uni-leipzig-open-access/json/acp-23-15473-2023
2024-01-25 14:46:53 +01:00

1 line
No EOL
33 KiB
Text

{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,12,20]],"date-time":"2023-12-20T00:36:22Z","timestamp":1703032582819},"reference-count":59,"publisher":"Copernicus GmbH","issue":"24","license":[{"start":{"date-parts":[[2023,12,19]],"date-time":"2023-12-19T00:00:00Z","timestamp":1702944000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","award":["project number 268020496 \u2013 TRR 172"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Atmos. Chem. Phys."],"abstract":"<jats:p>Abstract. This study evaluates methods to derive the surface mixing layer (SML) height of the Arctic atmospheric boundary layer (ABL) using in situ measurements inside the Arctic ABL during winter and the transition period to spring. An instrumental payload carried by a tethered balloon was used for the measurements between December 2019 and May 2020 during the year-long Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. Vertically highly resolved (centimeter scale) in situ profile measurements of mean and turbulent parameters were obtained, reaching from the sea ice to several hundred meters above ground. Two typical conditions of the Arctic ABL over sea ice were identified: cloudless situations with a shallow surface-based inversion and cloudy conditions with an elevated inversion. Both conditions are associated with significantly different SML heights whose determination as accurately as possible is of great importance for many applications. We used the measured turbulence profile data to define a reference of the SML height. With this reference, a more precise critical bulk Richardson number of 0.12 was derived, which allows an extension of the SML height determination to regular radiosoundings. Furthermore, we have tested the applicability of the Monin\u2013Obukhov similarity theory to derive SML heights based on measured turbulent surface fluxes. The application of the different approaches and their advantages and disadvantages are discussed.\n <\/jats:p>","DOI":"10.5194\/acp-23-15473-2023","type":"journal-article","created":{"date-parts":[[2023,12,19]],"date-time":"2023-12-19T07:04:41Z","timestamp":1702969481000},"page":"15473-15489","source":"Crossref","is-referenced-by-count":0,"title":["Evaluation of methods to determine the surface mixing layer height of the atmospheric boundary layer in the central Arctic during polar night and transition to polar day in cloudless and cloudy conditions"],"prefix":"10.5194","volume":"23","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5869-5752","authenticated-orcid":false,"given":"Elisa F.","family":"Akansu","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0395-9597","authenticated-orcid":false,"given":"Sandro","family":"Dahlke","sequence":"additional","affiliation":[]},{"given":"Holger","family":"Siebert","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4652-5561","authenticated-orcid":false,"given":"Manfred","family":"Wendisch","sequence":"additional","affiliation":[]}],"member":"3145","published-online":{"date-parts":[[2023,12,19]]},"reference":[{"key":"ref1","doi-asserted-by":"crossref","unstructured":"Achtert, P., Brooks, I. M., Brooks, B. J., Moat, B. I., Prytherch, J., Persson, P. O. G., and Tjernstr\u00f6m, M.: Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar, Atmos. Meas. Tech., 8, 4993\u20135007, https:\/\/doi.org\/10.5194\/amt-8-4993-2015, 2015.\u2002a","DOI":"10.5194\/amt-8-4993-2015"},{"key":"ref2","doi-asserted-by":"crossref","unstructured":"Akansu, E.\u00a0F., Siebert, H., Dahlke, S., Graeser, J., Jaiser, R., and Sommerfeld, A.: Tethered balloon-borne measurements of turbulence during the MOSAiC expedition from December 2019 to May 2020, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.962309, 2023a.\u2002a","DOI":"10.1038\/s41597-023-02582-5"},{"key":"ref3","doi-asserted-by":"crossref","unstructured":"Akansu, E.\u00a0F., Siebert, H., Dahlke, S., Graeser, J., Jaiser, R., and Sommerfeld, A.: Tethered Balloon-Borne Turbulence Measurements in Winter and Spring during the MOSAiC Expedition, Sci. Data, 10, 723, https:\/\/doi.org\/10.1038\/s41597-023-02582-5, 2023b.