uni-leipzig-open-access/json/tc-17-1247-2023

1 line
46 KiB
Plaintext

{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,1,19]],"date-time":"2024-01-19T03:22:11Z","timestamp":1705634531562},"reference-count":102,"publisher":"Copernicus GmbH","issue":"3","license":[{"start":{"date-parts":[[2023,3,15]],"date-time":"2023-03-15T00:00:00Z","timestamp":1678838400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100000270","name":"Natural Environment Research Council","doi-asserted-by":"publisher","award":["NE\/N011228\/1"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["The Cryosphere"],"abstract":"<jats:p>Abstract. Nioghalvfjerdsbrae, or 79\u2218\u2009N\u00a0Glacier, is the largest marine-terminating glacier draining the Northeast Greenland Ice Stream (NEGIS). In recent\nyears, its \u223c\u200970\u2009km long fringing ice shelf (hereafter referred to as the 79\u2218\u2009N\u00a0ice shelf) has thinned, and a number of small\ncalving events highlight its sensitivity to climate warming. With the continued retreat of the 79\u2218\u2009N\u00a0ice shelf and the potential for\naccelerated discharge from NEGIS, which drains\u00a016\u2009% of the Greenland Ice Sheet (GrIS), it has become increasingly important to understand the\nlong-term history of the ice shelf in order to put the recent changes into perspective and to judge their long-term significance. Here, we\nreconstruct the Holocene dynamics of the 79\u2218\u2009N\u00a0ice shelf by combining radiocarbon dating of marine molluscs from isostatically uplifted\nglaciomarine sediments with a multi-proxy investigation of two sediment cores recovered from Bl\u00e5s\u00f8, a large epishelf lake 2\u201313\u2009km\nfrom the current grounding line of 79\u2218\u2009N\u00a0Glacier. Our reconstructions suggest that the ice shelf retreated between\u00a08.5 and\n4.4\u2009ka\u2009cal\u2009BP, which is consistent with previous work charting grounding line and ice shelf retreat to the coast as well as open marine\nconditions in Nioghalvfjerdsbrae. Ice shelf retreat followed a period of enhanced atmospheric and ocean warming in the Early Holocene. Based on our\ndetailed sedimentological, microfaunal, and biomarker evidence, the ice shelf reformed at Bl\u00e5s\u00f8 after 4.4\u2009ka\u2009cal\u2009BP, reaching a\nthickness similar to present by 4.0\u2009ka\u2009cal\u2009BP. Reformation of the ice shelf coincides with decreasing atmospheric temperatures, the increased\ndominance of Polar Water, a reduction in Atlantic Water, and (near-)perennial sea-ice cover on the adjacent continental shelf. Along with\navailable climate archives, our data indicate that the 79\u2218\u2009N\u00a0ice shelf is susceptible to collapse at mean atmospheric and ocean temperatures \u223c\u20092\u2009\u2218C warmer than present, which could be achieved by the middle of this century under some emission scenarios. Finally,\nthe presence of \u201cmarine\u201d markers in the uppermost part of the Bl\u00e5s\u00f8 sediment cores could record modern ice shelf thinning, although the\nsignificance and precise timing of these changes requires further work.\n <\/jats:p>","DOI":"10.5194\/tc-17-1247-2023","type":"journal-article","created":{"date-parts":[[2023,3,15]],"date-time":"2023-03-15T09:41:23Z","timestamp":1678873283000},"page":"1247-1270","source":"Crossref","is-referenced-by-count":3,"title":["Holocene history of the 79\u00b0\u2009N ice shelf reconstructed from epishelf lake and uplifted glaciomarine sediments"],"prefix":"10.5194","volume":"17","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-1333-2544","authenticated-orcid":false,"given":"James A.","family":"Smith","sequence":"first","affiliation":[]},{"given":"Louise","family":"Callard","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2048-0019","authenticated-orcid":false,"given":"Michael J.","family":"Bentley","sequence":"additional","affiliation":[]},{"given":"Stewart S. R.","family":"Jamieson","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1725-0789","authenticated-orcid":false,"given":"Maria Luisa","family":"S\u00e1nchez-Montes","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7116-9976","authenticated-orcid":false,"given":"Timothy P.","family":"Lane","sequence":"additional","affiliation":[]},{"given":"Jeremy M.","family":"Lloyd","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1562-8768","authenticated-orcid":false,"given":"Erin L.","family":"McClymont","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8175-2658","authenticated-orcid":false,"given":"Christopher M.","family":"Darvill","sequence":"additional","affiliation":[]},{"given":"Brice R.","family":"Rea","sequence":"additional","affiliation":[]},{"given":"Colm","family":"O'Cofaigh","sequence":"additional","affiliation":[]},{"given":"Pauline","family":"Gulliver","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8555-072X","authenticated-orcid":false,"given":"Werner","family":"Ehrmann","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2988-0999","authenticated-orcid":false,"given":"Richard S.","family":"Jones","sequence":"additional","affiliation":[]},{"given":"David H.","family":"Roberts","sequence":"additional","affiliation":[]}],"member":"3145","published-online":{"date-parts":[[2023,3,15]]},"reference":[{"key":"ref1","doi-asserted-by":"crossref","unstructured":"An, L., Rignot, E., Wood, M., Willis, J. K., Mouginot, J., and Khan, S. A.:\nOcean melting of the Zachariae Isstrom and Nioghalvfjerdsfjorden glaciers, northeast Greenland, P.\u00a0Natl. Acad. Sci. USA, 118, https:\/\/doi.org\/10.1073\/pnas.2015483118, 2021.","DOI":"10.1073\/pnas.2015483118"},{"key":"ref2","doi-asserted-by":"crossref","unstructured":"Antoniades, D., Francus, P., Pienitz, R., St-Onge, G., and Vincent, W. F.:\nHolocene dynamics of the Arctic's largest ice shelf, P.