1 line
No EOL
33 KiB
Text
1 line
No EOL
33 KiB
Text
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T04:58:12Z","timestamp":1680325092058},"reference-count":84,"publisher":"Copernicus GmbH","issue":"6","license":[{"start":{"date-parts":[[2023,3,31]],"date-time":"2023-03-31T00:00:00Z","timestamp":1680220800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","award":["JA 836\/47-1","JA 836\/43"]},{"DOI":"10.13039\/100005323","name":"National Center for Atmospheric Research","doi-asserted-by":"publisher","award":["1852977"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Atmos. Chem. Phys."],"abstract":"<jats:p>Abstract. The teleconnection between the quasi-biennial oscillation (QBO) and the Arctic stratospheric polar vortex, or the Holton\u2013Tan (HT) relationship, may change in a warmer climate or one with stratospheric aerosol intervention (SAI) compared to the present-day climate (PDC). Our results from an Earth system model indicate that, under both global warming (based on RCP8.5 emission scenario) and SAI scenarios, the HT relationship weakens in early winter (November\u2013December), although it is closer to PDC under SAI than under the RCP8.5 scenario. In contrast, the HT relationship in the middle to late winter period (January\u2013February) does not change considerably\nin response to either RCP8.5 or SAI scenarios compared to PDC. While the weakening of the HT relationship under the RCP8.5 scenario is likely due to the weaker QBO wind amplitudes at the Equator, another physical mechanism must be responsible for the weaker HT relationship under SAI scenarios, since the amplitude of the QBO wind is comparable to the PDC. The strength of the polar vortex does not change under the RCP8.5 scenario compared to PDC, but it becomes stronger under SAI; we attribute the weakening of the HT relationship under SAI to a stronger polar vortex. In general, the changes in the HT relationship cannot be explained by changes to the critical line; the changes in the residual circulation (particularly due to the gravity wave contributions) are important in explaining the changes in the HT relationship under RCP8.5 and SAI scenarios.\n <\/jats:p>","DOI":"10.5194\/acp-23-3799-2023","type":"journal-article","created":{"date-parts":[[2023,3,31]],"date-time":"2023-03-31T08:32:03Z","timestamp":1680251523000},"page":"3799-3818","source":"Crossref","is-referenced-by-count":0,"title":["The Holton\u2013Tan mechanism under stratospheric aerosol intervention"],"prefix":"10.5194","volume":"23","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0870-7567","authenticated-orcid":false,"given":"Khalil","family":"Karami","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6963-4592","authenticated-orcid":false,"given":"Rolando","family":"Garcia","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7878-0110","authenticated-orcid":false,"given":"Christoph","family":"Jacobi","sequence":"additional","affiliation":[]},{"given":"Jadwiga H.","family":"Richter","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6557-3569","authenticated-orcid":false,"given":"Simone","family":"Tilmes","sequence":"additional","affiliation":[]}],"member":"3145","published-online":{"date-parts":[[2023,3,31]]},"reference":[{"key":"ref1","doi-asserted-by":"crossref","unstructured":"Andrews, M. B., Knight, J. R., Scaife, A. A., Lu, Y., Wu, T., Gray, L. J., and Schenzinger, V.: Observed and simulated teleconnections between the\nstratospheric quasi-biennial oscillation and northern hemisphere winter atmospheric circulation, J. Geophys. Res.-Atmos., 124,\n1219\u20131232, 2019.\u2002a","DOI":"10.1029\/2018JD029368"},{"key":"ref2","unstructured":"Andrews, D., Holton, J., and Leovy, C. B.: Middle atmosphere dynamics, Academic press, ISBN: 9780120585762, 1987.\u2002a, b"},{"key":"ref3","doi-asserted-by":"crossref","unstructured":"Anstey, J. A. and Shepherd, T. G.: High-latitude influence of the quasi-biennial oscillation, Q. J. Roy. Meteorol. Soc., 140, 1\u201321, 2014.