\u2002a","DOI":"10.1038\/s41597-023-02582-5"},{"key":"ref4","doi-asserted-by":"crossref","unstructured":"Andreas, E.\u00a0L., Claffy, K.\u00a0J., and Makshtas, A.\u00a0P.: Low-Level Atmospheric Jets And Inversions Over The Western Weddell Sea, Bound. Lay. Meteorol., 97, 459\u2013486, https:\/\/doi.org\/10.1023\/A:1002793831076, 2000.\u2002a, b, c, d","DOI":"10.1023\/A:1002793831076"},{"key":"ref5","doi-asserted-by":"crossref","unstructured":"Balsley, B.\u00a0B., Frehlich, R.\u00a0G., Jensen, M.\u00a0L., and Meillier, Y.: High-Resolution In Situ Profiling through the Stable Boundary Layer: Examination of the SBL Top in Terms of Minimum Shear, Maximum Stratification, and Turbulence Decrease, J.\u00a0Atmos. Sci., 63, 1291\u20131307, https:\/\/doi.org\/10.1175\/JAS3671.1, 2006.\u2002a","DOI":"10.1175\/JAS3671.1"},{"key":"ref6","doi-asserted-by":"crossref","unstructured":"Becker, R., Maturilli, M., Philipona, R., and Behrens, K.: In situ sounding of radiative flux profiles through the Arctic lower troposphere, Bull. Atmos. Sci. Technol., 1, 155\u2013177, https:\/\/doi.org\/10.1007\/s42865-020-00011-8, 2020.\u2002a","DOI":"10.1007\/s42865-020-00011-8"},{"key":"ref7","doi-asserted-by":"crossref","unstructured":"Bintanja, R., Graversen, R.\u00a0G., and Hazeleger, W.: Arctic winter warming amplified by the thermal inversion and consequent low infrared cooling to space, Nat. Geosci., 4, 758\u2013761, https:\/\/doi.org\/10.1038\/ngeo1285, 2011.\u2002a","DOI":"10.1038\/ngeo1285"},{"key":"ref8","doi-asserted-by":"crossref","unstructured":"Brooks, I.\u00a0M., Tjernstr\u00f6m, M., Persson, P. O.\u00a0G., Shupe, M.\u00a0D., Atkinson, R.\u00a0A., Canut, G., Birch, C.\u00a0E., Mauritsen, T., Sedlar, J., and Brooks, B.\u00a0J.: The Turbulent Structure of the Arctic Summer Boundary Layer During The Arctic Summer Cloud-Ocean Study, J.\u00a0Geophys. Res.-Atmos., 122, 9685\u20139704, https:\/\/doi.org\/10.1002\/2017JD027234, 2017.\u2002a, b, c, d, e, f","DOI":"10.1002\/2017JD027234"},{"key":"ref9","doi-asserted-by":"crossref","unstructured":"Cohen, J., Zhang, X., Francis, J., Jung, T., Kwok, R., Overland, J., Ballinger, T.\u00a0J., Bhatt, U.\u00a0S., Chen, H.\u00a0W., Coumou, D., Feldstein, S., Gu, H., Handorf, D., Henderson, G., Ionita, M., Kretschmer, M., Laliberte, F., Lee, S., Linderholm, H.\u00a0W., Maslowski, W., Peings, Y., Pfeiffer, K., Rigor, I., Semmler, T., Stroeve, J., Taylor, P.\u00a0C., Vavrus, S., Vihma, T., Wang, S., Wendisch, M., Wu, Y., and Yoon, J.: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather, Nat. Clim. Change, 10, 20\u201329, https:\/\/doi.org\/10.1038\/s41558-019-0662-y, 2020.\u2002a","DOI":"10.1038\/s41558-019-0662-y"},{"key":"ref10","unstructured":"Cox, C., Gallagher, M., Shupe, M., Persson, O., Blomquist, B., Grachev, A., Riihimaki, L., Kutchenreiter, M., Morris, V., Solomon, A., Brooks, I., Costa, D., Gottas, D., Hutchings, J., Osborn, J., Morris, S., Preusser, A., and Uttal, T.: Met City meteorological and surface flux measurements (Level 2 Processed), Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC), central Arctic, October 2019\u2013September 2020, Arctic Data Center [data set], https:\/\/doi.org\/10.18739\/A2TM7227K, 2023.\u2002a"},{"key":"ref11","doi-asserted-by":"crossref","unstructured":"Dai, C., Wang, Q., Kalogiros, J.\u00a0A., Lenschow, D.\u00a0H., Gao, Z., and Zhou, M.: Determining Boundary-Layer Height from Aircraft Measurements, Bound. Lay. Meteorol., 152, 277\u2013302, https:\/\/doi.org\/10.1007\/s10546-014-9929-z, 2014.\u2002a, b, c","DOI":"10.1007\/s10546-014-9929-z"},{"key":"ref12","doi-asserted-by":"crossref","unstructured":"Egerer, U., Gottschalk, M., Siebert, H., Ehrlich, A., and Wendisch, M.: The new BELUGA setup for collocated turbulence and radiation measurements using a tethered balloon: first applications in the cloudy Arctic boundary layer, Atmos. Meas. Tech., 12, 4019\u20134038, https:\/\/doi.org\/10.5194\/amt-12-4019-2019, 2019.