key":"ref39","doi-asserted-by":"crossref","unstructured":"Lenschow, D.\u00a0H., Li, X.\u00a0S., Zhu, C.\u00a0J., and Stankov, B.\u00a0B.: The stably\nstratified boundary layer over the great plains, Bound.-Lay. Meteorol.,\n42, 95\u2013121, https:\/\/doi.org\/10.1007\/BF00119877, 1988.\u2002a","DOI":"10.1007\/978-94-009-2935-7_8"},{"key":"ref40","doi-asserted-by":"crossref","unstructured":"Lenschow, D.\u00a0H., Mann, J., and Kristensen, L.: How Long Is Long Enough When Measuring Fluxes and Other Turbulence Statistics?, J. Atmos. Ocean. Tech., 11, 661\u2013673, https:\/\/doi.org\/10.1175\/1520-0426(1994)011&amp;lt;0661:HLILEW&amp;gt;2.0.CO;2, 1994.\u2002a, b","DOI":"10.1175\/1520-0426(1994)011<0661:HLILEW>2.0.CO;2"},{"key":"ref41","doi-asserted-by":"crossref","unstructured":"Lilly, D.\u00a0K.: Models of cloud-topped mixed layers under a strong inversion,\nQ. J. Roy. Meteor. Soc., 94, 292\u2013309, 1968.\u2002a","DOI":"10.1002\/qj.49709440106"},{"key":"ref42","doi-asserted-by":"crossref","unstructured":"Mahrt, L.: Vertical Structure and Turbulence in the Very Stable Boundary Layer, J. Atmos. Sci., 42, 2333\u20132349,\nhttps:\/\/doi.org\/10.1175\/1520-0469(1985)042&amp;lt;2333:VSATIT&amp;gt;2.0.CO;2, 1985.\u2002a","DOI":"10.1175\/1520-0469(1985)042<2333:VSATIT>2.0.CO;2"},{"key":"ref43","unstructured":"MODIS Characterization Support Team (MCST): MODIS 250m Calibrated Radiances Product. NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA [data set], https:\/\/doi.org\/10.5067\/MODIS\/MYD02QKM.061, 2017.\u2002a"},{"key":"ref44","doi-asserted-by":"crossref","unstructured":"Mohan, M. and Siddiqui, T.: Analysis of various schemes for the estimation of\natmospheric stability classification, Atmos. Environ., 32, 3775\u20133781, 1998.\u2002a","DOI":"10.1016\/S1352-2310(98)00109-5"},{"key":"ref45","doi-asserted-by":"crossref","unstructured":"Morrison, H., de\u00a0Boer, G., Feingold, G., Harrington, J., Shupe, M.\u00a0D., and\nSulia, K.: Resilience of persistent Arctic mixed-phase clouds, Nat.\nGeosci., 5, 11\u201317, https:\/\/doi.org\/10.1038\/ngeo1332, 2011.\u2002a, b, c","DOI":"10.1038\/ngeo1332"},{"key":"ref46","doi-asserted-by":"crossref","unstructured":"Nicholls, S.: The dynamics of stratocumulus: Aircraft observations and\ncomparisons with a mixed layer model, Q. J. Roy. Meteor. Soc., 110, 783\u2013820, 1984.\u2002a, b, c, d","DOI":"10.1002\/qj.49711046603"},{"key":"ref47","doi-asserted-by":"crossref","unstructured":"Nicholls, S.: The structure of radiatively driven convection in stratocumulus, Q. J. Roy. Meteor. Soc., 115, 487\u2013511, 1989.\u2002a, b, c","DOI":"10.1002\/qj.49711548704"},{"key":"ref48","doi-asserted-by":"crossref","unstructured":"Nicholls, S. and Leighton, J.: An observational study of the structure of\nstratiform cloud sheets: Part\u00a0I. Structure, Q. J. Roy. Meteor. Soc., 112, 431\u2013460, 1986.\u2002a","DOI":"10.1002\/qj.49711247209"},{"key":"ref49","unstructured":"Osborne, E., Richter-Menge, J., and Jeffries, M.: Arctic report card 2018, National Park Service, Washington, DC, https:\/\/arctic.noaa.gov\/Report-Card (last access: 18\u00a0April 2023), 2018.