\u2002a","DOI":"10.1002\/qj.2132"},{"key":"ref4","doi-asserted-by":"crossref","unstructured":"Baldwin, M., Gray, L., Dunkerton, T., Hamilton, K., Haynes, P., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T., Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi, M.: The quasi-biennial oscillation, Rev. Geophys., 39, 179\u2013229, 2001.\u2002a, b","DOI":"10.1029\/1999RG000073"},{"key":"ref5","doi-asserted-by":"crossref","unstructured":"Butler, A., Charlton-Perez, A., Domeisen, D. I., Garfinkel, C., Gerber, E. P., Hitchcock, P., Karpechko, A. Y., et al.: Sub-seasonal predictability and the stratosphere, Sub-seasonal to seasonal prediction, Elsevier, 223\u2013241,\nISBN: 9780128117149, https:\/\/doi.org\/10.1016\/B978-0-12-811714-9.00011-5, 2019.\u2002a","DOI":"10.1016\/B978-0-12-811714-9.00011-5"},{"key":"ref6","doi-asserted-by":"crossref","unstructured":"Cohen, N. Y., Gerber, O., and B\u00fchler, E. P.: Compensation between resolved and unresolved wave driving in the strato\nsphere: Implications for downward control, J. Atmos. Sci., 70, 3780\u20133798, 2013.\u2002a","DOI":"10.1175\/JAS-D-12-0346.1"},{"key":"ref7","doi-asserted-by":"crossref","unstructured":"Collimore, C. C., Martin, D. W., Hitchman, M. H., Huesmann, A., and Waliser, D. E.:\nOn the relationship between the qbo and tropical deep convection, J. Clim., 16, 2552\u20132568, 2003.\u2002a","DOI":"10.1175\/1520-0442(2003)016<2552:OTRBTQ>2.0.CO;2"},{"key":"ref8","doi-asserted-by":"crossref","unstructured":"Crutzen, P. J.: Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma?, Climatic Change, 77, 211\u2013219, https:\/\/doi.org\/10.1007\/s10584-006-9101-y, 2006.\u2002a","DOI":"10.1007\/s10584-006-9101-y"},{"key":"ref9","doi-asserted-by":"crossref","unstructured":"Dunkerton, T. J. and Baldwin, M. P.: Quasi-biennial modulation of planetary-wave fluxes in the northern hemisphere winter, J. Atmos. Sci., 48, 1043\u20131061, 1991.\u2002a","DOI":"10.1175\/1520-0469(1991)048<1043:QBMOPW>2.0.CO;2"},{"key":"ref10","doi-asserted-by":"crossref","unstructured":"Eichinger, R., Garny, H., \u0160\u00e1cha, P., Danker, J., Dietm\u00fcller, S., and Oberl\u00e4nder-Hayn, S.: Effects of missing gravity waves on stratospheric dynamics, part 1: climatology, Clim. Dynam., 54, 3165\u20133183, 2020.\u2002a","DOI":"10.1007\/s00382-020-05166-w"},{"key":"ref11","doi-asserted-by":"crossref","unstructured":"Elsbury, D., Peings, Y., and Magnusdottir, G.: Cmip6 models underestimate the holton-tan effect, Geophys. Res. Lett., 48, e2021GL094083, https:\/\/doi.org\/10.1029\/2021GL094083, 2021.\u2002a","DOI":"10.1029\/2021GL094083"},{"key":"ref12","doi-asserted-by":"crossref","unstructured":"Ferraro, A. J., Highwood, E. J., and Charlton-Perez, A. J.: Stratospheric\nheating by potential geoengineering aerosols, Geophys. Res. Lett., 38, L24706, https:\/\/doi.org\/10.1029\/2011GL049761, 2011.\u2002a","DOI":"10.1029\/2011GL049761"},{"key":"ref13","doi-asserted-by":"crossref","unstructured":"Ferraro, A. J., Charlton-Perez, A. J., and Highwood, E. J.: Stratospheric dynamics and midlatitude jets under geoengineering with space mirrors and sulfate and titania aerosols, J. Geophys. Res.-Atmos., 120, 414\u2013429, 2015.\u2002a","DOI":"10.1002\/2014JD022734"},{"key":"ref14","doi-asserted-by":"crossref","unstructured":"Hansen, F., Matthes, K., and Gray, L.: Sensitivity of stratospheric dynamics\nand chemistry to qbo nudging width in the chemistry\u2013climate model waccm,\nJ. Geophys. Res.-Atmos., 118, 464\u2013474, https:\/\/doi.org\/10.1002\/jgrd.50812, 2013.\u2002a","DOI":"10.1002\/jgrd.50812"},{"key":"ref15","doi-asserted-by":"crossref","unstructured":"Haynes, P., McIntyre, M., Shepherd, T., Marks, C., and Shine, K. P.: On the \u201cdownward control\u201d of extratropical diabatic circulations by eddy-induced mean zonal forces, J. Atmos. Sci., 48, 651\u2013678, 1991.\u2002a","DOI":"10.1175\/1520-0469(1991)048<0651:OTCOED>2.0.CO;2"},{"key":"ref16","doi-asserted-by":"crossref","unstructured":"Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Hor\u00e1nyi, A., Mu\u00f1oz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., H\u00f3lm, E., Janiskov\u00e1, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Th\u00e9paut, J.