\u2002a","DOI":"10.5194\/amt-12-4019-2019"},{"key":"ref13","unstructured":"Engelmann, R., Griesche, H., Radenz, M., Hofer, J., Althausen, D., Macke, A., and Hengst, R.: Total Sky Imager observations during POLARSTERN cruise PS122\/1, Troms\u00f8 to the northerns part of the Arctic Ocean, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.952150, 2022.\u2002a"},{"key":"ref14","unstructured":"Engelmann, R., Griesche, H., Radenz, M., Hofer, J., Althausen, D., Macke, A., and Hengst, R.: Total Sky Imager observations during POLARSTERN cruise PS122\/2, Arctic Ocean to Arctic Ocean, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.954038, 2023a.\u2002a"},{"key":"ref15","unstructured":"Engelmann, R., Griesche, H., Radenz, M., Hofer, J., Althausen, D., Macke, A., and Hengst, R.: Total Sky Imager observations during POLARSTERN cruise PS122\/3, Arctic Ocean\u00a0\u2013 Longyearbyen, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.954218, 2023b.\u2002a"},{"key":"ref16","doi-asserted-by":"crossref","unstructured":"Esau, I. and Zilitinkevich, S.: On the role of the planetary boundary layer depth in the climate system, Adv. Sci. Res., 4, 63\u201369, https:\/\/doi.org\/10.5194\/asr-4-63-2010, 2010.\u2002a","DOI":"10.5194\/asr-4-63-2010"},{"key":"ref17","doi-asserted-by":"crossref","unstructured":"Frehlich, R., Y. Meillier, M. L. Jensen, and B. Balsley: Turbulence Measurements with the CIRES Tethered Lifting System during CASES-99: Calibration and Spectral Analysis of Temperature and Velocity. J. Atmos. Sci., 60, 2487\u20132495, https:\/\/doi.org\/10.1175\/1520-0469(2003)060&amp;lt;2487:TMWTCT&amp;gt;2.0.CO;2, 2003.\u2002a","DOI":"10.1175\/1520-0469(2003)060<2487:TMWTCT>2.0.CO;2"},{"key":"ref18","unstructured":"Garratt, J.\u00a0R.: The atmospheric boundary layer (transferred to digital print), Cambridge: Cambridge University Press, ISBN 0521380529, 1997.\u2002a"},{"key":"ref19","doi-asserted-by":"crossref","unstructured":"Gierens, R., Kneifel, S., Shupe, M. D., Ebell, K., Maturilli, M., and L\u00f6hnert, U.: Low-level mixed-phase clouds in a complex Arctic environment, Atmos. Chem. Phys., 20, 3459\u20133481, https:\/\/doi.org\/10.5194\/acp-20-3459-2020, 2020.\u2002a","DOI":"10.5194\/acp-20-3459-2020"},{"key":"ref20","doi-asserted-by":"crossref","unstructured":"Grachev, A.\u00a0A., Andreas, E.\u00a0L., Fairall, C.\u00a0W., Guest, P.\u00a0S., and Persson, P. O.\u00a0G.: The Critical Richardson Number and Limits of Applicability of Local Similarity Theory in the Stable Boundary Layer, Bound. Lay. Meteorol., 147, 51\u201382, https:\/\/doi.org\/10.1007\/s10546-012-9771-0, 2013.\u2002a","DOI":"10.1007\/s10546-012-9771-0"},{"key":"ref21","doi-asserted-by":"crossref","unstructured":"Graversen, R.\u00a0G., Mauritsen, T., Tjernstr\u00f6m, M., K\u00e4ll\u00e9n, E., and Svensson, G.: Vertical structure of recent Arctic warming, Nature, 451, 53\u201356, https:\/\/doi.org\/10.1038\/nature06502, 2008.\u2002a","DOI":"10.1038\/nature06502"},{"key":"ref22","doi-asserted-by":"crossref","unstructured":"Griesche, H. J., Seifert, P., Ansmann, A., Baars, H., Barrientos Velasco, C., B\u00fchl, J., Engelmann, R., Radenz, M., Zhenping, Y., and Macke, A.: Application of the shipborne remote sensing supersite OCEANET for profiling of Arctic aerosols and clouds during Polarstern cruise PS106, Atmos. Meas. Tech., 13, 5335\u20135358, https:\/\/doi.org\/10.5194\/amt-13-5335-2020, 2020.\u2002a","DOI":"10.5194\/amt-13-5335-2020"},{"key":"ref23","doi-asserted-by":"crossref","unstructured":"Griesche, H. J., Ohneiser, K., Seifert, P., Radenz, M., Engelmann, R., and Ansmann, A.: Contrasting ice formation in Arctic clouds: surface-coupled vs. surface-decoupled clouds, Atmos. Chem. Phys., 21, 10357\u201310374, https:\/\/doi.org\/10.5194\/acp-21-10357-2021, 2021.\u2002a","DOI":"10.5194\/acp-21-10357-2021"},{"key":"ref24","doi-asserted-by":"crossref","unstructured":"Heinemann, G. and Rose, L.: Surface energy balance, parameterizations of boundary-layer heights and the application of resistance laws near an Antarctic Ice Shelf front, Bound. Lay. Meteorol., 51, 123\u2013158, https:\/\/doi.org\/10.1007\/BF00120464, 1990.