\u2002a"},{"key":"ref50","doi-asserted-by":"crossref","unstructured":"Overland, J.\u00a0E., Wood, K.\u00a0R., and Wang, M.: Warm Arctic \u2013 cold continents:\nclimate impacts of the newly open Arctic Sea, Polar Res., 30, 15787, https:\/\/doi.org\/10.3402\/polar.v30i0.15787, 2011.\u2002a","DOI":"10.3402\/polar.v30i0.15787"},{"key":"ref51","doi-asserted-by":"crossref","unstructured":"Petty, G. W.: Sampling error in aircraft flux measurements based on a high-resolution large eddy simulation of the marine boundary layer, Atmos. Meas. Tech., 14, 1959\u20131976, https:\/\/doi.org\/10.5194\/amt-14-1959-2021, 2021.\u2002a","DOI":"10.5194\/amt-14-1959-2021"},{"key":"ref52","doi-asserted-by":"crossref","unstructured":"Pithan, F. and Mauritsen, T.: Arctic amplification dominated by temperature\nfeedbacks in contemporary climate models, Nat. Geosci., 7, 181\u2013184,\nhttps:\/\/doi.org\/10.1038\/ngeo2071, 2014.\u2002a","DOI":"10.1038\/ngeo2071"},{"key":"ref53","doi-asserted-by":"crossref","unstructured":"Pithan, F., Medeiros, B., and Mauritsen, T.: Mixed-phase clouds cause climate\nmodel biases in Arctic wintertime temperature inversions, Clim. Dynam.,\n43, 289\u2013303, 2014.\u2002a","DOI":"10.1007\/s00382-013-1964-9"},{"key":"ref54","doi-asserted-by":"crossref","unstructured":"Randall, D.\u00a0A.: Entrainment into a Stratocumulus Layer with Distributed\nRadiative Cooling, J. Atmos. Sci., 37, 148\u2013159,\nhttps:\/\/doi.org\/10.1175\/1520-0469(1980)037&amp;lt;0148:EIASLW&amp;gt;2.0.CO;2, 1980.\u2002a","DOI":"10.1175\/1520-0469(1980)037<0148:EIASLW>2.0.CO;2"},{"key":"ref55","doi-asserted-by":"crossref","unstructured":"Sedlar, J. and Shupe, M. D.: Characteristic nature of vertical motions observed in Arctic mixed-phase stratocumulus, Atmos. Chem. Phys., 14, 3461\u20133478, https:\/\/doi.org\/10.5194\/acp-14-3461-2014, 2014.\u2002a, b","DOI":"10.5194\/acp-14-3461-2014"},{"key":"ref56","doi-asserted-by":"crossref","unstructured":"Serreze, M.\u00a0C. and Francis, J.\u00a0A.: The Arctic amplification debate, Climatic\nChange, 76, 241\u2013264, 2006.\u2002a, b","DOI":"10.1007\/s10584-005-9017-y"},{"key":"ref57","doi-asserted-by":"crossref","unstructured":"Shupe, M.\u00a0D., Walden, V.\u00a0P., Eloranta, E., Uttal, T., Campbell, J.\u00a0R.,\nStarkweather, S.\u00a0M., and Shiobara, M.: Clouds at Arctic Atmospheric\nObservatories. Part I: Occurrence and Macrophysical Properties, J.\nAppl. Meteorol. Clim., 50, 626\u2013644, https:\/\/doi.org\/10.1175\/2010JAMC2467.1, 2011.\u2002a","DOI":"10.1175\/2010JAMC2467.1"},{"key":"ref58","doi-asserted-by":"crossref","unstructured":"Shupe, M. D., Persson, P. O. G., Brooks, I. M., Tjernstr\u00f6m, M., Sedlar, J., Mauritsen, T., Sjogren, S., and Leck, C.: Cloud and boundary layer interactions over the Arctic sea ice in late summer, Atmos. Chem. Phys., 13, 9379\u20139399, https:\/\/doi.org\/10.5194\/acp-13-9379-2013, 2013.\u2002a","DOI":"10.5194\/acp-13-9379-2013"},{"key":"ref59","doi-asserted-by":"crossref","unstructured":"Smedman, A.