-N.: The era5 global reanalysis, Q. J. Roy.\nMeteorol. Soc., 146, 1999\u20132049, 2020.\u2002a","DOI":"10.1002\/qj.3803"},{"key":"ref17","doi-asserted-by":"crossref","unstructured":"Holton, J. R. and Tan, H.-C.: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50\u2009mb, J. Atmos. Sci., 37, 2200\u20132208, 1980.\u2002a, b, c, d","DOI":"10.1175\/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2"},{"key":"ref18","doi-asserted-by":"crossref","unstructured":"Holton, J. R. and Tan, H.-C.: The quasi-biennial oscillation in the northern hemisphere lower stratosphere, J. Meteorol. Soc. Jpn. Ser. II, 60, 140\u2013148, 1982.\u2002a, b","DOI":"10.2151\/jmsj1965.60.1_140"},{"key":"ref19","doi-asserted-by":"crossref","unstructured":"Holton, J. R. and Austin, J.: The influence of the equatorial QBO on\nsudden stratospheric warmings, J. Atmos. Sci., 48, 607\u2013618, 1991.\u2002a","DOI":"10.1175\/1520-0469(1991)048<0607:TIOTEQ>2.0.CO;2"},{"key":"ref20","doi-asserted-by":"crossref","unstructured":"Hu, Y. and Tung, K. K.: Tropospheric and equatorial influences on planetary-wave amplitude in the stratosphere, Geophys. Res. Lett., 29, 1\u20134, 2002.\u2002a","DOI":"10.1029\/2001GL013762"},{"key":"ref21","doi-asserted-by":"crossref","unstructured":"Hurwitz, M. M., Newman, P. A., and Garfinkel, C. I.: The Arctic vortex in March 2011: A dynamical perspective, Atmos. Chem. Phys., 11, 11447\u201311453, https:\/\/doi.org\/10.5194\/acp-11-11447-2011, 2011.\u2002a","DOI":"10.5194\/acp-11-11447-2011"},{"key":"ref22","doi-asserted-by":"crossref","unstructured":"Garcia, R. R., Smith, A. K., Kinnison, D. E., de la C\u00e1mara, \u00c1., and Murphy, D. J.: Modification of the gravity wave parameterization in the Whole Atmosphere Community Climate Model: Motivation and results, J. Atmos. Sci., 74, 275\u2013291, 2017.\u2002a","DOI":"10.1175\/JAS-D-16-0104.1"},{"key":"ref23","doi-asserted-by":"crossref","unstructured":"Garfinkel, C. I. and D. L. Hartmann, 2007: Effects of the El Ni\u00f1o \u2013 Southern Oscillation and the quasi-biennial oscillation on polar temperatures in the stratosphere, J. Geophys. Res., 112, D19112, https:\/\/doi.org\/10.1029\/2007JD008481, 2007.\u2002a","DOI":"10.1029\/2007JD008481"},{"key":"ref24","doi-asserted-by":"crossref","unstructured":"Calvo, N., Giorgetta, M. A., Garcia-Herrera, R., and Manzini, E.2009: Nonlinearity\nof the combined warm ENSO and QBO effects on the Northern Hemisphere polar vortex in MAECHAM5 simulations, J. Geophys. Res., 114, D13109, https:\/\/doi.org\/10.1029\/2008JD011445, 2009.\u2002a","DOI":"10.1029\/2008JD011445"},{"key":"ref25","doi-asserted-by":"crossref","unstructured":"Garfinkel, C. and Hartmann, D.: Different enso teleconnections and their effects on the stratospheric polar vortex, J. Geophys. Res.-Atmos., 113, D18114, https:\/\/doi.org\/10.1029\/2008JD009920, 2008.\u2002a, b","DOI":"10.1029\/2008JD009920"},{"key":"ref26","doi-asserted-by":"crossref","unstructured":"Garfinkel, C. I., Shaw, T. A., Hartmann, D. L., and Waugh, D. W.: Does the holton\u2013tan mechanism explain how the quasi-biennial oscillation modulates the arctic polar vortex?, J. Atmos. Sci., 69, 1713\u20131733, 2012.\u2002a, b, c, d, e, f","DOI":"10.1175\/JAS-D-11-0209.1"},{"key":"ref27","doi-asserted-by":"crossref","unstructured":"Inoue, M., Takahashi, M., and Naoe, H.: Relationship between the stratospheric quasi-biennial oscillation and tropospheric circulation in northern\nautumn, J. Geophys. Res.-Atmos., 116, D24115, https:\/\/doi.org\/10.1029\/2011JD016040, 2011.\u2002a","DOI":"10.1029\/2011JD016040"},{"key":"ref28","doi-asserted-by":"crossref","unstructured":"Irvine, P., Emanuel, K., He, J., Horowitz, L. W., Vecchi, G., and Keith, D.:Halving warming with idealized solar geoengineering moderates key climate, hazards, Nat. Clim. Change, 9, 295\u2013299, 2019.