uni-leipzig-open-access/json/s43247-023-00749-x

1 line
33 KiB
Plaintext

{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,12,10]],"date-time":"2023-12-10T00:16:45Z","timestamp":1702167405396},"reference-count":80,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2023,3,24]],"date-time":"2023-03-24T00:00:00Z","timestamp":1679616000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2023,3,24]],"date-time":"2023-03-24T00:00:00Z","timestamp":1679616000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Commun Earth Environ"],"abstract":"<jats:title>Abstract<\/jats:title><jats:p>A key driving factor behind rapid Arctic climate change is black carbon, the atmospheric aerosol that most efficiently absorbs sunlight. Our knowledge about black carbon in the Arctic is scarce, mainly limited to long-term measurements of a few ground stations and snap-shots by aircraft observations. Here, we combine observations from aircraft campaigns performed over nine years, and present vertically resolved average black carbon properties. A factor of four higher black carbon mass concentration (21.6 ng m<jats:sup>\u22123<\/jats:sup>average, 14.3 ng m<jats:sup>\u22123<\/jats:sup>median) was found in spring, compared to summer (4.7 ng m<jats:sup>\u22123<\/jats:sup>average, 3.9 ng m<jats:sup>\u22123<\/jats:sup>median). In spring, much higher inter-annual and geographic variability prevailed compared to the stable situation in summer. The shape of the black carbon size distributions remained constant between seasons with an average mass mean diameter of 202 nm in spring and 210 nm in summer. Comparison between observations and concentrations simulated by a global model shows notable discrepancies, highlighting the need for further model developments and intensified measurements.<\/jats:p>","DOI":"10.1038\/s43247-023-00749-x","type":"journal-article","created":{"date-parts":[[2023,3,24]],"date-time":"2023-03-24T04:25:19Z","timestamp":1679631919000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Atmospheric concentrations of black carbon are substantially higher in spring than summer in the Arctic"],"prefix":"10.1038","volume":"4","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5798-4798","authenticated-orcid":false,"given":"Zs\u00f3fia","family":"Jur\u00e1nyi","sequence":"first","affiliation":[]},{"given":"Marco","family":"Zanatta","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9911-4160","authenticated-orcid":false,"given":"Marianne T.","family":"Lund","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8013-1833","authenticated-orcid":false,"given":"Bj\u00f8rn H.","family":"Samset","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1246-4446","authenticated-orcid":false,"given":"Ragnhild B.","family":"Skeie","sequence":"additional","affiliation":[]},{"given":"Sangeeta","family":"Sharma","sequence":"additional","affiliation":[]},{"given":"Manfred","family":"Wendisch","sequence":"additional","affiliation":[]},{"given":"Andreas","family":"Herber","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,3,24]]},"reference":[{"key":"749_CR1","doi-asserted-by":"publisher","first-page":"35","DOI":"10.1063\/PT.3.2147","volume":"66","author":"MO Jeffries","year":"2013","unstructured":"Jeffries, M. O., Overland, J. E. & Perovich, D. K. The Arctic shifts to a new normal. Phys. Today 66, 35\u201340 (2013).","journal-title":"Phys. Today"},{"key":"749_CR2","unstructured":"Arctic Climate Change Update 2021: Key Trends and Impacts. Summary for Policymakers. 