-S. and Hoegstroem, U.: Turbulent characteristics of a shallow\nconvective internal boundary layer, Bound.-Lay. Meteorol., 25, 271\u2013287,\n1983.\u2002a","DOI":"10.1007\/BF00119540"},{"key":"ref60","doi-asserted-by":"crossref","unstructured":"Sotiropoulou, G., Sedlar, J., Tjernstr\u00f6m, M., Shupe, M. D., Brooks, I. M., and Persson, P. O. G.: The thermodynamic structure of summer Arctic stratocumulus and the dynamic coupling to the surface, Atmos. Chem. Phys., 14, 12573\u201312592, https:\/\/doi.org\/10.5194\/acp-14-12573-2014, 2014.\u2002a","DOI":"10.5194\/acp-14-12573-2014"},{"key":"ref61","unstructured":"Stapf, J., Ehrlich, A., J\u00e4kel, E., and Wendisch, M.: Aircraft measurements of broadband irradiance during the ACLOUD campaign in 2017, PANGAEA [data set],\nhttps:\/\/doi.org\/10.1594\/PANGAEA.900442, 2019.\u2002a"},{"key":"ref62","doi-asserted-by":"crossref","unstructured":"Stapf, J., Ehrlich, A., J\u00e4kel, E., L\u00fcpkes, C., and Wendisch, M.: Reassessment of shortwave surface cloud radiative forcing in the Arctic: consideration of surface-albedo\u2013cloud interactions, Atmos. Chem. Phys., 20, 9895\u20139914, https:\/\/doi.org\/10.5194\/acp-20-9895-2020, 2020.\u2002a","DOI":"10.5194\/acp-20-9895-2020"},{"key":"ref63","doi-asserted-by":"crossref","unstructured":"Stevens, B.: Entrainment in stratocumulus-topped mixed layers, Q. J. Roy. Meteor. Soc., 128, 2663\u20132690, 2002.\u2002a","DOI":"10.1256\/qj.01.202"},{"key":"ref64","doi-asserted-by":"crossref","unstructured":"Stevens, B., Moeng, C. H., Ackerman, A. S., Bretherton, C. S., Chlond, A., de Roode, S., Edwards, J., Golaz, J. C., Jiang, H., Khairoutdinov, M., and Kirkpatrick, M. P.: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus, Mon. Weather Rev., 133, 1443\u20131462, 2005.\u2002a","DOI":"10.1175\/MWR2930.1"},{"key":"ref65","doi-asserted-by":"crossref","unstructured":"Tetzlaff, A., L\u00fcpkes, C., and Hartmann, J.: Aircraft-based observations of\natmospheric boundary-layer modification over Arctic leads, Q. J. Roy. Meteorol. Soc., 141, 2839\u20132856, https:\/\/doi.org\/10.1002\/qj.2568, 2015.\u2002a, b","DOI":"10.1002\/qj.2568"},{"key":"ref66","doi-asserted-by":"crossref","unstructured":"Tjernstr\u00f6m, M.: Turbulence Length Scales in Stably Stratified Free Shear Flow Analyzed from Slant Aircraft Profiles, J. Appl. Meteorol. Clim., 32, 948\u2013963, https:\/\/doi.org\/10.1175\/1520-0450(1993)032&amp;lt;0948:TLSISS&amp;gt;2.0.CO;2, 1993.\u2002a","DOI":"10.1175\/1520-0450(1993)032<0948:TLSISS>2.0.CO;2"},{"key":"ref67","doi-asserted-by":"crossref","unstructured":"Tjernstr\u00f6m, M., \u017dagar, M., Svensson, G., Cassano, J.\u00a0J., Pfeifer, S., Rinke, A., Wyser, K., Dethloff, K., Jones, C., Semmler, T., and Shaw, M.:\nModelling the Arctic Boundary Layer: An Evaluation of Six Arcmip\nRegional-Scale Models using Data from the Sheba Project, Bound.-Lay.\nMeteorol., 117, 337\u2013381, https:\/\/doi.org\/10.1007\/s10546-004-7954-z, 2005.