\u2002a","DOI":"10.1038\/s41558-019-0398-8"},{"key":"ref29","doi-asserted-by":"crossref","unstructured":"IPCC, V.: Global warming of 1.5\u2009\u2218C, intergovernmental panel on climate change, IPCC Geneva, Switzerland, Cambridge University Press, 616 pp., https:\/\/doi.org\/10.1017\/9781009157940, 2018.\u2002a","DOI":"10.1017\/9781009157940"},{"key":"ref30","doi-asserted-by":"crossref","unstructured":"Karami, K., Braesicke, P., Sinnhuber, M., and Versick, S.: On the climatological probability of the vertical propagation of stationary planetary waves, Atmos. Chem. Phys., 16, 8447\u20138460, https:\/\/doi.org\/10.5194\/acp-16-8447-2016, 2016.\u2002a","DOI":"10.5194\/acp-16-8447-2016"},{"key":"ref31","doi-asserted-by":"crossref","unstructured":"Karami, K., Tilmes, S., Muri, H., and Mousavi, S. V.: Storm track changes in the Middle East and North Africa under stratospheric aerosol geoengineering, Geophys. Res. Lett., 47, e2020GL086954, https:\/\/doi.org\/10.1029\/2020GL086954, 2020.\u2002a","DOI":"10.1029\/2020GL086954"},{"key":"ref32","doi-asserted-by":"crossref","unstructured":"Kinnersley, J. S. and Tung, K.-K.: Modeling the global interannual variability of ozone due to the equatorial qbo and to extratropical planetary wave variability, J. Atmos. Sci., 55, 1417\u20131428, 1998.\u2002a, b","DOI":"10.1175\/1520-0469(1998)055<1417:MTGIVO>2.0.CO;2"},{"key":"ref33","doi-asserted-by":"crossref","unstructured":"Kodera, K.: The solar and equatorial qbo influences on the stratospheric circulation during the early northern-hemisphere winter, Geophys. Res. Lett., 18, 1023\u20131026, 1991.\u2002a","DOI":"10.1029\/90GL02298"},{"key":"ref34","doi-asserted-by":"crossref","unstructured":"Kravitz, B., Caldeira, K., Boucher, O., Robock, A., Rasch, P. J., Alterskjaer, K., Bou Karam, D., Cole, J. N. S., Curry, C. L., Haywood, J. M., Irvine, P. J., Ji, D., Jones, A., Egill Kristj\u00e1nsson, J., Lunt, D. J., Moore, J. C., Niemeier, U., Schmidt, H., Schulz, M., Singh, B., Tilmes, S., Watanabe, S., Yang, S., and Yoon, J.-H.: Climate model response from the geoengineering model inter-comparison project (geomip), J. Geophys. Res.-Atmos., 118, 8320\u20138332, 2013.\u2002a","DOI":"10.1002\/jgrd.50646"},{"key":"ref35","doi-asserted-by":"crossref","unstructured":"Kravitz, B., MacMartin, D. G., Tilmes, S., Richter, J. H., Mills, M. J., Cheng, W., Dagon, K., Glanville, A. S., Lamarque, J.-F., Simpson, I. R., Tribbia, J., and Vitt, F.: Comparing surface and stratospheric impacts of geoengineering with different SO2 injection strategies, J. Geophys. Res.-Atmos., 124, 7900\u20137918, 2019.\u2002a","DOI":"10.1029\/2019JD030329"},{"key":"ref36","doi-asserted-by":"crossref","unstructured":"Kravitz, B., MacMartin, D. G., Mills, M. J., Richter, J. H., Tilmes, S., Lamarque,\nJ.-F., Tribbia, J. J., and Vitt, F.: First simulations of designing stratospheric sulfate aerosol geoengineering to meet multiple simultaneous climate objectives, J. Geophys. Res.-Atmos., 122, 12\u2013616, 2017.\u2002a, b, c","DOI":"10.1002\/2017JD026874"},{"key":"ref37","doi-asserted-by":"crossref","unstructured":"Kravitz, B., MacMartin, D. G., Robock, A., Rasch, P. J., Ricke, K. L., and Cole, J. N.: A multi-model assessment of regional climate disparities caused by solar geoengineering, Environ. Res. Lett., 9, 074013, https:\/\/doi.org\/10.1088\/1748-9326\/9\/7\/074013, 2014.\u2002a","DOI":"10.1088\/1748-9326\/9\/7\/074013"},{"key":"ref38","doi-asserted-by":"crossref","unstructured":"Labitzke, K. and Van Loon, H.: Associations between the 11-year solar cycle, the qbo and the atmosphere, part I: the troposphere and stratosphere in the northern hemisphere in winter, J. Atmos. Terr. Phys., 50, 197\u2013206, 1988.\u2002a","DOI":"10.1016\/0021-9169(88)90068-2"},{"key":"ref39","doi-asserted-by":"crossref","unstructured":"Lauvset, S. K., Tjiputra, J., and Muri, H.: Climate engineering and the ocean: effects on biogeochemistry and primary production, Biogeosciences, 14, 5675\u20135691, https:\/\/doi.org\/10.5194\/bg-14-5675-2017, 2017.\u2002a","DOI":"10.5194\/bg-14-5675-2017"},{"key":"ref40","doi-asserted-by":"crossref","unstructured":"Lindzen, R. S.: Turbulence and stress owing to gravity wave and tidal break-down, J. Geophys. Res.