\u00a0Natl. Acad. Sci. USA, 108, 18899\u201318904, https:\/\/doi.org\/10.1073\/pnas.1106378108, 2011.","DOI":"10.1073\/pnas.1106378108"},{"key":"ref3","doi-asserted-by":"crossref","unstructured":"Arz, H., Patzold, J., and Wefer, G.:\nClimatic changes during the last deglaciation recorded in sediment cores from the northeastern Brazilian Continental Margin, Geo-Mar. Lett., 19, 209\u2013218, 1999.","DOI":"10.1007\/s003670050111"},{"key":"ref4","doi-asserted-by":"crossref","unstructured":"Aschwanden, A., Fahnestock, M. A., Truffer, M., Brinkerhoff, D. J., Hock, R., Khroulev, C., Mottram, R., and Khan, S. A.:\nContribution of the Greenland Ice Sheet to sea level over the next millennium, Science Advances, 5, eaav9396, https:\/\/doi.org\/10.1126\/sciadv.aav9396, 2019.","DOI":"10.1126\/sciadv.aav9396"},{"key":"ref5","doi-asserted-by":"crossref","unstructured":"Axford, Y., Lasher, G. E., Kelly, M. A., Osterberg, E. C., Landis, J., Schellinger, G. C., Pfeiffer, A., Thompson, E., and Francis, D. R.:\nHolocene temperature history of northwest Greenland\u00a0\u2013 With new ice cap constraints and chironomid assemblages from Deltaso, Quaternary Sci. Rev., 215, 160\u2013172, https:\/\/doi.org\/10.1016\/j.quascirev.2019.05.011, 2019.","DOI":"10.1016\/j.quascirev.2019.05.011"},{"key":"ref6","doi-asserted-by":"crossref","unstructured":"Bahr, A., Lamy, F., Arz, H., Kuhlmann, H., and Wefer, G.:\nLate glacial to Holocene climate and sedimentation history in the NW Black Sea, Mar. Geol., 214, 309\u2013322, https:\/\/doi.org\/10.1016\/j.margeo.2004.11.013, 2005.","DOI":"10.1016\/j.margeo.2004.11.013"},{"key":"ref7","doi-asserted-by":"crossref","unstructured":"Bendle, J. and Rosell-Mel\u00e9, A.:\nDistributions of U37K and U37\u2032K in the surface waters and sediments of the Nordic Seas: Implications for paleoceanography, Geochem. Geophy. Geosy., 5, Q11013, https:\/\/doi.org\/10.1029\/2004gc000741, 2004.","DOI":"10.1029\/2004GC000741"},{"key":"ref8","doi-asserted-by":"crossref","unstructured":"Bennike, O. and Weidick, A.:\nLate Quaternary history around Nioghalvfjerdsfjorden and Jokelbugten, North-East Greenland, Boreas, 30, 205\u2013227, https:\/\/doi.org\/10.1111\/j.1502-3885.2001.tb01223.x, 2001.","DOI":"10.1080\/030094801750424139"},{"key":"ref9","doi-asserted-by":"crossref","unstructured":"Bentley, M. J., Hodgson, D. A., Sugden, D. E., Roberts, S. J., Smith, J. A., Leng, M. J., and Bryant, C.:\nEarly Holocene retreat of the George\u00a0VI Ice Shelf, Antarctic Peninsula, Geology, 33, 173\u2013176, https:\/\/doi.org\/10.1130\/g21203.1, 2005.","DOI":"10.1130\/G21203.1"},{"key":"ref10","doi-asserted-by":"crossref","unstructured":"Bentley, M. J., Smith, J. A., Jamieson, S. S. R., Lindeman, M., Rea, B. R., Humbert, A., Lane, T. P., Darvill, C. M., Lloyd, J. M., Straneo, F., Helm, V., and Roberts, D. H.:\nDirect measurement of warm Atlantic Intermediate Water close to the grounding line of Nioghalvfjerdsfjorden (79N) Glacier, North-east Greenland, The Cryosphere Discuss. [preprint], https:\/\/doi.org\/10.5194\/tc-2022-206, in review, 2022.","DOI":"10.5194\/tc-2022-206"},{"key":"ref11","doi-asserted-by":"crossref","unstructured":"Blaauw, M.:\nMethods and code for `classical' age-modelling of radiocarbon sequences, Quat. Geochronol., 5, 512\u2013518, https:\/\/doi.org\/10.1016\/j.quageo.2010.01.002, 2010.","DOI":"10.1016\/j.quageo.2010.01.002"},{"key":"ref12","doi-asserted-by":"crossref","unstructured":"Blau, M. T., Turton, J. V., Sauter, T., and Molg, T.:\nSurface mass balance and energy balance of the 79N\u00a0Glacier (Nioghalvfjerdsfjorden, NE\u00a0Greenland) modeled by linking COSIPY and Polar WRF, J.\u00a0Glaciol., 67, 1093\u20131107, https:\/\/doi.org\/10.1017\/jog.2021.56, 2021.","DOI":"10.1017\/jog.2021.56"},{"key":"ref13","doi-asserted-by":"crossref","unstructured":"Bray, E. E. and Evans, E. D.:\nDistribution of n-paraffins as a clue to recognition of source beds, Geochim. Cosmochim. Ac., 22, 2\u201315, https:\/\/doi.org\/10.1016\/0016-7037(61)90069-2, 1961.","DOI":"10.1016\/0016-7037(61)90069-2"},{"key":"ref14","doi-asserted-by":"crossref","unstructured":"Buizert, C., Keisling, B. A., Box, J. E., He, F., Carlson, A. E., Sinclair, G., and DeConto, R. M.:\nGreenland-Wide Seasonal Temperatures During the Last Deglaciation, Geophys. Res. Lett., 45, 1905\u20131914, https:\/\/doi.org\/10.1002\/2017GL075601, 2018.","DOI":"10.1002\/2017GL075601"},{"key":"ref15","doi-asserted-by":"crossref","unstructured":"Bush, R. T. and McInerney, F. A.:\nLeaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy, Geochim. Cosmochim. Ac., 117, 161\u2013179, https:\/\/doi.org\/10.1016\/j.gca.2013.04.016, 2013.","DOI":"10.1016\/j.gca.2013.04.016"},{"key":"ref16","doi-asserted-by":"crossref","unstructured":"Cage, A. G., Pie\u0144kowski, A. J., Jennings, A., Knudsen, K. L., and Seidenkrantz, M.-S.:\nComparative analysis of six common foraminiferal species of the genera Cassidulina, Paracassidulina, and Islandiella from the Arctic\u2013North Atlantic domain, J.