16pp (Arctic Monitoring and Assessment Programme (AMAP), 2021)."},{"key":"749_CR3","unstructured":"Naik, V. et al. Short-lived climate forcers, chap. 6 (Cambridge University Press, 2021)."},{"key":"749_CR4","doi-asserted-by":"publisher","first-page":"5380","DOI":"10.1002\/jgrd.50171","volume":"118","author":"TC Bond","year":"2013","unstructured":"Bond, T. C. et al. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res.-Atmos. 118, 5380\u20135552 (2013).","journal-title":"J. Geophys. Res.-Atmos."},{"key":"749_CR5","doi-asserted-by":"publisher","first-page":"221","DOI":"10.1038\/ngeo156","volume":"1","author":"V Ramanathan","year":"2008","unstructured":"Ramanathan, V. & Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 1, 221\u2013227 (2008).","journal-title":"Nat. Geosci."},{"key":"749_CR6","unstructured":"Mitchell, M. Visual range in the polar regions with particular reference to the Alaskan Arctic. J. Atmos. Terrestrial Phys. Special Suppl., 195\u2013211 (1956)."},{"key":"749_CR7","doi-asserted-by":"publisher","first-page":"643","DOI":"10.1016\/0004-6981(86)90180-0","volume":"20","author":"LA Barrie","year":"1986","unstructured":"Barrie, L. A. Arctic air pollution: an overview of current knowledge. Atmos. Environ. 20, 643\u2013663 (1986). First International Conference on Atmospheric Sciences and Applications to Air Quality.","journal-title":"Atmos. Environ."},{"key":"749_CR8","doi-asserted-by":"publisher","first-page":"2403\u20132414","DOI":"10.1175\/1520-0477(1995)076<2403:TAHP>2.0.CO;2","volume":"76","author":"GE Shaw","year":"1995","unstructured":"Shaw, G. E. The Arctic haze phenomenon. B. Am. Meteorol. Soc. 76, 2403\u20132414 (1995).","journal-title":"B. Am. Meteorol. Soc."},{"key":"749_CR9","doi-asserted-by":"publisher","first-page":"3665","DOI":"10.5194\/acp-16-3665-2016","volume":"16","author":"B Croft","year":"2016","unstructured":"Croft, B. et al. Processes controlling the annual cycle of Arctic aerosol number and size distributions. Atmos. Chem. Phys. 16, 3665\u20133682 (2016).","journal-title":"Atmos. Chem. Phys."},{"key":"749_CR10","doi-asserted-by":"publisher","first-page":"621","DOI":"10.1029\/2018RG000602","volume":"56","author":"MD Willis","year":"2018","unstructured":"Willis, M. D., Leaitch, W. R. & Abbatt, J. P. Processes controlling the composition and abundance of Arctic aerosol. Rev. Geophys. 56, 621\u2013671 (2018).","journal-title":"Rev. Geophys."},{"key":"749_CR11","doi-asserted-by":"crossref","unstructured":"Sharma, S., Lavou\u00e9, D., Cachier, H., Barrie, L. A. & Gong, S. L. Long-term trends of the black carbon concentrations in the Canadian Arctic. J. Geophys. Res.-Atmos. 109, D15 (2004).","DOI":"10.1029\/2003JD004331"},{"key":"749_CR12","doi-asserted-by":"crossref","unstructured":"Sharma, S., Andrews, E., Barrie, L. A., Ogren, J. A. & Lavou\u00e9, D. Variations and sources of the equivalent black carbon in the high Arctic revealed by long-term observations at Alert and Barrow: 1989\u20132003. J. Geophys. Res.-Atmos. 