-Ocean., 86, 9707\u20139714, 1981.\u2002a","DOI":"10.1029\/JC086iC10p09707"},{"key":"ref41","doi-asserted-by":"crossref","unstructured":"Lu, H., Baldwin, M. P., Gray, L. J., and Jarvis, M. J.: Decadal-scale changes in the effect of the qbo on the northern stratospheric polar vortex, J. Geophys. Res.-Atmos., 113, D10114, https:\/\/doi.org\/10.1029\/2007JD009647, 2008.\u2002a","DOI":"10.1029\/2007JD009647"},{"key":"ref42","doi-asserted-by":"crossref","unstructured":"Matsuno, T.: Vertical propagation of stationary planetary waves in the winter northern hemisphere, J. Atmos. Sci., 27, 871\u2013883, 1970.\u2002a","DOI":"10.1175\/1520-0469(1970)027<0871:VPOSPW>2.0.CO;2"},{"key":"ref43","doi-asserted-by":"crossref","unstructured":"Mills, M. J., Richter, J. H., Tilmes, S., Kravitz, B., MacMartin, D. G., Glanville, A. A., Tribbia, J. J., Lamarque, J.-F., Vitt, F., Schmidt, A., Gettelman, A., Hannay, C., Bacmeister, J. T., and Kinnison, D. E.: Radiative and chemical response to interactive stratospheric sulfate aerosols in fully coupled CESM1(WACCM), J. Geophys. Res.-Atmos., 122, 61\u201378, https:\/\/doi.org\/10.1002\/2017JD027006, 2017.\u2002a, b, c","DOI":"10.1002\/2017JD027006"},{"key":"ref44","doi-asserted-by":"crossref","unstructured":"Mills, M. J., Schmidt, A., Easter, R., Solomon, S., Kinnison, D. E., Ghan, S. J., Neely III, R. R., Marsh, D. R., Conley, A., Bardeen, C. G., and Gettelman, A.: Global volcanic aerosol properties derived from emissions, 1990\u20132014, using cesm1 (waccm), J. Geophys. Res.-Atmos.,\n121, 2332\u20132348, 2016.\u2002a","DOI":"10.1002\/2015JD024290"},{"key":"ref45","doi-asserted-by":"crossref","unstructured":"Mousavi, S. V., Karami, K., Tilmes, S., Muri, H., Xia, L., and Rezaei, A.: Future dust concentration over the Middle East and North Africa region under global warming and stratospheric aerosol intervention scenarios, Atmos. Chem. Phys. Discuss. [preprint], https:\/\/doi.org\/10.5194\/acp-2022-370, in review, 2022.\u2002a","DOI":"10.5194\/acp-2022-370-supplement"},{"key":"ref46","doi-asserted-by":"crossref","unstructured":"Naoe, H. and Shibata, K.: Equatorial quasi-biennial oscillation influence on northern winter extratropical circulation, J. Geophys. Res.-Atmos., 115, D19102, https:\/\/doi.org\/10.1029\/2009JD012952, 2010.\u2002a, b","DOI":"10.1029\/2009JD012952"},{"key":"ref47","unstructured":"National Center for Atmospheric Research:\nGeoengineering Large Ensemble Project (GLENS), NCAR [data set], https:\/\/www.cesm.ucar.edu\/projects\/community-projects\/GLENS\/,\nlast access: 29 March 2023.\u2002a"},{"key":"ref48","doi-asserted-by":"crossref","unstructured":"Okamoto, K., Sato, K., and Akiyoshi, H.: A study on the formation and trend of the brewer-dobson circulation, J. Geophys. Res.-Atmos., 116, D10117, https:\/\/doi.org\/10.1029\/2010JD014953, 2011.\u2002a, b","DOI":"10.1029\/2010JD014953"},{"key":"ref49","doi-asserted-by":"crossref","unstructured":"O'Sullivan, D. and Dunkerton, T. J.: Seasonal development of the\nextratropical QBO in a numerical model of the middle atmosphere, J. Atmos. Sci., 51, 3706\u20133721, 1994.\u2002a","DOI":"10.1175\/1520-0469(1994)051<3706:SDOTEQ>2.0.CO;2"},{"key":"ref50","doi-asserted-by":"crossref","unstructured":"Parker, A., and Irvine, P. J.: The risk of termination shock from solar geoengineering, Earth's Future, 6, 456\u2013467, 2018.\u2002a","DOI":"10.1002\/2017EF000735"},{"key":"ref51","doi-asserted-by":"crossref","unstructured":"Plumb, R. A. and Bell, R. C.: A model of the quasi-biennial oscillation on an equatorial beta-plane, Q. J. Roy. Meteorol. Soc., 108, 335\u2013352, 1982.\u2002a, b, c","DOI":"10.1002\/qj.49710845604"},{"key":"ref52","doi-asserted-by":"crossref","unstructured":"Raftery, A. E., Zimmer, A., Frierson, D. M., Startz, R., and Liu, P.: Less than 2\u2009\u2218C warming by 2100 unlikely, Nat. Clim. Change, 7, 637\u2013641, https:\/\/doi.org\/10.1038\/nclimate3352, 2017.