\u00a0Micropalaeontol., 40, 37\u201360, https:\/\/doi.org\/10.5194\/jm-40-37-2021, 2021.","DOI":"10.5194\/jm-40-37-2021"},{"key":"ref17","doi-asserted-by":"crossref","unstructured":"Choi, Y., Morlighem, M., Rignot, E., Mouginot, J., and Wood, M.:\nModeling the Response of Nioghalvfjerdsfjorden and Zachariae Isstrom Glaciers, Greenland, to Ocean Forcing Over the Next Century, Geophys. Res. Lett., 44, 11071\u201311079, https:\/\/doi.org\/10.1002\/2017gl075174, 2017.","DOI":"10.1002\/2017GL075174"},{"key":"ref18","doi-asserted-by":"crossref","unstructured":"Consolaro, C., Rasmussen, T. L., and Panieri, G.:\nPalaeoceanographic and environmental changes in the eastern Fram Strait during the last 14,000\u00a0years based on benthic and planktonic foraminifera, Mar. Micropaleontol., 139, 84\u2013101, https:\/\/doi.org\/10.1016\/j.marmicro.2017.11.001, 2018.","DOI":"10.1016\/j.marmicro.2017.11.001"},{"key":"ref19","doi-asserted-by":"crossref","unstructured":"Cranwell, P. A.:\nBranched-chain and cyclopropanoid acids in a recent sediment, Chem. Geol., 11, 307\u2013313, https:\/\/doi.org\/10.1016\/0009-2541(73)90101-0, 1973.","DOI":"10.1016\/0009-2541(73)90101-0"},{"key":"ref20","doi-asserted-by":"crossref","unstructured":"D'Andrea, W. J., Huang, Y. S., Fritz, S. C., and Anderson, N. J.:\nAbrupt Holocene climate change as an important factor for human migration in West Greenland, P.\u00a0Natl. Acad. Sci. USA, 108, 9765\u20139769, https:\/\/doi.org\/10.1073\/pnas.1101708108, 2011.","DOI":"10.1073\/pnas.1101708108"},{"key":"ref21","doi-asserted-by":"crossref","unstructured":"Davies, J., Mathiasen, A. M., Kristiansen, K., Hansen, K. E., Wacker, L., Alstrup, A. K. O., Munk, O. L., Pearce, C., and Seidenkrantz, M.-S.:\nLinkages between ocean circulation and the Northeast Greenland Ice Stream in the Early Holocene, Quaternary Sci. Rev., 286, 107530, https:\/\/doi.org\/10.1016\/j.quascirev.2022.107530, 2022.","DOI":"10.1016\/j.quascirev.2022.107530"},{"key":"ref22","doi-asserted-by":"crossref","unstructured":"Ehrmann, W., Hillenbrand, C.-D., Smith, J. A., Graham, A. G. C., Kuhn, G., and Larter, R. D.:\nProvenance changes between recent and glacial-time sediments in the Amundsen Sea embayment, West Antarctica: clay mineral assemblage evidence, Antarct. Sci., 23, 471\u2013486, https:\/\/doi.org\/10.1017\/s0954102011000320, 2011.","DOI":"10.1017\/S0954102011000320"},{"key":"ref23","unstructured":"Evans, D. and Benn, D. I.:\nA Practical Guide to the Study of Glacial Sediments, Edward Arnold, London, ISBN 0-340-75959-3, 2004."},{"key":"ref24","doi-asserted-by":"crossref","unstructured":"Fettweis, X., Box, J. E., Agosta, C., Amory, C., Kittel, C., Lang, C., van As, D., Machguth, H., and Gall\u00e9e, H.:\nReconstructions of the 1900\u20132015 Greenland ice sheet surface mass balance using the regional climate MAR model, The Cryosphere, 11, 1015\u20131033, https:\/\/doi.org\/10.5194\/tc-11-1015-2017, 2017.","DOI":"10.5194\/tc-11-1015-2017"},{"key":"ref25","doi-asserted-by":"crossref","unstructured":"Funder, S.:\n14C-dating of samples collected during the 1979 expedition to North Greenland, The Geological Survey of Greenland Report 110, 9\u201313, 1982.","DOI":"10.34194\/rapggu.v110.7787"},{"key":"ref26","doi-asserted-by":"crossref","unstructured":"Goelzer, H., Nowicki, S., Payne, A., Larour, E., Seroussi, H., Lipscomb, W. H., Gregory, J., Abe-Ouchi, A., Shepherd, A., Simon, E., Agosta, C., Alexander, P., Aschwanden, A., Barthel, A., Calov, R., Chambers, C., Choi, Y., Cuzzone, J., Dumas, C., Edwards, T., Felikson, D., Fettweis, X., Golledge, N. R., Greve, R., Humbert, A., Huybrechts, P., Le clec'h, S., Lee, V., Leguy, G., Little, C., Lowry, D. P., Morlighem, M., Nias, I., Quiquet, A., R\u00fcckamp, M., Schlegel, N.-J., Slater, D. A., Smith, R. S., Straneo, F., Tarasov, L., van de Wal, R., and van den Broeke, M.:\nThe future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6, The Cryosphere, 14, 3071\u20133096, https:\/\/doi.org\/10.5194\/tc-14-3071-2020, 2020.","DOI":"10.5194\/tc-14-3071-2020"},{"key":"ref27","doi-asserted-by":"crossref","unstructured":"Guillemot, T., Bichet, V., Gauthier, E., Zocatelli, R., Massa, C., and Richard, H.:\nEnvironmental responses of past and recent agropastoral activities on south Greenlandic ecosystems through molecular biomarkers, Holocene, 27, 783\u2013795, https:\/\/doi.org\/10.1177\/0959683616675811, 2017.","DOI":"10.1177\/0959683616675811"},{"key":"ref28","doi-asserted-by":"crossref","unstructured":"Hald, M. and Korsun, S.:\nDistribution of modern benthic foraminifera from fjords of Svalbard, European Arctic, J.\u00a0Foramin. Res., 27, 101\u2013122, https:\/\/doi.org\/10.2113\/gsjfr.27.2.101, 1997.","DOI":"10.2113\/gsjfr.27.2.101"},{"key":"ref29","doi-asserted-by":"crossref","unstructured":"Hanna, E., Cappelen, J., Fettweis, X., Mernild, S. H., Mote, T. L., Mottram, R., Steffen, K., Ballinger, T. J., and Hall, R.:\nGreenland surface air temperature changes from 1981 to 2019 and implications for ice-sheet melt and mass-balance change, Int. J. Climatol., 41, E1336\u2013E1352, https:\/\/doi.org\/10.1002\/joc.6771, 2021.","DOI":"10.1002\/joc.6771"},{"key":"ref30","doi-asserted-by":"crossref","unstructured":"Hansen, K. E., Lorenzen, J., Davies, J., Wacker, L., Pearce, C., and Seidenkrantz, M.-S.: Deglacial to Mid Holocene environmental conditions on the northeastern Greenland shelf, western Fram Strait,\nQuat. Sci. Rev., 293, 107704, https:\/\/doi.org\/10.1016\/j.quascirev.2022.107704, 2022.","DOI":"10.1016\/j.quascirev.2022.107704"},{"key":"ref31","unstructured":"Harbo, R. M.: Shells and shellfish of the Pacific Northwest, a field guide, Harbour Publishing, Canada, 1\u2013270, ISBN-10 1550174177, 1997."