\u2002a","DOI":"10.1007\/s10546-004-7954-z"},{"key":"ref68","doi-asserted-by":"crossref","unstructured":"Tjernstr\u00f6m, M., Sedlar, J., and Shupe, M.\u00a0D.: How well do regional climate models reproduce radiation and clouds in the Arctic? An evaluation of ARCMIP simulations, J. Appl. Meteorol. Clim., 47, 2405\u20132422, 2008.\u2002a","DOI":"10.1175\/2008JAMC1845.1"},{"key":"ref69","doi-asserted-by":"crossref","unstructured":"Tjernstr\u00f6m, M., Leck, C., Birch, C. E., Bottenheim, J. W., Brooks, B. J., Brooks, I. M., B\u00e4cklin, L., Chang, R. Y.-W., de Leeuw, G., Di Liberto, L., de la Rosa, S., Granath, E., Graus, M., Hansel, A., Heintzenberg, J., Held, A., Hind, A., Johnston, P., Knulst, J., Martin, M., Matrai, P. A., Mauritsen, T., M\u00fcller, M., Norris, S. J., Orellana, M. V., Orsini, D. A., Paatero, J., Persson, P. O. G., Gao, Q., Rauschenberg, C., Ristovski, Z., Sedlar, J., Shupe, M. D., Sierau, B., Sirevaag, A., Sjogren, S., Stetzer, O., Swietlicki, E., Szczodrak, M., Vaattovaara, P., Wahlberg, N., Westberg, M., and Wheeler, C. R.: The Arctic Summer Cloud Ocean Study (ASCOS): overview and experimental design, Atmos. Chem. Phys., 14, 2823\u20132869, https:\/\/doi.org\/10.5194\/acp-14-2823-2014, 2014.\u2002a","DOI":"10.5194\/acp-14-2823-2014"},{"key":"ref70","doi-asserted-by":"crossref","unstructured":"Turton, J. and Nicholls, S.: A study of the diurnal variation of stratocumulus using a multiple mixed layer model, Q. J. Roy. Meteor. Soc., 113, 969\u20131009, 1987.\u2002a","DOI":"10.1002\/qj.49711347712"},{"key":"ref71","doi-asserted-by":"crossref","unstructured":"Wendisch, M., Br\u00fcckner, M., Burrows, J. P., Crewell, S., Dethloff, K., Ebell, K., L\u00fcpkes, C., Macke, A., Notholt, J., Quaas, J., and Rinke, A.: ArctiC\namplification: climate relevant atmospheric and SurfaCe processes, and\nfeedback mechanisms: (AC)\u00a03, Eos, Trans. Amer. Geophys. Union, 98, https:\/\/doi.org\/10.1029\/2017EO064803, 2017.\n\u2002a","DOI":"10.1029\/2017EO064803"},{"key":"ref72","doi-asserted-by":"crossref","unstructured":"Wendisch, M., Macke, A., Ehrlich, A., L\u00fcpkes, C., Mech, M., Chechin, D., Dethloff, K., Velasco, C.\u00a0B., Bozem, H., Br\u00fcckner, M., Clemen, H.-C., Crewell, S., Donth, T., Dupuy, R., Ebell, K., Egerer, U., Engelmann, R., Engler, C., Eppers, O., Gehrmann, M., Gong, X., Gottschalk, M., Gourbeyre, C., Griesche, H., Hartmann, J., Hartmann, M., Heinold, B., Herber, A., Herrmann, H., Heygster, G., Hoor, P., Jafariserajehlou, S., J\u00e4kel, E., J\u00e4rvinen, E., Jourdan, O., K\u00e4stner, U., Kecorius, S., Knudsen, E.\u00a0M., K\u00f6llner, F., Kretzschmar, J., Lelli, L., Leroy, D., Maturilli, M., Mei, L., Mertes, S., Mioche, G., Neuber, R., Nicolaus, M., Nomokonova, T., Notholt, J., Palm, M., van Pinxteren, M., Quaas, J., Richter, P., Ruiz-Donoso, E., Sch\u00e4fer, M., Schmieder, K., Schnaiter, M., Schneider, J., Schwarzenb\u00f6ck, A., Seifert, P., Shupe, M.\u00a0D., Siebert, H., Spreen, G., Stapf, J., Stratmann, F., Vogl, T., Welti, A., Wex, H., Wiedensohler, A., Zanatta, M., and Zeppenfeld, S.: The Arctic Cloud Puzzle: Using ACLOUD\/PASCAL Multiplatform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification, B. Am. Meteorol. Soc., 100, 841\u2013871, https:\/\/doi.org\/10.1175\/BAMS-D-18-0072.1, 2019.