\u2002a","DOI":"10.1038\/nclimate3352"},{"key":"ref53","doi-asserted-by":"crossref","unstructured":"Rahman, A. A., Artaxo, P., Asrat, A., and Parker, A.: Developing countries must lead on solar geoengineering research, Nature, 556, 22\u201324, https:\/\/doi.org\/10.1038\/d41586-018-03917-8,\n2018.\u2002a","DOI":"10.1038\/d41586-018-03917-8"},{"key":"ref54","doi-asserted-by":"crossref","unstructured":"Randel, W. J., Wu, F., Swinbank, R., Nash, J., and O'Neill, A.: Global qbo circulation derived from ukmo stratospheric analyses, J. Atmos. Sci., 56, 457\u2013474, 1999.\u2002a","DOI":"10.1175\/1520-0469(1999)056<0457:GQCDFU>2.0.CO;2"},{"key":"ref55","doi-asserted-by":"crossref","unstructured":"Rasch, P. J., Tilmes, S., Turco, R. P., Robock, A., Oman, L., Chen, C.-C., Stenchikov, G. L., and Garcia, R. R.: An overview of geoengineering of climate using stratospheric sulphate aerosols, Philos. T. R. Soc. A, 366, 4007\u20134037, https:\/\/doi.org\/10.1098\/rsta.2008.0131, 2008.\u2002a","DOI":"10.1098\/rsta.2008.0131"},{"key":"ref56","doi-asserted-by":"crossref","unstructured":"Rao, J., Garfinkel, C. I., and White, I. P.: Projected strengthening of the extratropical surface impacts of the stratospheric quasi-biennial oscillation, Geophys. Res. Lett., 47, e2020GL089149, https:\/\/doi.org\/10.1029\/2020GL089149, 2020.\u2002a, b","DOI":"10.1029\/2020GL089149"},{"key":"ref57","doi-asserted-by":"crossref","unstructured":"Rao, J., Garfinkel, C., and White, I. P.: Impact of the quasi-biennial oscillation on the northern winter stratospheric polar vortex in CMIP5\/6 models, J. Clim., 33, 4787\u20134813, 2020b.\u2002a","DOI":"10.1175\/JCLI-D-19-0663.1"},{"key":"ref58","doi-asserted-by":"crossref","unstructured":"Rezaei, A., Karami, K., Tilmes, S., and Moore, J. C.: Changes in global teleconnection patterns under global warming and stratospheric aerosol intervention scenarios, EGUsphere [preprint], https:\/\/doi.org\/10.5194\/egusphere-2022-974, 2022.\u2002a","DOI":"10.5194\/egusphere-2022-974-supplement"},{"key":"ref59","doi-asserted-by":"crossref","unstructured":"Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N., and Rafaj, P.: Rcp8.5 \u2013 a scenario of comparatively high greenhouse gas emissions, Climatic Change, 109, 33\u201357, https:\/\/doi.org\/10.1007\/s10584-011-0149-y, 2011.\u2002a, b","DOI":"10.1007\/s10584-011-0149-y"},{"key":"ref60","doi-asserted-by":"crossref","unstructured":"Ribera, P., Pe\u00f1a-Ortiz, C., Garcia-Herrera, R., Gallego, D., Gimeno, L., and Hern\u00e1ndez, E.: Detection of the secondary meridional circulation\nassociated with the quasi-biennial oscillation, J. Geophys. Res.-Atmos., 109, D18112, https:\/\/doi.org\/10.1029\/2003JD004363, 2004.\u2002a, b","DOI":"10.1029\/2003JD004363"},{"key":"ref61","doi-asserted-by":"crossref","unstructured":"Richter, J. H., Tilmes, S., Mills, M. J., Tribbia, J. J., Kravitz, B., MacMartin, D. G., Vitt, F., and Lamarque, J.-F.: Stratospheric dynamical response and ozone feedbacks in the presence of SO2 injections, J. Geophys. Res.-Atmos., 122, 12\u2013557, https:\/\/doi.org\/10.1002\/2017JD026912, 2017.\u2002a, b","DOI":"10.1002\/2017JD026912"},{"key":"ref62","doi-asserted-by":"crossref","unstructured":"Richter, J. H., Butchart, N., Kawatani, Y., Bushell, A. C., Holt, L., and Serva, F.: Response of the quasi-biennial oscillation to a warming climate in global climate models, Q. J. Roy. Meteorol. Soc., 148, 1490\u20131518, 2022.\u2002a, b","DOI":"10.1002\/qj.3749"},{"key":"ref63","doi-asserted-by":"crossref","unstructured":"Richter, J. H., Sassi, F., and Garcia, R. R.: Toward a physically based gravity wave source parameterization in a general circulation model, J. Atmos. Sci., 67, 136\u2013156, 2010.\u2002a","DOI":"10.1175\/2009JAS3112.1"},{"key":"ref64","doi-asserted-by":"crossref","unstructured":"Richter, J. H., Tilmes, S., Glanville, A., Kravitz, B., MacMartin, D. G., Mills, M. J., Tribbia, J. J., Kravitz, B., MacMartin, D. G., Vitt, F., and Lamarque, J.-F.: Stratospheric response in the first geoengineering simulation meeting multiple surface climate objectives, J. Geophys. Res.-Atmos., 123, 5762\u20135782, https:\/\/doi.org\/10.1029\/2018JD028285, 2018.