},{"key":"ref32","doi-asserted-by":"crossref","unstructured":"Heaton, T. J., K\u00f6hler, P., Butzin, M., Bard, E., Reimer, R. W., Austin, W. E. N., Bronk Ramsey, C., Grootes, P. M., Hughen, K. A., Kromer, B., Reimer, P. J., Adkins, J., Burke, A., Cook, M. S., Olsen, J., and Skinner, L. C.:\nMarine20\u2014The Marine Radiocarbon Age Calibration Curve (0\u201355,000\u2009cal\u2009BP), Radiocarbon, 62, 779\u2013820, https:\/\/doi.org\/10.1017\/RDC.2020.68, 2020.","DOI":"10.1017\/RDC.2020.68"},{"key":"ref33","doi-asserted-by":"crossref","unstructured":"Heaton, T. J., Bard, E., Bronk Ramsey, C., Butzin, M., Hatt\u00e9, C., Hughen, K. A., K\u00f6hler, P., and Reimer, P. J.:\nA RESPONSE TO COMMUNITY QUESTIONS ON THE MARINE20 RADIOCARBON AGE CALIBRATION CURVE: MARINE RESERVOIR AGES AND THE CALIBRATION OF 14C SAMPLES FROM THE OCEANS, Radiocarbon, 1\u201327, https:\/\/doi.org\/10.1017\/RDC.2022.66, 2022.","DOI":"10.1017\/RDC.2022.66"},{"key":"ref34","doi-asserted-by":"crossref","unstructured":"Hendy, C. H., Sadler, A. J., Denton, G. H., and Hall, B. L.:\nProglacial lake-ice conveyors: A new mechanism for deposition of drift in polar environments, Geogr. Ann.\u00a0A, 82A, 249\u2013270, 2000.","DOI":"10.1111\/1468-0459.00124"},{"key":"ref35","doi-asserted-by":"crossref","unstructured":"Higgins, A. and Kalsbeek, F.:\nEast Greenland Caledonides: stratigraphy, structure and geochronology, Geol. Surv. Den. Greenl., 6, 1\u201396, https:\/\/doi.org\/10.34194\/geusb.v6.4814, 2004.","DOI":"10.34194\/geusb.v6.4814"},{"key":"ref36","unstructured":"Higgins, A. K.:\nNorth Greenland glacier velocities and calf ice production, Polarforschung, 60, 1\u201323, 1991."},{"key":"ref37","doi-asserted-by":"crossref","unstructured":"Higgins, A. K., Soper, N. J., Smith, M. P., and Rasmussen, J. A.:\nThe Caledonian thin-skinned thrust belt of Kronprins Christian Land, eastern North Greenland, Geol. Surv. Den. Greenl., 6, 41\u201356, https:\/\/doi.org\/10.34194\/geusb.v6.4817, 2004.","DOI":"10.34194\/geusb.v6.4817"},{"key":"ref38","doi-asserted-by":"crossref","unstructured":"Hochreuther, P., Neckel, N., Reimann, N., Humbert, A., and Braun, M.:\nFully Automated Detection of Supraglacial Lake Area for Northeast Greenland Using Sentinel-2 Time-Series, Remote Sens.-Basel, 13, 205, https:\/\/doi.org\/10.3390\/rs13020205, 2021.","DOI":"10.3390\/rs13020205"},{"key":"ref39","doi-asserted-by":"crossref","unstructured":"Hofer, S., Lang, C., Amory, C., Kittel, C., Delhasse, A., Tedstone, A., and Fettweis, X.:\nGreater Greenland Ice Sheet contribution to global sea level rise in CMIP6, Nat. Commun., 11, 6289, https:\/\/doi.org\/10.1038\/s41467-020-20011-8, 2020.","DOI":"10.1038\/s41467-020-20011-8"},{"key":"ref40","doi-asserted-by":"crossref","unstructured":"Jennings, A., Andrews, J., and Wilson, L.:\nHolocene environmental evolution of the SE Greenland Shelf North and South of the Denmark Strait: Irminger and East Greenland current interactions, Quaternary Sci. Rev., 30, 980\u2013998, https:\/\/doi.org\/10.1016\/j.quascirev.2011.01.016, 2011.","DOI":"10.1016\/j.quascirev.2011.01.016"},{"key":"ref41","doi-asserted-by":"crossref","unstructured":"Jennings, A., Andrews, J., Reilly, B., Walczak, M., Jakobsson, M., Mix, A., Stoner, J., Nicholls, K. W., and Cheseby, M.:\nModern foraminiferal assemblages in northern Nares Strait, Petermann Fjord, and beneath Petermann ice tongue, NW Greenland, Arct. Antarct. Alp. Res., 52, 491\u2013511, https:\/\/doi.org\/10.1080\/15230430.2020.1806986, 2020.","DOI":"10.1080\/15230430.2020.1806986"},{"key":"ref42","doi-asserted-by":"crossref","unstructured":"Jennings, A. E., Weiner, N. J., Helgadottir, G., and Andrews, J. T.:\nModern foraminiferal faunas of the southwestern to northern Iceland shelf: Oceanographic and environmental controls, J.\u00a0Foramin. Res., 34, 180\u2013207, https:\/\/doi.org\/10.2113\/34.3.180, 2004.","DOI":"10.2113\/34.3.180"},{"key":"ref43","doi-asserted-by":"crossref","unstructured":"Joughin, I., Smith, B. E., Howat, I. M., Scambos, T., and Moon, T.:\nGreenland flow variability from ice-sheet-wide velocity mapping, J.\u00a0Glaciol., 56, 415\u2013430, https:\/\/doi.org\/10.3189\/002214310792447734, 2010.","DOI":"10.3189\/002214310792447734"},{"key":"ref44","doi-asserted-by":"crossref","unstructured":"Khan, S. A., Kjaer, K. H., Bevis, M., Bamber, J. L., Wahr, J., Kjeldsen, K. K., Bjork, A. A., Korsgaard, N. J., Stearns, L. A., van den Broeke, M. R., Liu, L., Larsen, N. K., and Muresan, I. S.:\nSustained mass loss of the northeast Greenland ice sheet triggered by regional warming, Nat. Clim. Change, 4, 292\u2013299, https:\/\/doi.org\/10.1038\/nclimate2161, 2014.","DOI":"10.1038\/nclimate2161"},{"key":"ref45","doi-asserted-by":"crossref","unstructured":"Klug, M., Schmidt, S., Bennike, O., Heiri, O., Melles, M., and Wagner, B.:\nLake sediments from Store Koldewey, Northeast Greenland, as archive of Late Pleistocene and Holocene climatic and environmental changes, Boreas, 38, 59\u201371, https:\/\/doi.org\/10.1111\/j.1502-3885.2008.00038.x, 2009.","DOI":"10.1111\/j.1502-3885.2008.00038.x"},{"key":"ref46","doi-asserted-by":"crossref","unstructured":"Kornilova, O. and Rosell-Mel\u00e9, A.:\nApplication of microwave-assisted extraction to the analysis of biomarker climate proxies in marine sediments, Org. Geochem., 34, 1517\u20131523, https:\/\/doi.org\/10.1016\/s0146-6380(03)00155-4, 2003.","DOI":"10.1016\/S0146-6380(03)00155-4"},{"key":"ref47","doi-asserted-by":"crossref","unstructured":"Kusch, S., Bennike, O., Wagner, B., Lenz, M., Steffen, I., and Rethemeyer, J.:\nHolocene environmental history in high-Arctic North Greenland revealed by a combined biomarker and macrofossil approach, Boreas, 48, 273\u2013286, https:\/\/doi.org\/10.1111\/bor.12377, 2019.","DOI":"10.1111\/bor.12377"},{"key":"ref48","doi-asserted-by":"crossref","unstructured":"Larsen, N. K., Levy, L. B., Carlson, A. E., Buizert, C., Olsen, J., Strunk, A., Bjork, A. A., and Skov, D. S.:\nInstability of the Northeast Greenland Ice Stream over the last 45,000\u00a0years, Nat. Commun., 9, https:\/\/doi.org\/10.1038\/s41467-018-04312-7, 