\u2002a","DOI":"10.1007\/BF00120464"},{"key":"ref25","doi-asserted-by":"crossref","unstructured":"Intrieri, J.\u00a0M., Fairall, C.\u00a0W., Shupe, M.\u00a0D., Persson, P. O.\u00a0G., Andreas, E.\u00a0L., Guest, P.\u00a0S., and Moritz, R.\u00a0E.: An annual cycle of Arctic surface cloud forcing at SHEBA, J.\u00a0Geophys. Res., 107, 8039, https:\/\/doi.org\/10.1029\/2000JC000439, 2002a.\u2002a, b","DOI":"10.1029\/2000JC000439"},{"key":"ref26","doi-asserted-by":"crossref","unstructured":"Intrieri, J.\u00a0M., Shupe, M.\u00a0D., Uttal, T., and McCarty, B.\u00a0J.: An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA, J.\u00a0Geophys. Res., 107, 8030, https:\/\/doi.org\/10.1029\/2000JC000423, 2002b.\u2002a","DOI":"10.1029\/2000JC000423"},{"key":"ref27","doi-asserted-by":"crossref","unstructured":"Jozef, G., Cassano, J., Dahlke, S., and de Boer, G.: Testing the efficacy of atmospheric boundary layer height detection algorithms using uncrewed aircraft system data from MOSAiC, Atmos. Meas. Tech., 15, 4001\u20134022, https:\/\/doi.org\/10.5194\/amt-15-4001-2022, 2022.\u2002a, b, c, d, e","DOI":"10.5194\/amt-15-4001-2022"},{"key":"ref28","unstructured":"Kitaigorodskii, S.\u00a0A.: On the computation of the thickness of the wind-mixing layer in the ocean, Izv. Akad. Nauk Uz SSSR. Ser. Geofiz., 3, 425 \u2013 431, 1960.\u2002a"},{"key":"ref29","doi-asserted-by":"crossref","unstructured":"Knust, R.: Polar Research and Supply Vessel POLARSTERN Operated by the Alfred-Wegener-Institute, Journal of Large-Scale Research Facilities (JLSRF), 3, A119\u2013A119, https:\/\/doi.org\/10.17815\/jlsrf-3-163, 2017.\u2002a","DOI":"10.17815\/jlsrf-3-163"},{"key":"ref30","doi-asserted-by":"crossref","unstructured":"L\u00fcpkes, C., Vihma, T., Jakobson, E., K\u00f6nig-Langlo, G., and Tetzlaff, A.: Meteorological observations from ship cruises during summer to the central Arctic: A comparison with reanalysis data, Geophys. Res. Lett., 37, L09810, https:\/\/doi.org\/10.1029\/2010GL042724, 2010.\u2002a","DOI":"10.1029\/2010GL042724"},{"key":"ref31","doi-asserted-by":"crossref","unstructured":"Mahrt, L.: Modelling the depth of the stable boundary-layer, Bound. Lay. Meteorol., 21, 3\u201319, https:\/\/doi.org\/10.1007\/BF00119363, 1981.\u2002a, b","DOI":"10.1007\/BF00119363"},{"key":"ref32","unstructured":"Maturilli, M., Sommer, M., Holdridge, D.\u00a0J., Dahlke, S., Graeser, J., Sommerfeld, A., Jaiser, R., Deckelmann, H., and Schulz, A.: MOSAiC radiosonde data (level\u00a03), PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.943870, 2022.\u2002a"},{"key":"ref33","unstructured":"Mauritsen, T.: On the Arctic Boundary Layer: From Turbulence to Climate, PhD thesis, Stockholm: Meteorologiska institutionen (MISU), http:\/\/urn.kb.se\/resolve?urn=urn:nbn:se:su:diva-6585 (last access: 14 December 2023), 2007.\u2002a"},{"key":"ref34","doi-asserted-by":"crossref","unstructured":"Mayfield, J.\u00a0A. and Fochesatto, G.\u00a0J.: The Layered Structure of the Winter Atmospheric Boundary Layer in the Interior of Alaska, J.\u00a0Appl. Meteorol. Clim., 52, 953\u2013973, https:\/\/doi.org\/10.1175\/JAMC-D-12-01.1, 2013.\u2002a","DOI":"10.1175\/JAMC-D-12-01.1"},{"key":"ref35","doi-asserted-by":"crossref","unstructured":"Morrison, H., de\u00a0Boer, G., Feingold, G., Harrington, J., Shupe, M.\u00a0D., and Sulia, K.: Resilience of persistent Arctic mixed-phase clouds, Nat. Geosci., 5, 11\u201317, https:\/\/doi.org\/10.1038\/ngeo1332, 2012.\u2002a, b, c","DOI":"10.1038\/ngeo1332"},{"key":"ref36","unstructured":"Nicolaus, M., Arndt, S., Birnbaum, G., and Katlein, C.: Visual panoramic photographs of the surface conditions during the MOSAiC campaign 2019\/20, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.938534, 2021.\u2002a"},{"key":"ref37","doi-asserted-by":"crossref","unstructured":"Nicolaus, M., Perovich, D.\u00a0K., Spreen, G., Granskog, M.\u00a0A., von Albedyll, L., Angelopoulos, M., Anhaus, P., Arndt, S., Belter, H.\u00a0J., Bessonov, V., Birnbaum, G., Brauchle, J., Calmer, R., Cardellach, E., Cheng, B., Clemens-Sewall, D., Dadic, R., Damm, E., de\u00a0Boer, G., Demir, O., Dethloff, K., Divine, D.