111, D14 (2006).","DOI":"10.1029\/2005JD006581"},{"key":"749_CR13","doi-asserted-by":"crossref","unstructured":"Eleftheriadis, K., Vratolis, S. & Nyeki, S. Aerosol black carbon in the European Arctic: Measurements at Zeppelin station, Ny-\u00e5lesund, Svalbard from 1998\u20132007. Geophys. Res. Lett. 36, 2 (2009).","DOI":"10.1029\/2008GL035741"},{"key":"749_CR14","doi-asserted-by":"publisher","first-page":"60","DOI":"10.1016\/j.polar.2015.11.001","volume":"10","author":"MM Gogoi","year":"2016","unstructured":"Gogoi, M. M. et al. Aerosol black carbon over Svalbard regions of Arctic. Polar Sci. 10, 60\u201370 (2016).","journal-title":"Polar Sci."},{"key":"749_CR15","doi-asserted-by":"publisher","first-page":"11599","DOI":"10.5194\/acp-18-11599-2018","volume":"18","author":"L Schmeisser","year":"2018","unstructured":"Schmeisser, L. et al. Seasonality of aerosol optical properties in the Arctic. Atmos. Chem. Phys. 18, 11599\u201311622 (2018).","journal-title":"Atmos. Chem. Phys."},{"key":"749_CR16","doi-asserted-by":"crossref","unstructured":"Stohl, A. Characteristics of atmospheric transport into the Arctic troposphere. J. Geophys. Res.-Atmos. 111, D11 (2006).","DOI":"10.1029\/2005JD006888"},{"key":"749_CR17","doi-asserted-by":"publisher","first-page":"5353","DOI":"10.5194\/acp-8-5353-2008","volume":"8","author":"DT Shindell","year":"2008","unstructured":"Shindell, D. T. et al. A multi-model assessment of pollution transport to the Arctic. Atmos. Chem. Phys. 8, 5353\u20135372 (2008).","journal-title":"Atmos. Chem. Phys."},{"key":"749_CR18","doi-asserted-by":"publisher","first-page":"6999","DOI":"10.5194\/acp-12-6999-2012","volume":"12","author":"MT Lund","year":"2012","unstructured":"Lund, M. T. & Berntsen, T. Parameterization of black carbon aging in the OsloCTM2 and implications for regional transport to the Arctic. Atmos. Chem. Phys. 12, 6999\u20137014 (2012).","journal-title":"Atmos. Chem. Phys."},{"key":"749_CR19","doi-asserted-by":"publisher","first-page":"10515","DOI":"10.5194\/acp-17-10515-2017","volume":"17","author":"K Ikeda","year":"2017","unstructured":"Ikeda, K. et al. Tagged tracer simulations of black carbon in the Arctic: transport, source contributions, and budget. Atmos. Chem. Phys. 17, 10515\u201310533 (2017).","journal-title":"Atmos. Chem. Phys."},{"key":"749_CR20","doi-asserted-by":"publisher","first-page":"11971","DOI":"10.5194\/acp-17-11971-2017","volume":"17","author":"J-W Xu","year":"2017","unstructured":"Xu, J.-W. et al. Source attribution of Arctic black carbon constrained by aircraft and surface measurements. Atmos. Chem. Phys. 17, 11971\u201311989 (2017).","journal-title":"Atmos. Chem. Phys."},{"key":"749_CR21","doi-asserted-by":"publisher","first-page":"8637","DOI":"10.5194\/acp-21-8637-2021","volume":"21","author":"N Zhao","year":"2021","unstructured":"Zhao, N. et al. Responses of Arctic black carbon and surface temperature to multi-region emission reductions: a hemispheric transport of air pollution phase 2 (HTAP2) ensemble modeling study. Atmos. Chem. Phys. 21, 8637\u20138654 (2021).","journal-title":"Atmos. Chem. Phys."},{"key":"749_CR22","doi-asserted-by":"publisher","first-page":"034026","DOI":"10.1088\/1748-9326\/6\/3\/034026","volume":"6","author":"T Tritscher","year":"2011","unstructured":"Tritscher, T. et al. Changes of hygroscopicity and morphology during ageing of diesel soot. Environ. Res. Lett. 6, 034026 (2011).","journal-title":"Environ. Res. Lett."},{"key":"749_CR23","doi-asserted-by":"publisher","first-page":"15","DOI":"10.1016\/j.jaerosci.2012.08.006","volume":"56","author":"M Martin","year":"2013","unstructured":"Martin, M. et al. Hygroscopic properties of fresh and aged wood burning particles. J. Aerosol Sci. 56, 15\u201329 (2013).","journal-title":"J. Aerosol Sci."