2018.","DOI":"10.1038\/s41467-018-04312-7"},{"key":"ref49","doi-asserted-by":"crossref","unstructured":"Lecavalier, B. S., Milne, G. A., Simpson, M. J. R., Wake, L., Huybrechts, P., Tarasov, L., Kjeldsen, K. K., Funder, S., Long, A. J., Woodroffe, S., Dyke, A. S., and Larsen, N. K.:\nA model of Greenland ice sheet deglaciation constrained by observations of relative sea level and ice extent, Quaternary Sci. Rev., 102, 54\u201384, https:\/\/doi.org\/10.1016\/j.quascirev.2014.07.018, 2014.","DOI":"10.1016\/j.quascirev.2014.07.018"},{"key":"ref50","doi-asserted-by":"crossref","unstructured":"Leeson, A. A., Shepherd, A., Briggs, K., Howat, I., Fettweis, X., Morlighem, M., and Rignot, E.:\nSupraglacial lakes on the Greenland ice sheet advance inland under warming climate, Nat. Clim. Change, 5, 51\u201355, https:\/\/doi.org\/10.1038\/nclimate2463, 2015.","DOI":"10.1038\/nclimate2463"},{"key":"ref51","doi-asserted-by":"crossref","unstructured":"Mayer, C., Schaffer, J., Hattermann, T., Floricioiu, D., Krieger, L., Dodd, P. A., Kanzow, T., Licciulli, C., and Schannwell, C.:\nLarge ice loss variability at Nioghalvfjerdsfjorden Glacier, Northeast-Greenland, Nat. Commun., 9, 2768, https:\/\/doi.org\/10.1038\/s41467-018-05180-x, 2018.","DOI":"10.1038\/s41467-018-05180-x"},{"key":"ref52","doi-asserted-by":"crossref","unstructured":"McClymont, E. L., Rosell-Mel\u00e9, A., Giraudeau, J., Pierre, C., and Lloyd, J. M.:\nAlkenone and coccolith records of the mid-Pleistocene in the south-east Atlantic: Implications for the U37K\u2032 index and South African climate, Quaternary Sci. Rev., 24, 1559\u20131572, https:\/\/doi.org\/10.1016\/j.quascirev.2004.06.024, 2005.","DOI":"10.1016\/j.quascirev.2004.06.024"},{"key":"ref53","doi-asserted-by":"crossref","unstructured":"Meyers, P. A.: Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes, Org. Geochem., 34, 261\u2013289, https:\/\/doi.org\/10.1016\/s0146-6380(02)00168-7, 2003.","DOI":"10.1016\/S0146-6380(02)00168-7"},{"key":"ref54","doi-asserted-by":"crossref","unstructured":"Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L., Catania, G., Chauche, N., Dowdeswell, J. A., Dorschel, B., Fenty, I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M., Kjeldsen, K. K., Millan, R., Mayer, L., Mouginot, J., Noel, B. P. Y., O'Cofaigh, C., Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J., Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood, M., and Zinglersen, K. B.:\nBedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation, Geophys. Res. Lett., 44, 11051\u201311061, https:\/\/doi.org\/10.1002\/2017gl074954, 2017.","DOI":"10.1002\/2017GL074954"},{"key":"ref55","doi-asserted-by":"crossref","unstructured":"Mottram, R., B. Simonsen, S., H\u00f8yer Svendsen, S., Barletta, V. R., Sandberg S\u00f8rensen, L., Nagler, T., Wuite, J., Groh, A., Horwath, M., Rosier, J., Solgaard, A., Hvidberg, C. S., and Forsberg, R.:\nAn Integrated View of Greenland Ice Sheet Mass Changes Based on Models and Satellite Observations, Remote Sens.-Basel, 11, 1407, https:\/\/doi.org\/10.3390\/rs11121407, 2019.","DOI":"10.3390\/rs11121407"},{"key":"ref56","doi-asserted-by":"crossref","unstructured":"Mouginot, J., Rignot, E., Scheuchl, B., Fenty, I., Khazendar, A., Morlighem, M., Buzzi, A., and Paden, J.:\nFast retreat of Zachari\u00e6 Isstr\u00f8m, northeast Greenland, Science, 350, 1357\u20131361, https:\/\/doi.org\/10.1126\/science.aac7111, 2015.","DOI":"10.1126\/science.aac7111"},{"key":"ref57","doi-asserted-by":"crossref","unstructured":"Munchow, A., Schaffer, J., and Kanzow, T.:\nOcean Circulation Connecting Fram Strait to Glaciers off Northeast Greenland: Mean Flows, Topographic Rossby Waves, and Their Forcing, J.\u00a0Phys. Oceanogr., 50, 509\u2013530, https:\/\/doi.org\/10.1175\/jpo-d-19-0085.1, 2020.","DOI":"10.1175\/JPO-D-19-0085.1"},{"key":"ref58","doi-asserted-by":"crossref","unstructured":"Nace, T. E., Baker, P. A., Dwyer, G. S., Silva, C. G., Rigsby, C. A., Burns, S. J., Giosan, L., Otto-Bliesner, B., Liu, Z. Y., and Zhu, J.:\nThe role of North Brazil Current transport in the paleoclimate of the Brazilian Nordeste margin and paleoceanography of the western tropical Atlantic during the late Quaternary, Palaeogeogr. Palaeocl., 415, 3\u201313, https:\/\/doi.org\/10.1016\/j.palaeo.2014.05.030, 2014.","DOI":"10.1016\/j.palaeo.2014.05.030"},{"key":"ref59","doi-asserted-by":"crossref","unstructured":"Naeher, S., Gilli, A., North, R. P., Hamann, Y., and Schubert, C. J.:\nTracing bottom water oxygenation with sedimentary Mn\/Fe\u00a0ratios in Lake Zurich, Switzerland, Chem. Geol., 352, 125\u2013133, https:\/\/doi.org\/10.1016\/j.chemgeo.2013.06.006, 2013.","DOI":"10.1016\/j.chemgeo.2013.06.006"},{"key":"ref60","doi-asserted-by":"crossref","unstructured":"Nick, F. M., Van Der Veen, C. J., Vieli, A., and Benn, D. I.:\nA physically based calving model applied to marine outlet glaciers and implications for the glacier dynamics, J.\u00a0Glaciol., 56, 781\u2013794, https:\/\/doi.org\/10.3189\/002214310794457344, 2010.","DOI":"10.3189\/002214310794457344"},{"key":"ref61","doi-asserted-by":"crossref","unstructured":"O'Regan, M., Cronin, T. M., Reilly, B., Alstrup, A. K. O., Gemery, L., Golub, A., Mayer, L. A., Morlighem, M., Moros, M., Munk, O. L., Nilsson, J., Pearce, C., Detlef, H., Stranne, C., Vermassen, F., West, G., and Jakobsson, M.:\nThe Holocene dynamics of Ryder Glacier and ice tongue in north Greenland, The Cryosphere, 15, 4073\u20134097, https:\/\/doi.org\/10.5194\/tc-15-4073-2021, 2021.","DOI":"10.5194\/tc-15-4073-2021"},{"key":"ref62","doi-asserted-by":"crossref","unstructured":"Oppenheimer, M., Glavovic, B., Hinkel, J., van deWal, R., Magnan, A. K., Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., Deconto, R. M., Ghosh, T., Hay, J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Po\u0308rtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegri\u0301a, A., M. Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, 321\u2013445, https:\/\/doi.org\/10.1017\/9781009157964.006, 2019.","DOI":"10.1017\/9781009157964.006"},{"key":"ref63","doi-asserted-by":"crossref","unstructured":"Pados-Dibattista, T., Pearce, C., Detlef, H., Bendtsen, J., and Seidenkrantz, M.-S.:\nHolocene palaeoceanography of the Northeast Greenland shelf, Clim. Past, 18, 103\u2013127, https:\/\/doi.org\/10.5194\/cp-18-103-2022, 2022.","DOI":"10.5194\/cp-18-103-2022"},{"key":"ref64","doi-asserted-by":"crossref","unstructured":"Palmer, A. P., Bendle, J. M., MacLeod, A., Rose, J., and Thorndycraft, V. R.:\nThe micromorphology of glaciolacustrine varve sediments and their use for reconstructing palaeoglaciological and palaeoenvironmental change, Quaternary Sci. Rev., 226, 105964, https:\/\/doi.org\/10.1016\/j.quascirev.2019.105964, 2019.","DOI":"10.1016\/j.quascirev.2019.105964"},{"key":"ref65","doi-asserted-by":"crossref","unstructured":"Perner, K., Moros, M., Lloyd, J. M., Kuijpers, A., Telford, R. J., and Harff, J.:\nCentennial scale benthic foraminiferal record of late Holocene oceanographic variability in Disko Bugt, West Greenland, Quaternary Sci. Rev., 30, 2815\u20132826, https:\/\/doi.org\/10.1016\/j.quascirev.2011.06.018, 2011.","DOI":"10.1016\/j.quascirev.2011.06.018"},{"key":"ref66","doi-asserted-by":"crossref","unstructured":"Perner, K., Moros, M., Lloyd, J. M., Jansen, E., and Stein, R.:\nMid to late Holocene strengthening of the East Greenland Current linked to warm subsurface Atlantic water, Quaternary Sci. Rev., 129, 296\u2013307, https:\/\/doi.org\/10.1016\/j.quascirev.2015.10.007, 2015.","DOI":"10.1016\/j.quascirev.2015.10.007"},{"key":"ref67","unstructured":"Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K., Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C., Cloutier, M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington Jr., M., Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W., Becker, P., Doshi, A., D'Souza, C., Cummens, P., Laurier, F., a&lt;span id=&quot;page1269&quot;\/&gt;nd Bojesen, M.:\nArcticDEM (V1), Harvard Dataverse [data set], https:\/\/doi.org\/10.7910\/DVN\/OHHUKH, 2018."},{"key":"ref68","doi-asserted-by":"crossref","unstructured":"Prahl, F. G. and Wakeham, S. G.:\nCalibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment, Nature, 330, 367\u2013369, https:\/\/doi.org\/10.1038\/330367a0, 1987.","DOI":"10.1038\/330367a0"},{"key":"ref69","doi-asserted-by":"crossref","unstructured":"Prahl, F. G., Muehlhausen, L. A., and Zahnle, D. L.:\nFurther evaluation of long-chain alkenones as indicators of paleoceanographic conditions, Geochim. Cosmochim. Ac., 52, 2303\u20132310, https:\/\/doi.org\/10.1016\/0016-7037(88)90132-9, 1988.","DOI":"10.1016\/0016-7037(88)90132-9"},{"key":"ref70","doi-asserted-by":"crossref","unstructured":"Rasmussen, S. O., Abbott, P. M., Blunier, T., Bourne, A. J., Brook, E., Buchardt, S. L., Buizert, C., Chappellaz, J., Clausen, H. B., Cook, E., Dahl-Jensen, D., Davies, S. M., Guillevic, M., Kipfstuhl, S., Laepple, T., Seierstad, I. K., Severinghaus, J. P., Steffensen, J. P., Stowasser, C., Svensson, A., Vallelonga, P., Vinther, B. M., Wilhelms, F., and Winstrup, M.:\nA first chronology for the North Greenland Eemian Ice Drilling (NEEM) ice core, Clim. Past, 9, 2713\u20132730, https:\/\/doi.org\/10.5194\/cp-9-2713-2013, 2013.","DOI":"10.5194\/cp-9-2713-2013"},{"key":"ref71","doi-asserted-by":"crossref","unstructured":"Rasmussen, T. L., Pearce, C., Andresen, K. J., Nielsen, T., and Seidenkrantz, M.-S.:\nNortheast Greenland: ice-free shelf edge at 79.4\u2218\u2009N around the Last Glacial Maximum 25.5\u201317.5\u2009ka, Boreas, 51, 759\u2013775, https:\/\/doi.org\/10.1111\/bor.12593, 2022.","DOI":"10.1111\/bor.12593"},{"key":"ref72","doi-asserted-by":"crossref","unstructured":"Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatte, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.:\nIntcal13 and Marine13 Radiocarbon Age Calibration Curves 0\u201350,000\u00a0Years\u2009cal\u2009BP, Radiocarbon, 55, 1869\u20131887, https:\/\/doi.org\/10.2458\/azu_js_rc.55.16947, 2013.","DOI":"10.2458\/azu_js_rc.55.16947"},{"key":"ref73","doi-asserted-by":"crossref","unstructured":"Rieley, G., Collier, R. J., Jones, D. M., Eglinton, G., Eakin, P. A., and Fallick, A. E.:\nSources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds, Nature, 352, 425\u2013427, https:\/\/doi.org\/10.1038\/352425a0, 1991.","DOI":"10.1038\/352425a0"},{"key":"ref74","doi-asserted-by":"crossref","unstructured":"Robel, A. A.:\nThinning sea ice weakens buttressing force of iceberg m\u00e9lange and promotes calving, Nat. Commun., 8, 14596, https:\/\/doi.org\/10.1038\/ncomms14596, 2017.","DOI":"10.1038\/ncomms14596"},{"key":"ref75","doi-asserted-by":"crossref","unstructured":"Rosell-Mel\u00e9, A. and McClymont, E. L.:\nChapter Eleven Biomarkers as Paleoceanographic Proxies, in: Developments in Marine Geology, edited by: Hillaire\u2013Marcel, C. and De\u00a0Vernal, A., Elsevier, 441\u2013490, https:\/\/doi.org\/10.1016\/S1572-5480(07)01016-0, 2007.","DOI":"10.1016\/S1572-5480(07)01016-0"},{"key":"ref76","doi-asserted-by":"crossref","unstructured":"S\u00e1nchez-Montes, M. L., McClymont, E. L., Lloyd, J. M., M\u00fcller, J., Cowan, E. A., and Zorzi, C.:\nLate Pliocene Cordilleran Ice Sheet development with warm northeast Pacific sea surface temperatures, Clim. Past, 16, 299\u2013313, https:\/\/doi.org\/10.5194\/cp-16-299-2020, 2020.","DOI":"10.5194\/cp-16-299-2020"},{"key":"ref77","doi-asserted-by":"crossref","unstructured":"Schaffer, J., Kanzow, T., von Appen, W.