\u00a0V., Fong, A.\u00a0A., Fons, S., Frey, M.\u00a0M., Fuchs, N., Gabarr\u00f3, C., Gerland, S., Goessling, H.\u00a0F., Gradinger, R., Haapala, J., Haas, C., Hamilton, J., Hannula, H.-R., Hendricks, S., Herber, A., Heuz\u00e9, C., Hoppmann, M., H\u00f8yland, K.\u00a0V., Huntemann, M., Hutchings, J.\u00a0K., Hwang, B., Itkin, P., Jacobi, H.-W., Jaggi, M., Jutila, A., Kaleschke, L., Katlein, C., Kolabutin, N., Krampe, D., Kristensen, S.\u00a0S., Krumpen, T., Kurtz, N., Lampert, A., Lange, B.\u00a0A., Lei, R., Light, B., Linhardt, F., Liston, G.\u00a0E., Loose, B., Macfarlane, A.\u00a0R., Mahmud, M., Matero, I.\u00a0O., Maus, S., Morgenstern, A., Naderpour, R., Nandan, V., Niubom, A., Oggier, M., Oppelt, N., P\u00e4tzold, F., Perron, C., Petrovsky, T., Pirazzini, R., Polashenski, C., Rabe, B., Raphael, I.\u00a0A., Regnery, J., Rex, M., Ricker, R., Riemann-Campe, K., Rinke, A., Rohde, J., Salganik, E., Scharien, R.\u00a0K., Schiller, M., Schneebeli, M., Semmling, M., Shimanchuk, E., Shupe, M.\u00a0D., Smith, M.\u00a0M., Smolyanitsky, V., Sokolov, V., Stanton, T., Stroeve, J., Thielke, L., Timofeeva, A., Tonboe, R.\u00a0T., Tavri, A., Tsamados, M., Wagner, D.\u00a0N., Watkins, D., Webster, M., and Wendisch, M.: Overview of the MOSAiC expedition: Snow and sea ice, Elementa: Science of the Anthropocene, 10, 000046, https:\/\/doi.org\/10.1525\/elementa.2021.000046, 2022.\u2002a","DOI":"10.1525\/elementa.2021.000046"},{"key":"ref38","doi-asserted-by":"crossref","unstructured":"Peng, S., Yang, Q., Shupe, M. D., Xi, X., Han, B., Chen, D., Dahlke, S., and Liu, C.: The characteristics of atmospheric boundary layer height over the Arctic Ocean during MOSAiC, Atmos. Chem. Phys., 23, 8683\u20138703, https:\/\/doi.org\/10.5194\/acp-23-8683-2023, 2023.\u2002a","DOI":"10.5194\/acp-23-8683-2023"},{"key":"ref39","doi-asserted-by":"crossref","unstructured":"Persson, P. O.\u00a0G., Fairall, C.\u00a0W., Andreas, E.\u00a0L., Guest, P.\u00a0S., and Perovich, D.\u00a0K.: Measurements near the Atmospheric Surface Flux Group tower at SHEBA: Near-surface conditions and surface energy budget, J.\u00a0Geophys. Res., 107, 8045, https:\/\/doi.org\/10.1029\/2000JC000705, 2002.\u2002a","DOI":"10.1029\/2000JC000705"},{"key":"ref40","doi-asserted-by":"crossref","unstructured":"Rabe, B., Heuz\u00e9, C., Regnery, J., Aksenov, Y., Allerholt, J., Athanase, M., Bai, Y., Basque, C., Bauch, D., Baumann, T.\u00a0M., Chen, D., Cole, S.\u00a0T., Craw, L., Davies, A., Damm, E., Dethloff, K., Divine, D.\u00a0V., Doglioni, F., Ebert, F., Fang, Y.-C., Fer, I., Fong, A.\u00a0A., Gradinger, R., Granskog, M.\u00a0A., Graupner, R., Haas, C., He, H., He, Y., Hoppmann, M., Janout, M., Kadko, D., Kanzow, T., Karam, S., Kawaguchi, Y., Koenig, Z., Kong, B., Krishfield, R.\u00a0A., Krumpen, T., Kuhlmey, D., Kuznetsov, I., Lan, M., Laukert, G., Lei, R., Li, T., Torres-Vald\u00e9s, S., Lin, L., Lin, L., Liu, H., Liu, N., Loose, B., Ma, X., McKay, R., Mallet, M., Mallett, R. D.\u00a0C., Maslowski, W., Mertens, C., Mohrholz, V., Muilwijk, M., Nicolaus, M., O'Brien, J.\u00a0K., Perovich, D., Ren, J., Rex, M., Ribeiro, N., Rinke, A., Schaffer, J., Schuffenhauer, I., Schulz, K., Shupe, M.\u00a0D., Shaw, W., Sokolov, V., Sommerfeld, A., Spreen, G., Stanton, T., Stephens, M., Su, J., Sukhikh, N., Sundfjord, A., Thomisch, K., Tippenhauer, S., Toole, J.\u00a0M., Vredenborg, M., Walter, M., Wang, H., Wang, L., Wang, Y., Wendisch, M., Zhao, J., Zhou, M., and Zhu, J.: Overview of the MOSAiC expedition: Physical oceanography, Elementa: Science of the Anthropocene, 10, 00062, https:\/\/doi.org\/10.1525\/elementa.2021.00062, 2022.\u2002a","DOI":"10.1525\/elementa.2021.00062"},{"key":"ref41","doi-asserted-by":"crossref","unstructured":"Sedlar, J. and Tjernstr\u00f6m, M.: Stratiform Cloud\u2013Inversion Characterization During the Arctic Melt Season, Bound. Lay. Meteorol., 132, 455\u2013474, https:\/\/doi.org\/10.1007\/s10546-009-9407-1, 2009.\u2002a","DOI":"10.1007\/s10546-009-9407-1"},{"key":"ref42","doi-asserted-by":"crossref","unstructured":"Serreze, M.\u00a0C. and Barry, R.