},{"key":"749_CR24","doi-asserted-by":"crossref","unstructured":"Flanner, M. G., Zender, C. S., Randerson, J. T. & Rasch, P. J. Present-day climate forcing and response from black carbon in snow. J. Geophys. Res.-Atmos. 112, D11 (2007).","DOI":"10.1029\/2006JD008003"},{"key":"749_CR25","doi-asserted-by":"publisher","first-page":"e2020GL091913","DOI":"10.1029\/2020GL091913","volume":"48","author":"J Backman","year":"2021","unstructured":"Backman, J., Schmeisser, L. & Asmi, E. Asian emissions explain much of the Arctic black carbon events. Geophys. Res. Lett. 48, e2020GL091913 (2021).","journal-title":"Geophys. Res. Lett."},{"key":"749_CR26","unstructured":"Review of observation capacities and data availability for Black Carbon in the Arctic region: EU Action on Black Carbon in the Arctic - Technical Report. 35pp (Arctic Monitoring and Assessment Programme (AMAP), 2019)."},{"key":"749_CR27","doi-asserted-by":"publisher","first-page":"9667","DOI":"10.5194\/acp-10-9667-2010","volume":"10","author":"JR Spackman","year":"2010","unstructured":"Spackman, J. R. et al. Aircraft observations of enhancement and depletion of black carbon mass in the springtime Arctic. Atmos. Chem. Phys. 10, 9667\u20139680 (2010).","journal-title":"Atmos. Chem. Phys."},{"key":"749_CR28","doi-asserted-by":"publisher","first-page":"2423","DOI":"10.5194\/acp-11-2423-2011","volume":"11","author":"CA Brock","year":"2011","unstructured":"Brock, C. A. et al. Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic climate (ARCPAC) project. Atmos. Chem. Phys. 11, 2423\u20132453 (2011).","journal-title":"Atmos. Chem. Phys."},{"key":"749_CR29","doi-asserted-by":"publisher","first-page":"2073","DOI":"10.1098\/rsta.2010.0313","volume":"369","author":"SC Wofsy","year":"2011","unstructured":"Wofsy, S. C. HIAPER pole-to-pole observations (HIPPO): fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols. Philos. T. R. Soc. A 369, 2073\u20132086 (2011).","journal-title":"Philos. T. R. Soc. A"},{"key":"749_CR30","doi-asserted-by":"publisher","first-page":"14889","DOI":"10.5194\/acp-18-14889-2018","volume":"18","author":"IB Konovalov","year":"2018","unstructured":"Konovalov, I. B. et al. Estimation of black carbon emissions from Siberian fires using satellite observations of absorption and extinction optical depths. Atmos. Chem. Phys. 18, 14889\u201314924 (2018).","journal-title":"Atmos. Chem. Phys."},{"key":"749_CR31","doi-asserted-by":"publisher","first-page":"15023","DOI":"10.5194\/acp-21-15023-2021","volume":"21","author":"CA Brock","year":"2021","unstructured":"Brock, C. A. et al. Ambient aerosol properties in the remote atmosphere from global-scale in situ measurements. Atmos. Chem. Phys. 21, 15023\u201315063 (2021).","journal-title":"Atmos. Chem. Phys."},{"key":"749_CR32","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1029\/2012EO040001","volume":"93","author":"AB Herber","year":"2012","unstructured":"Herber, A. B. et al. Regular airborne surveys of Arctic sea ice and atmosphere. Eos Transact. AGU 93, 41\u201342 (2012).","journal-title":"Eos Transact. AGU"},{"key":"749_CR33","doi-asserted-by":"publisher","first-page":"2361","DOI":"10.5194\/acp-19-2361-2019","volume":"19","author":"H Schulz","year":"2019","unstructured":"Schulz, H. et al. High Arctic aircraft measurements characterising black carbon vertical variability in spring and summer. Atmos. Chem. Phys. 19, 2361\u20132384 (2019).","journal-title":"Atmos. Chem. Phys."