\u2002a, b, c, d, e","DOI":"10.1175\/BAMS-D-18-0072.1"},{"key":"ref73","doi-asserted-by":"crossref","unstructured":"Wesche, C., Steimhage, D., and Nixdorf, U.: Polar aircraft Polar\u00a05 and POlar\u00a06 operated by the Alfred Wegener Institute, J. Large-Scale Res. Facil., 2, A87, https:\/\/doi.org\/10.17815\/jlsrf-2-153, 2016.\u2002a","DOI":"10.17815\/jlsrf-2-153"},{"key":"ref74","doi-asserted-by":"crossref","unstructured":"Young, G.\u00a0S.: Turbulence structure of the convective boundary layer. Part\u00a0I. Variability of normalized turbulence statistics, J. Atmos.\nSci., 45, 719\u2013726, 1988.\u2002a, b","DOI":"10.1175\/1520-0469(1988)045<0719:TSOTCB>2.0.CO;2"},{"key":"ref75","doi-asserted-by":"crossref","unstructured":"Zilitinkevich, S., Gryanik, V.\u00a0M., Lykossov, V.\u00a0N., and Mironov, D.\u00a0V.:\nThird-Order Transport and Nonlocal Turbulence Closures for Convective\nBoundary Layers, J. Atmos. Sci., 56, 3463\u20133477,\nhttps:\/\/doi.org\/10.1175\/1520-0469(1999)056&amp;lt;3463:TOTANT&amp;gt;2.0.CO;2, 1999.\u2002a","DOI":"10.1175\/1520-0469(1999)056<3463:TOTANT>2.0.CO;2"}],"container-title":["Atmospheric Chemistry and Physics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/acp.copernicus.org\/articles\/23\/4685\/2023\/acp-23-4685-2023.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,4,20]],"date-time":"2023-04-20T11:01:30Z","timestamp":1681988490000},"score":1,"resource":{"primary":{"URL":"https:\/\/acp.copernicus.org\/articles\/23\/4685\/2023\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4,20]]},"references-count":75,"journal-issue":{"issue":"8","published-online":{"date-parts":[[2023]]}},"URL":"http:\/\/dx.doi.org\/10.5194\/acp-23-4685-2023","relation":{"has-preprint":[{"id-type":"doi","id":"10.5194\/acp-2022-398","asserted-by":"subject"}],"has-review":[{"id-type":"doi","id":"10.5194\/acp-2022-398-RC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2022-398-AC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2022-398-RC2","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2022-398-AC2","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2022-398-RC2","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/acp-2022-398-RC1","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/acp-2022-398-AC1","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/acp-2022-398-AC2","asserted-by":"object"}],"is-part-of":[{"id-type":"doi","id":"10.1594\/PANGAEA.902849","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.900880","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.906658","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.900442","asserted-by":"subject"},{"id-type":"doi","id":"10.5067\/MODIS\/MYD02QKM.061","asserted-by":"subject"}]},"ISSN":["1680-7324"],"issn-type":[{"value":"1680-7324","type":"electronic"}],"subject":["Atmospheric Science"],"published":{"date-parts":[[2023,4,20]]}}}