\u00a0G.: Processes and impacts of Arctic amplification: A research synthesis, Global Planet. Change, 77, 85\u201396, https:\/\/doi.org\/10.1016\/j.gloplacha.2011.03.004, 2011.\u2002a","DOI":"10.1016\/j.gloplacha.2011.03.004"},{"key":"ref43","doi-asserted-by":"crossref","unstructured":"Shupe, M.\u00a0D. and Intrieri, J.\u00a0M.: Cloud Radiative Forcing of the Arctic Surface: The Influence of Cloud Properties, Surface Albedo, and Solar Zenith Angle, J.\u00a0Climate, 17, 616\u2013628, https:\/\/doi.org\/10.1175\/1520-0442(2004)017&amp;lt;0616:CRFOTA&amp;gt;2.0.CO;2, 2004.\u2002a","DOI":"10.1175\/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2"},{"key":"ref44","doi-asserted-by":"crossref","unstructured":"Shupe, M. D., Persson, P. O. G., Brooks, I. M., Tjernstr\u00f6m, M., Sedlar, J., Mauritsen, T., Sjogren, S., and Leck, C.: Cloud and boundary layer interactions over the Arctic sea ice in late summer, Atmos. Chem. Phys., 13, 9379\u20139399, https:\/\/doi.org\/10.5194\/acp-13-9379-2013, 2013.\u2002a, b, c","DOI":"10.5194\/acp-13-9379-2013"},{"key":"ref45","doi-asserted-by":"crossref","unstructured":"Shupe, M.\u00a0D., Rex, M., Blomquist, B., Persson, P. O.\u00a0G., Schmale, J., Uttal, T., Althausen, D., Angot, H., Archer, S., Bariteau, L., Beck, I., Bilberry, J., Bucci, S., Buck, C., Boyer, M., Brasseur, Z., Brooks, I.\u00a0M., Calmer, R., Cassano, J., Castro, V., Chu, D., Costa, D., Cox, C.\u00a0J., Creamean, J., Crewell, S., Dahlke, S., Damm, E., de\u00a0Boer, G., Deckelmann, H., Dethloff, K., D\u00fctsch, M., Ebell, K., Ehrlich, A., Ellis, J., Engelmann, R., Fong, A.\u00a0A., Frey, M.\u00a0M., Gallagher, M.\u00a0R., Ganzeveld, L., Gradinger, R., Graeser, J., Greenamyer, V., Griesche, H., Griffiths, S., Hamilton, J., Heinemann, G., Helmig, D., Herber, A., Heuz\u00e9, C., Hofer, J., Houchens, T., Howard, D., Inoue, J., Jacobi, H.-W., Jaiser, R., Jokinen, T., Jourdan, O., Jozef, G., King, W., Kirchgaessner, A., Klingebiel, M., Krassovski, M., Krumpen, T., Lampert, A., Landing, W., Laurila, T., Lawrence, D., Lonardi, M., Loose, B., L\u00fcpkes, C., Maahn, M., Macke, A., Maslowski, W., Marsay, C., Maturilli, M., Mech, M., Morris, S., Moser, M., Nicolaus, M., Ortega, P., Osborn, J., P\u00e4tzold, F., Perovich, D.\u00a0K., Pet\u00e4j\u00e4, T., Pilz, C., Pirazzini, R., Posman, K., Powers, H., Pratt, K.\u00a0A., Preu\u00dfer, A., Qu\u00e9l\u00e9ver, L., Radenz, M., Rabe, B., Rinke, A., Sachs, T., Schulz, A., Siebert, H., Silva, T., Solomon, A., Sommerfeld, A., Spreen, G., Stephens, M., Stohl, A., Svensson, G., Uin, J., Viegas, J., Voigt, C., von\u00a0der Gathen, P., Wehner, B., Welker, J.\u00a0M., Wendisch, M., Werner, M., Xie, Z., and Yue, F.: Overview of the MOSAiC expedition: Atmosphere, Elementa: Science of the Anthropocene, 10, 00060, https:\/\/doi.org\/10.1525\/elementa.2021.00060, 2022.\u2002a, b, c, d","DOI":"10.1525\/elementa.2021.00060"},{"key":"ref46","doi-asserted-by":"crossref","unstructured":"Siebert, H., Lehmann, K., and Wendisch, M.: Observations of Small-Scale Turbulence and Energy Dissipation Rates in the Cloudy Boundary Layer, J.\u00a0Atmos. Sci., 63, 1451\u20131466, https:\/\/doi.org\/10.1175\/JAS3687.1, 2006.\u2002a","DOI":"10.1175\/JAS3687.1"},{"key":"ref47","doi-asserted-by":"crossref","unstructured":"Solomon, A., Shupe, M.\u00a0D., Svensson, G., Barton, N.\u00a0P., Batrak, Y., Bazile, E., Day, J.\u00a0J., Doyle, J.\u00a0D., Frank, H.\u00a0P., Keeley, S., Remes, T., and Tolstykh, M.: The winter central Arctic surface energy budget: A model evaluation using observations from the MOSAiC campaign, Elementa: Science of the Anthropocene, 11, 00104, https:\/\/doi.org\/10.1525\/elementa.2022.00104, 2023.\u2002a","DOI":"10.1525\/elementa.2022.00104"},{"key":"ref48","doi-asserted-by":"crossref","unstructured":"Stramler, K., Genio, A. D.\u00a0D., and Rossow, W.\u00a0B.: Synoptically Driven Arctic Winter States, J.\u00a0Climate, 24, 1747\u20131762, https:\/\/doi.org\/10.1175\/2010JCLI3817.1, 2011.\u2002a","DOI":"10.1175\/2010JCLI3817.1"},{"key":"ref49","doi-asserted-by":"crossref","unstructured":"Stull, R.