-J., von Albedyll, L., Arndt, J. E., and Roberts, D. H.:\nBathymetry constrains ocean heat supply to Greenland's largest glacier tongue, Nat. Geosci., 13, 227\u2013231, https:\/\/doi.org\/10.1038\/s41561-019-0529-x, 2020.","DOI":"10.1038\/s41561-019-0529-x"},{"key":"ref78","doi-asserted-by":"crossref","unstructured":"Seki, A., Tada, R., Kurokawa, S., and Murayama, M.:\nHigh-resolution Quaternary record of marine organic carbon content in the hemipelagic sediments of the Japan Sea from bromine counts measured by XRF core scanner, Progress in Earth and Planetary Science, 6, 1, https:\/\/doi.org\/10.1186\/s40645-018-0244-z, 2019.","DOI":"10.1186\/s40645-018-0244-z"},{"key":"ref79","doi-asserted-by":"crossref","unstructured":"Seroussi, H., Morlighem, M., Rignot, E., Khazendar, A., Larour, E., and Mouginot, J.:\nDependence of century-scale projections of the Greenland ice sheet on its thermal regime, J.\u00a0Glaciol., 59, 1024\u20131034, https:\/\/doi.org\/10.3189\/2013JoG13J054, 2013.","DOI":"10.3189\/2013JoG13J054"},{"key":"ref80","doi-asserted-by":"crossref","unstructured":"Slubowska-Wodengen, M., Rasmussen, T. L., Koc, N., Klitgaard-Kristensen, D., Nilsen, F., and Solheim, A.:\nAdvection of Atlantic Water to the western and northern Svalbard shelf since 17,500\u2009cal\u2009yr\u2009BP, Quaternary Sci. Rev., 26, 463\u2013478, https:\/\/doi.org\/10.1016\/j.quascirev.2006.09.009, 2007.","DOI":"10.1016\/j.quascirev.2006.09.009"},{"key":"ref81","doi-asserted-by":"crossref","unstructured":"Slubowska, M. A., Koc, N., Rasmussen, T. L., and Klitgaard-Kristensen, D.:\nChanges in the flow of Atlantic water into the Arctic Ocean since the last deglaciation: Evidence from the northern Svalbard continental margin, 80\u2218\u2009N, Paleoceanography, 20, Pa4014, https:\/\/doi.org\/10.1029\/2005pa001141, 2005.","DOI":"10.1029\/2005PA001141"},{"key":"ref82","unstructured":"Smith, J., Callard, L., Sanchez Montes, M., McClymont, E., Lloyd, J., Ehrmann, W., Roberts, D., Bentley, M., Jamieson, S., Lane, T., and Darvill, C.: Chronological sedimentological data (radiocarbon 14C) for cores LC7 and LC12 sediment record from Blaso, a large, epishelf lake in NW Greenland collected July\u2013August 2017 (Version 1.0), NERC EDS UK Polar Data Centre [data set], https:\/\/doi.org\/10.5285\/e44bbc45-9924-401b-a7b8-7939fbb61db2, 2022."},{"key":"ref83","doi-asserted-by":"crossref","unstructured":"Smith, J. A., Hodgson, D. A., Bentley, M. J., Verleyen, E., Leng, M. J., and Roberts, S. J.:\nLimnology of two antarctic epishelf lakes and their potential to record periods of ice shelf loss, J.\u00a0Paleolimnol., 35, 373\u2013394, https:\/\/doi.org\/10.1007\/s10933-005-1333-8, 2006.","DOI":"10.1007\/s10933-005-1333-8"},{"key":"ref84","doi-asserted-by":"crossref","unstructured":"Smith, J. A., Bentley, M. J., Hodgson, D. A., Roberts, S. J., Leng, M. J., Lloyd, J. M., Barrett, M. S., Bryant, C., and Sugden, D. E.:\nOceanic and atmospheric forcing of early Holocene ice shelf retreat, George\u00a0VI Ice Shelf, Antarctica Peninsula, Quaternary Sci. Rev., 26, 500\u2013516, https:\/\/doi.org\/10.1016\/j.quascirev.2006.05.006, 2007.","DOI":"10.1016\/j.quascirev.2006.05.006"},{"key":"ref85","doi-asserted-by":"crossref","unstructured":"Smith, M. P., Higgins, A. K., Soper, N. J., and S\u00f8nderholm, M.:\nThe Neoproterozoic Rivieradal Group of Kronprins Christian Land, eastern North Greenland, Geol. Surv. Den. Greenl., 6, 29\u201339, https:\/\/doi.org\/10.34194\/geusb.v6.4816, 2004a.","DOI":"10.34194\/geusb.v6.4816"},{"key":"ref86","doi-asserted-by":"crossref","unstructured":"Smith, M. P., Rasmussen, J. A., Robertson, S., Higgins, A. K., and Leslie, A. G.:\nLower Palaeozoic stratigraphy of the East Greenland Caledonides, Geol. Surv. Den. Greenl., 6, 5\u201328, https:\/\/doi.org\/10.34194\/geusb.v6.4815, 2004b.","DOI":"10.34194\/geusb.v6.4815"},{"key":"ref87","doi-asserted-by":"crossref","unstructured":"Straneo, F. and Heimbach, P.:\nNorth Atlantic warming and the retreat of Greenland's outlet glaciers, Nature, 504, 36\u201343, https:\/\/doi.org\/10.1038\/nature12854, 2013.","DOI":"10.1038\/nature12854"},{"key":"ref88","doi-asserted-by":"crossref","unstructured":"Stuiver, M. and Reimer, P. J.: Extended 14C database and revised CALIB 3.0 radiocarbon calibration program, Radiocarbon 35, 215\u2013230, https:\/\/doi.org\/10.1017\/S0033822200013904, 1993.","DOI":"10.1017\/S0033822200013904"},{"key":"ref89","doi-asserted-by":"crossref","unstructured":"Syring, N., Lloyd, J. M., Stein, R., Fahl, K., Roberts, D. H., Callard, L., and O'Cofaigh, C.:\nHolocene Interactions Between Glacier Retreat, Sea Ice Formation, and Atlantic Water Advection at the Inner Northeast Greenland Continental Shelf, Paleoceanography and Paleoclimatology, 35, e2020PA004019, https:\/\/doi.org\/10.1029\/2020PA004019, 2020.","DOI":"10.1029\/2020PA004019"},{"key":"ref90","doi-asserted-by":"crossref","unstructured":"ten Haven, H. L., de Leeuw, J. W., Sinninghe Damst\u00e9, J. S., Schenck, P. A., Palmer, S. E., and Zumberge, J. E.:\nApplication of biological markers in the recognition of palaeohypersaline environments, Geological Society, London, Special Publications, 40, 123, https:\/\/doi.org\/10.1144\/GSL.SP.1988.040.01.11, 1988.","DOI":"10.1144\/GSL.SP.1988.040.01.11"},{"key":"ref91","doi-asserted-by":"crossref","unstructured":"Turton, J. V., Hochreuther, P., Reimann, N., and Blau, M. T.:\nThe distribution and evolution of supraglacial lakes