\u2002a, b, c, d, e","DOI":"10.1029\/2018JD028285"},{"key":"ref65","doi-asserted-by":"crossref","unstructured":"Robertson, A. and Vitart, F.: Sub-seasonal to seasonal prediction: the gap between weather and climate forecasting, Elsevier, https:\/\/doi.org\/10.1016\/C2016-0-01594-2, 2020.\u2002a","DOI":"10.1016\/C2016-0-01594-2"},{"key":"ref66","doi-asserted-by":"crossref","unstructured":"Robock, A.: 20 reasons why geoengineering may be a bad idea, Bull.\nAtom. Sci., 64, 14\u201318, 2008.\u2002a","DOI":"10.1080\/00963402.2008.11461140"},{"key":"ref67","doi-asserted-by":"crossref","unstructured":"Ruzmaikin, A., Feynman, J., Jiang, X., and Yung, Y. L.: Extratropical signature of the quasi-biennial oscillation, J. Geophys. Res.-Atmos., 110, D11111, https:\/\/doi.org\/10.1029\/2004JD005382, 2005.\u2002a, b","DOI":"10.1029\/2004JD005382"},{"key":"ref68","doi-asserted-by":"crossref","unstructured":"Schirber, S., Manzini, E., Krismer, T., and Giorgetta, M.: The quasi-biennial oscillation in a warmer climate: Sensitivity to different gravity wave parameterizations, Clim. Dynam., 45, 825\u2013836, 2015.\u2002a","DOI":"10.1007\/s00382-014-2314-2"},{"key":"ref69","doi-asserted-by":"crossref","unstructured":"Sigmond, M. and Shepherd, T. G.: Compensation between resolved wave driving and parameterized orographic gravity wave\ndriving of the brewer\u2013dobson circulation and its response to climate change, J. Clim., 27, 5601\u20135610, 2014.\u2002a","DOI":"10.1175\/JCLI-D-13-00644.1"},{"key":"ref70","doi-asserted-by":"crossref","unstructured":"Son, S.-W., Lim, Y., Yoo, C., Hendon, H. H., and Kim, J.: Stratospheric control of the madden\u2013julian oscillation, J. Clim., 30, 1909\u20131922, 2017.\u2002a","DOI":"10.1175\/JCLI-D-16-0620.1"},{"key":"ref71","doi-asserted-by":"crossref","unstructured":"Stenchikov, G., Hamilton, K., Robock, A., Ramaswamy, V., and Schwarzkopf, M. D.: Arctic oscillation response to the 1991 pinatubo eruption in the SKYHI general circulation model with a realistic quasi-biennial oscillation, J. Geophys. Res.-Atmos., 109, D03112, https:\/\/doi.org\/10.1029\/2003JD003699, 2004.\u2002a","DOI":"10.1029\/2003JD003699"},{"key":"ref72","doi-asserted-by":"crossref","unstructured":"Stenchikov, G., Robock, A., Ramaswamy, V., Schwarzkopf, M. D., Hamilton, K.,\nand Ramachandran, S.: Arctic oscillation response to the 1991 mount\npinatubo eruption: Effects of volcanic aerosols and ozone depletion, J. Geophys. Res.-Atmos., 107, 4803, https:\/\/doi.org\/10.1029\/2002JD002090, 2002.\u2002a","DOI":"10.1029\/2002JD002090"},{"key":"ref73","doi-asserted-by":"crossref","unstructured":"Sun, C., and Li, J.: Space\u2013time spectral analysis of the southern hemisphere daily 500-hpa geopotential height, Mon. Weather Rev., 140, 3844\u20133856, 2012.\u2002a","DOI":"10.1175\/MWR-D-12-00019.1"},{"key":"ref74","doi-asserted-by":"crossref","unstructured":"Sun, C., Li, J., Jin, F.-F., and Xie, F.: Contrasting meridional structures of stratospheric and tropospheric planetary wave variability in the northern hemisphere, Tellus A, 66, 25303, https:\/\/doi.org\/10.3402\/tellusa.v66.25303, 2014.\u2002a","DOI":"10.3402\/tellusa.v66.25303"},{"key":"ref75","doi-asserted-by":"crossref","unstructured":"Tilmes, S., Richter, J., Mills, M. J., Kravitz, B., MacMartin, D. G., Garcia, R. R., Kinnison, D. E., Lamarque, J.-F., Tribbia, J., and Vitt, F.: Effects of different stratospheric SO2 injection altitudes on stratospheric chemistry and dynamics, J. Geophys. Res.-Atmos., 123, 4654\u20134673, https:\/\/doi.org\/10.1002\/2017JD028146, 2018.\u2002a, b, c","DOI":"10.1002\/2017JD028146"},{"key":"ref76","doi-asserted-by":"crossref","unstructured":"Tilmes, S., Muller, R., and Salawitch, R.: The sensitivity of polar ozone depletion to proposed geoengineering schemes, Science, 320, 1201\u20131204, 2008.\u2002a","DOI":"10.1126\/science.1153966"},{"key":"ref77","doi-asserted-by":"crossref","unstructured":"Tilmes, S., Garcia, R. R., Kinnison, D. E., Gettelman, A., and Rasch, P. J.: Impact of geoengineered aerosols on the troposphere and stratosphere, J. Geophys. Res.