},{"key":"749_CR34","doi-asserted-by":"publisher","first-page":"841","DOI":"10.1175\/BAMS-D-18-0072.1","volume":"100","author":"M Wendisch","year":"2019","unstructured":"Wendisch, M. et al. The Arctic cloud puzzle: Using ACLOUD\/PASCAL multiplatform observations to unravel the role of clouds and aerosol particles in Arctic amplification. B. Am. Meteorol. Soc. 100, 841\u2013871 (2019).","journal-title":"B. Am. Meteorol. Soc."},{"key":"749_CR35","doi-asserted-by":"publisher","unstructured":"Wendisch, M. et al. Atmospheric and surface processes, and feedback mechanisms determining arctic amplification: a review of first results and prospects of the (AC)3 project. B. Am. Meteorol. Soc. https:\/\/doi.org\/10.1175\/BAMS-D-21-0218.1 (2023).","DOI":"10.1175\/BAMS-D-21-0218.1"},{"key":"749_CR36","doi-asserted-by":"publisher","first-page":"12601","DOI":"10.5194\/acp-16-12601-2016","volume":"16","author":"L Ferrero","year":"2016","unstructured":"Ferrero, L. et al. Vertical profiles of aerosol and black carbon in the arctic: a seasonal phenomenology along 2 years (2011\u20132012) of field campaigns. Atmos. Chem. Phys. 16, 12601\u201312629 (2016).","journal-title":"Atmos. Chem. Phys."},{"key":"749_CR37","doi-asserted-by":"publisher","first-page":"431","DOI":"10.1016\/j.atmosenv.2017.06.014","volume":"164","author":"K Markowicz","year":"2017","unstructured":"Markowicz, K. et al. Vertical variability of aerosol single-scattering albedo and equivalent black carbon concentration based on in-situ and remote sensing techniques during the iarea campaigns in ny-\u212blesund. Atmos. Environ. 164, 431\u2013447 (2017).","journal-title":"Atmos. Environ."},{"key":"749_CR38","doi-asserted-by":"publisher","first-page":"119373","DOI":"10.1016\/j.atmosenv.2022.119373","volume":"290","author":"D Cappelletti","year":"2022","unstructured":"Cappelletti, D. et al. Vertical profiles of black carbon and nanoparticles pollutants measured by a tethered balloon in longyearbyen (svalbard islands). Atmos. Environ. 290, 119373 (2022).","journal-title":"Atmos. Environ."},{"key":"749_CR39","doi-asserted-by":"publisher","first-page":"2115","DOI":"10.5194\/amt-6-2115-2013","volume":"6","author":"TS Bates","year":"2013","unstructured":"Bates, T. S. et al. Measurements of atmospheric aerosol vertical distributions above Svalbard, Norway, using unmanned aerial systems (UAS). Atmos. Meas. Tech. 6, 2115\u20132120 (2013).","journal-title":"Atmos. Meas. Tech."},{"key":"749_CR40","doi-asserted-by":"publisher","first-page":"2423","DOI":"10.5194\/acp-13-2423-2013","volume":"13","author":"BH Samset","year":"2013","unstructured":"Samset, B. H. et al. Black carbon vertical profiles strongly affect its radiative forcing uncertainty. Atmos. Chem. Phys. 13, 2423\u20132434 (2013).","journal-title":"Atmos. Chem. Phys."},{"key":"749_CR41","doi-asserted-by":"publisher","first-page":"12197","DOI":"10.5194\/acp-17-12197-2017","volume":"17","author":"M Sand","year":"2017","unstructured":"Sand, M. et al. Aerosols at the poles: an AeroCom phase ii multi-model evaluation. Atmos. Chem. Phys. 17, 12197\u201312218 (2017).","journal-title":"Atmos. Chem. Phys."