on 79\u2218\u2009N Glacier (north-eastern Greenland) and interannual climatic controls, The Cryosphere, 15, 3877\u20133896, https:\/\/doi.org\/10.5194\/tc-15-3877-2021, 2021.","DOI":"10.5194\/tc-15-3877-2021"},{"key":"ref92","doi-asserted-by":"crossref","unstructured":"Wagner, B. and Melles, M.:\nA Holocene seabird record from Raffles\u00a0S\u00f8 sediments, East Greenland, in response to climatic and oceanic changes, Boreas, 30, 228\u2013239, https:\/\/doi.org\/10.1111\/j.1502-3885.2001.tb01224.x, 2001.","DOI":"10.1080\/030094801750424148"},{"key":"ref93","doi-asserted-by":"crossref","unstructured":"Wagner, B., Melles, M., Hahne, J., Niessen, F., and Hubberten, H. W.:\nHolocene climate history of Geographical Society\u00a0\u00d8, East Greenland\u00a0\u2014 evidence from lake sediments, Palaeogeogr. Palaeocl., 160, 45\u201368, https:\/\/doi.org\/10.1016\/S0031-0182(00)00046-8, 2000.","DOI":"10.1016\/S0031-0182(00)00046-8"},{"key":"ref94","doi-asserted-by":"crossref","unstructured":"Walinsky, S. E., Prahl, F. G., Mix, A. C., Finney, B. P., Jaeger, J. M., and Rosen, G. P.:\nDistribution and composition of organic matter in surface sediments of coastal Southeast Alaska, Cont. Shelf Res., 29, 1565\u20131579, https:\/\/doi.org\/10.1016\/j.csr.2009.04.006, 2009.","DOI":"10.1016\/j.csr.2009.04.006"},{"key":"ref95","doi-asserted-by":"crossref","unstructured":"Wang, K. J., Huang, Y., Majaneva, M., Belt, S. T., Liao, S., Novak, J., Kartzinel, T. R., Herbert, T. D., Richter, N., and Cabedo-Sanz, P.:\nGroup 2i Isochrysidales produce characteristic alkenones reflecting sea ice distribution, Nat. Commun., 12, 15, https:\/\/doi.org\/10.1038\/s41467-020-20187-z, 2021.","DOI":"10.1038\/s41467-020-20187-z"},{"key":"ref96","doi-asserted-by":"crossref","unstructured":"Werner, K., M\u00fcller, J., Husum, K., Spielhagen, R. F., Kandiano, E. S., and Polyak, L.:\nHolocene sea subsurface and surface water masses in the Fram Strait\u00a0\u2013\u00a0Comparisons of temperature and sea-ice reconstructions, Quaternary Sci. Rev., 147, 194\u2013209, https:\/\/doi.org\/10.1016\/j.quascirev.2015.09.007, 2016.","DOI":"10.1016\/j.quascirev.2015.09.007"},{"key":"ref97","doi-asserted-by":"crossref","unstructured":"Winkelmann, D., Jokat, W., Jensen, L., and Schenke, H.-W.:\nSubmarine end moraines on the continental shelf off NE Greenland\u00a0\u2013 Implications for Lateglacial dynamics, Quaternary Sci. Rev., 29, 1069\u20131077, https:\/\/doi.org\/10.1016\/j.quascirev.2010.02.002, 2010.","DOI":"10.1016\/j.quascirev.2010.02.002"},{"key":"ref98","doi-asserted-by":"crossref","unstructured":"Winnell, M. H. and White, D. S.:\nThe Distribution of Heterotrissocladius oliveri Saether (Diptera: Chironomidae) in Lake Michigan, Hydrobiologia, 131, 205\u2013214, https:\/\/doi.org\/10.1007\/Bf00008856, 1986.","DOI":"10.1007\/BF00008856"},{"key":"ref99","doi-asserted-by":"crossref","unstructured":"Wollenburg, J. E. and Mackensen, A.: On the vertical distribution of living (Rose Bengal stained) benthic foraminifers in the Arctic Ocean, J. Foramin. Res., 28, 268\u2013285, https:\/\/doi.org\/10.2113\/gsjfr.28.4.268, 1998.","DOI":"10.2113\/gsjfr.28.4.268"},{"key":"ref100","doi-asserted-by":"crossref","unstructured":"Wood, M., Rignot, E., Fenty, I., An, L., Bj\u00f8rk, A., van den Broeke, M., Cai, C., Kane, E., Menemenlis, D., Millan, R., Morlighem, M., Mouginot, J., No\u00ebl, B., Scheuchl, B., Velicogna, I., Willis, J. K., and Zhang, H.:\nOcean forcing drives glacier retreat in Greenland, Science Advances, 7, eaba7282, https:\/\/doi.org\/10.1126\/sciadv.aba7282, 2021.","DOI":"10.1126\/sciadv.aba7282"},{"key":"ref101","doi-asserted-by":"crossref","unstructured":"Yin, J., Overpeck, J. T., Griffies, S. M., Hu, A., Russell, J. L., and Stouffer, R. J.:\nDifferent magnitudes of projected subsurface ocean warming around Greenland and Antarctica, Nat. Geosci., 4, 524\u2013528, https:\/\/doi.org\/10.1038\/ngeo1189, 2011.","DOI":"10.1038\/ngeo1189"},{"key":"ref102","doi-asserted-by":"crossref","unstructured":"Ziegler, M., Jilbert, T., de lange, G. J., Lourens, L. J., and Reichart, G.-J.:\nBromine counts from XRF scanning as an estimate of the marine organic carbon content of sediment cores, Geochem. Geophy. Geosy., 9, Q05009, https:\/\/doi.org\/10.1029\/2007gc001932, 2008.","DOI":"10.1029\/2007GC001932"}],"container-title":["The Cryosphere"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/tc.copernicus.org\/articles\/17\/1247\/2023\/tc-17-1247-2023.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,16]],"date-time":"2023-03-16T00:00:57Z","timestamp":1678924857000},"score":1,"resource":{"primary":{"URL":"https:\/\/tc.copernicus.org\/articles\/17\/1247\/2023\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3,15]]},"references-count":102,"journal-issue":{"issue":"3","published-online":{"date-parts":[[2023]]}},"URL":"http:\/\/dx.doi.org\/10.5194\/tc-17-1247-2023","relation":{"has-preprint":[{"id-type":"doi","id":"10.5194\/tc-2022-173","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/tc-2022-173","asserted-by":"object"}],"has-review":[{"id-type":"doi","id":"10.5194\/tc-2022-173-RC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/tc-2022-173-AC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/tc-2022-173-RC2","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/tc-2022-173-AC2","asserted-by":"subject"}],"is-part-of":[{"id-type":"doi","id":"10.5285\/e44bbc45-9924-401b-a7b8-7939fbb61db2","asserted-by":"subject"}]},"ISSN":["1994-0424"],"issn-type":[{"value":"1994-0424","type":"electronic"}],"subject":["Earth-Surface Processes","Water Science and Technology"],"published":{"date-parts":[[2023,3,15]]}}}