\u00a0B.: An introduction to boundary layer meteorology, Kluwer Academic Publishers, the Netherlands, ISBN 9027727686, 666\u00a0p., 1988.\u2002a, b, c, d","DOI":"10.1007\/978-94-009-3027-8_12"},{"key":"ref50","doi-asserted-by":"crossref","unstructured":"Tjernstr\u00f6m, M. and Graversen, R.\u00a0G.: The vertical structure of the lower Arctic troposphere analysed from observations and the ERA-40 reanalysis, Q.\u00a0J. Roy. Meteor. Soc., 135, 431\u2013443, https:\/\/doi.org\/10.1002\/qj.380, 2009.\u2002a, b, c, d, e","DOI":"10.1002\/qj.380"},{"key":"ref51","doi-asserted-by":"crossref","unstructured":"Turner, D.\u00a0D., Shupe, M.\u00a0D., and Zwink, A.\u00a0B.: Characteristic Atmospheric Radiative Heating Rate Profiles in Arctic Clouds as Observed at Barrow, Alaska, J.\u00a0Appl. Meteorol. Clim., 57, 953\u2013968, https:\/\/doi.org\/10.1175\/JAMC-D-17-0252.1, 2018.\u2002a","DOI":"10.1175\/JAMC-D-17-0252.1"},{"key":"ref52","doi-asserted-by":"crossref","unstructured":"Vickers, D. and Mahrt, L.: Evaluating Formulations of Stable Boundary Layer Height, J.\u00a0Appl. Meteorol. Clim., 43, 1736\u20131749, https:\/\/doi.org\/10.1175\/JAM2160.1, 2004.\u2002a, b, c, d, e, f, g","DOI":"10.1175\/JAM2160.1"},{"key":"ref53","doi-asserted-by":"crossref","unstructured":"Wendisch, M., Macke, A., Ehrlich, A., L\u00fcpkes, C., Mech, M., Chechin, D., Dethloff, K., Velasco, C.\u00a0B., Br\u00fcckner, M., Clemen, H.-C., Crewell, S., Donth, T., Dupuy, R., Egerer, U., Engelmann, R., Engler, C., Eppers, O., Gehrmann, M., Gong, X., Gourbeyre, C., Griesche, H., Hartmann, J., Hartmann, M., Heinold, B., Herber, A., Herrmann, H., Heygster, G., Hoor, P., Jafariserajehlou, S., J\u00e4kel, E., Jourdan, O., K\u00e4stner, U., Kecorius, S., Knudsen, E.\u00a0M., K\u00f6llner, F., Kretzschmar, J., Lelli, L., Leroy, D., Maturilli, M., Mei, L., Mertes, S., Mioche, G., Neuber, R., Nicolaus, M., Nomokonova, T., Notholt, J., Palm, M., van Pinxteren, M., Quaas, J., Richter, P., Ruiz-Donoso, E., Sch\u00e4fer, M., Schmieder, K., Schnaiter, M., Schneider, J., Schwarzenb\u00f6ck, A., Seifert, P., Shupe, M.\u00a0D., Siebert, H., Spreen, G., Stapf, J., Vogl, T., Welti, A., Wex, H., Zanatta, M., and Zeppenfeld, S.: The Arctic Cloud Puzzle: Using ACLOUD\/PASCAL Multiplatform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification, B.\u00a0Am. Meteorol. Soc., 100, 841 \u2013 871, https:\/\/doi.org\/10.1175\/BAMS-D-18-0072.1, 2019.\u2002a, b","DOI":"10.1175\/BAMS-D-18-0072.1"},{"key":"ref54","doi-asserted-by":"crossref","unstructured":"Wendisch, M., Br\u00fcckner, M., Crewell, S., Ehrlich, A., Notholt, J., L\u00fcpkes, C., Macke, A., Burrows, J.\u00a0P., Rinke, A., Quaas, J., Maturilli, M., Schemann, V., Shupe, M.\u00a0D., Akansu, E.\u00a0F., Barrientos-Velasco, C., B\u00e4rfuss, K., Blechschmidt, A.-M., Block, K., Bougoudis, I., Bozem, H., B\u00f6ckmann, C., Bracher, A., Bresson, H., Bretschneider, L., Buschmann, M., Chechin, D.\u00a0G., Chylik, J., Dahlke, S., Deneke, H., Dethloff, K., Donth, T., Dorn, W., Dupuy, R., Ebell, K., Egerer, U., Engelmann, R., Eppers, O., Gerdes, R., Gierens, R., Gorodetskaya, I.\u00a0V., Gottschalk, M., Griesche, H., Gryanik, V.\u00a0M., Handorf, D., Harm-Altst\u00e4dter, B., Hartmann, J., Hartmann, M., Heinold, B., Herber, A., Herrmann, H., Heygster, G., H\u00f6schel, I., Hofmann, Z., H\u00f6lemann, J., H\u00fcnerbein, A., Jafariserajehlou, S., J\u00e4kel, E., Jacobi, C., Janout, M., Jansen, F., Jourdan, O., Jur\u00e1nyi, Z., Kalesse-Los, H., Kanzow, T., K\u00e4thner, R., Kliesch, L.\u00a0L., Klingebiel, M., Knudsen, E.\u00a0M., Kov\u00e1cs, T., K\u00f6rtke, W., Krampe, D., Kretzschmar, J., Kreyling, D., Kulla, B., Kunkel, D., Lampert, A., Lauer, M., Lelli, L., Lerber, A.\u00a0v., Linke, O., L\u00f6hnert, U., Lonardi, M., Losa, S.\u00a0N., Losch, M., Maahn, M., Mech, M., Mei, L., Mertes, S., Metzner, E., Mewes, D., Michaelis, J., Mioche, G., Moser, M., Nakoudi, K., Neggers, R., Neuber, R., Nomokonova, T., Oelker, J., Papakonstantinou-Presvelou, I., P\u00e4tzold, F., Pefanis, V., Pohl, C., Pinxteren, M.\u00a0v., Radovan, A., Rhein, M., Rex, M., Richter, A., Risse, N., Ritter, C., Rostosky, P., Rozanov, V.