-Atmos., 114, D12305, https:\/\/doi.org\/10.1029\/2008JD011420, 2009.\u2002a, b","DOI":"10.1029\/2008JD011420"},{"key":"ref78","doi-asserted-by":"crossref","unstructured":"Tilmes, S., Richter, J. H., Kravitz, B., MacMartin, D. G., Mills, M. J., Simpson, I. R., Glanville, A. S., Fasullo, J. T., Phillips, A. S., Lamarque, J.-F., Tribbia, J., Edwards, J., Mickelson, S., and Ghosh, S.: Cesm1 (waccm) stratospheric aerosol geoengineering large ensemble project,\nBull. Am. Meteorol. Soc., 99, 2361\u20132371, 2018b.\u2002a","DOI":"10.1175\/BAMS-D-17-0267.1"},{"key":"ref79","doi-asserted-by":"crossref","unstructured":"Tung, K.: A theory of stationary long waves, part III: Quasi-normal modes in a singular waveguide, Mon. Weather Rev., 107, 751\u2013774, 1979.\u2002a","DOI":"10.1175\/1520-0493(1979)107<0751:ATOSLW>2.0.CO;2"},{"key":"ref80","doi-asserted-by":"crossref","unstructured":"Wang, J., Kim, H.-M., and Chang, E. K.: Interannual modulation of northern hemisphere winter storm tracks by the qbo, Geophys. Res. Lett.,\n45, 2786\u20132794, 2018.\u2002a","DOI":"10.1002\/2017GL076929"},{"key":"ref81","doi-asserted-by":"crossref","unstructured":"Watson, P. A. and Gray, L. J.: How does the quasi-biennial oscillation affect the stratospheric polar vortex?, J. Atmos. Sci., 71, 391\u2013409, 2014.\u2002a","DOI":"10.1175\/JAS-D-13-096.1"},{"key":"ref82","doi-asserted-by":"crossref","unstructured":"Wei, K., Chen, W., and Huang, R.: Association of tropical pacific sea surface temperatures with the stratospheric holton-tan oscillation in the northern\nhemisphere winter, Geophys. Res. Lett., 34, L16814, https:\/\/doi.org\/10.1029\/2007GL030478, 2007.\u2002a, b","DOI":"10.1029\/2007GL030478"},{"key":"ref83","doi-asserted-by":"crossref","unstructured":"Weinberger, I., Garfinkel, C. I., White, I. P., and Birner, T.: The efficiency of upward wave propagation near the tropopause: importance of the form of the refractive index, J. Atmos. Sci., 78, 2605\u20132617, https:\/\/doi.org\/10.1175\/JAS-D-20-0267.1, 2021.\u2002a","DOI":"10.1175\/JAS-D-20-0267.1"},{"key":"ref84","doi-asserted-by":"crossref","unstructured":"Yamashita, Y., Akiyoshi, H., and Takahashi, M.: Dynamical response in the northern hemisphere midlatitude and high-latitude winter to the qbo simulated by ccsr\/nies ccm, J. Geophys. Res.-Atmos., 116, D06118, https:\/\/doi.org\/10.1029\/2010JD015016, 2011.\u2002a, b","DOI":"10.1029\/2010JD015016"}],"container-title":["Atmospheric Chemistry and Physics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/acp.copernicus.org\/articles\/23\/3799\/2023\/acp-23-3799-2023.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,31]],"date-time":"2023-03-31T08:33:53Z","timestamp":1680251633000},"score":1,"resource":{"primary":{"URL":"https:\/\/acp.copernicus.org\/articles\/23\/3799\/2023\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3,31]]},"references-count":84,"journal-issue":{"issue":"6","published-online":{"date-parts":[[2023]]}},"URL":"http:\/\/dx.doi.org\/10.5194\/acp-23-3799-2023","relation":{"has-preprint":[{"id-type":"doi","id":"10.5194\/acp-2022-694","asserted-by":"subject"}],"has-review":[{"id-type":"doi","id":"10.5194\/acp-2022-694-RC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2022-694-AC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2022-694-AC3","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2022-694-RC2","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2022-694-AC2","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2022-694-RC2","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/acp-2022-694-AC3","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/acp-2022-694-AC2","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/acp-2022-694-RC1","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/acp-2022-694-AC1","asserted-by":"object"}]},"ISSN":["1680-7324"],"issn-type":[{"value":"1680-7324","type":"electronic"}],"subject":["Atmospheric Science"],"published":{"date-parts":[[2023,3,31]]}}} |