\u00a0V., Donoso, E.\u00a0R., Garfias, P.\u00a0S., Salzmann, M., Schacht, J., Sch\u00e4fer, M., Schneider, J., Schnierstein, N., Seifert, P., Seo, S., Siebert, H., Soppa, M.\u00a0A., Spreen, G., Stachlewska, I.\u00a0S., Stapf, J., Stratmann, F., Tegen, I., Viceto, C., Voigt, C., Vountas, M., Walbr\u00f6l, A., Walter, M., Wehner, B., Wex, H., Willmes, S., Zanatta, M., and Zeppenfeld, S.: Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)3 Project, B.\u00a0Am. Meteorol. Soc., 104, E208\u2013E242, https:\/\/doi.org\/10.1175\/BAMS-D-21-0218.1, 2023a.\u2002a, b","DOI":"10.1175\/BAMS-D-21-0218.1"},{"key":"ref55","doi-asserted-by":"crossref","unstructured":"Wendisch, M., Stapf, J., Becker, S., Ehrlich, A., J\u00e4kel, E., Klingebiel, M., L\u00fcpkes, C., Sch\u00e4fer, M., and Shupe, M. D.: Effects of variable ice\u2013ocean surface properties and air mass transformation on the Arctic radiative energy budget, Atmos. Chem. Phys., 23, 9647\u20139667, https:\/\/doi.org\/10.5194\/acp-23-9647-2023, 2023b.\u2002a","DOI":"10.5194\/acp-23-9647-2023"},{"key":"ref56","unstructured":"Wyngaard, J.\u00a0C.: Turbulence in the atmosphere, Cambridge: Cambridge University Press, ISBN 9780521887694, 393\u00a0p., 2012.\u2002a"},{"key":"ref57","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Gao, Z., Li, D., Li, Y., Zhang, N., Zhao, X., and Chen, J.: On the computation of planetary boundary-layer height using the bulk Richardson number method, Geosci. Model Dev., 7, 2599\u20132611, https:\/\/doi.org\/10.5194\/gmd-7-2599-2014, 2014.\u2002a","DOI":"10.5194\/gmd-7-2599-2014"},{"key":"ref58","doi-asserted-by":"crossref","unstructured":"Zilitinkevich, S.: On the determination of the height of the Ekman boundary layer, Bound. Lay. Meteorol., 3, 141\u2013145, 1972.\u2002a, b","DOI":"10.1007\/BF02033914"},{"key":"ref59","doi-asserted-by":"crossref","unstructured":"Zilitinkevich, S. and Baklanov, A.: Calculation Of The Height Of The Stable Boundary Layer In Practical Applications, Bound. Lay. Meteorol., 105, 389\u2013409, https:\/\/doi.org\/10.1023\/A:1020376832738, 2002.\u2002a, b, c","DOI":"10.1023\/A:1020376832738"}],"container-title":["Atmospheric Chemistry and Physics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/acp.copernicus.org\/articles\/23\/15473\/2023\/acp-23-15473-2023.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,19]],"date-time":"2023-12-19T07:05:22Z","timestamp":1702969522000},"score":1,"resource":{"primary":{"URL":"https:\/\/acp.copernicus.org\/articles\/23\/15473\/2023\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12,19]]},"references-count":59,"journal-issue":{"issue":"24","published-online":{"date-parts":[[2023]]}},"URL":"http:\/\/dx.doi.org\/10.5194\/acp-23-15473-2023","relation":{"has-preprint":[{"id-type":"doi","id":"10.5194\/egusphere-2023-629","asserted-by":"subject"}],"has-review":[{"id-type":"doi","id":"10.5194\/egusphere-2023-629-RC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/egusphere-2023-629-AC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/egusphere-2023-629-RC2","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/egusphere-2023-629-AC2","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/egusphere-2023-629-RC1","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/egusphere-2023-629-AC1","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/egusphere-2023-629-RC2","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/egusphere-2023-629-AC2","asserted-by":"object"}],"is-part-of":[{"id-type":"doi","id":"10.1594\/PANGAEA.962309","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.943870","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.952150","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.954038","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.954218","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.938534","asserted-by":"subject"},{"id-type":"doi","id":"10.18739\/A2TM7227K","asserted-by":"subject"}]},"ISSN":["1680-7324"],"issn-type":[{"value":"1680-7324","type":"electronic"}],"subject":["Atmospheric Science"],"published":{"date-parts":[[2023,12,19]]}}}