},{"key":"749_CR42","doi-asserted-by":"publisher","first-page":"9413","DOI":"10.5194\/acp-15-9413-2015","volume":"15","author":"S Eckhardt","year":"2015","unstructured":"Eckhardt, S. et al. Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: a multi-model evaluation using a comprehensive measurement data set. Atmos. Chem. Phys. 15, 9413\u20139433 (2015).","journal-title":"Atmos. Chem. Phys."},{"key":"749_CR43","doi-asserted-by":"publisher","first-page":"113127","DOI":"10.1016\/j.envpol.2019.113127","volume":"257","author":"X Chen","year":"2020","unstructured":"Chen, X., Kang, S. & Yang, J. Investigation of distribution, transportation, and impact factors of atmospheric black carbon in the Arctic region based on a regional climate-chemistry model. Environ. Pollut. 257, 113127 (2020).","journal-title":"Environ. Pollut."},{"key":"749_CR44","doi-asserted-by":"publisher","first-page":"100670","DOI":"10.1016\/j.polar.2021.100670","volume":"30","author":"R Srivastava","year":"2021","unstructured":"Srivastava, R. & Ravichandran, M. Spatial and seasonal variations of black carbon over the Arctic in a regional climate model. Polar Sci. 30, 100670 (2021). Special Issue on \u201cPolar Studies - Window to the changing Earth\u201d.","journal-title":"Polar Sci."},{"key":"749_CR45","doi-asserted-by":"publisher","first-page":"5775","DOI":"10.5194\/acp-22-5775-2022","volume":"22","author":"CH Whaley","year":"2022","unstructured":"Whaley, C. H. et al. Model evaluation of short-lived climate forcers for the Arctic monitoring and assessment programme: a multi-species, multi-model study. Atmos. Chem. Phys. 22, 5775\u20135828 (2022).","journal-title":"Atmos. Chem. Phys."},{"key":"749_CR46","doi-asserted-by":"publisher","first-page":"8365","DOI":"10.5194\/acp-13-8365-2013","volume":"13","author":"A Petzold","year":"2013","unstructured":"Petzold, A. et al. Recommendations for reporting \u201cblack carbon\u201d measurements. Atmos. Chem. Phys. 13, 8365\u20138379 (2013).","journal-title":"Atmos. Chem. Phys."},{"key":"749_CR47","doi-asserted-by":"publisher","first-page":"5542","DOI":"10.1002\/2013GL057775","volume":"40","author":"JP Schwarz","year":"2013","unstructured":"Schwarz, J. P. et al. Global-scale seasonally resolved black carbon vertical profiles over the Pacific. Geophys. Res. Lett. 40, 5542\u20135547 (2013).","journal-title":"Geophys. Res. Lett."},{"key":"749_CR48","doi-asserted-by":"publisher","first-page":"14037","DOI":"10.5194\/acp-18-14037-2018","volume":"18","author":"M Zanatta","year":"2018","unstructured":"Zanatta, M. et al. Effects of mixing state on optical and radiative properties of black carbon in the European Arctic. Atmos. Chem. Phys. 18, 14037\u201314057 (2018).","journal-title":"Atmos. Chem. Phys."},{"key":"749_CR49","doi-asserted-by":"publisher","first-page":"15225","DOI":"10.5194\/acp-17-15225-2017","volume":"17","author":"S Sharma","year":"2017","unstructured":"Sharma, S. et al. An evaluation of three methods for measuring black carbon in Alert, Canada. Atmos. Chem. Phys. 17, 15225\u201315243 (2017).","journal-title":"Atmos. Chem. Phys."},{"key":"749_CR50","doi-asserted-by":"publisher","first-page":"6723","DOI":"10.5194\/amt-14-6723-2021","volume":"14","author":"S Ohata","year":"2021","unstructured":"Ohata, S. et al. Estimates of mass absorption cross sections of black carbon for filter-based absorption photometers in the Arctic. Atmos. Meas. Tech. 14, 6723\u20136748 (2021).","journal-title":"Atmos. Meas. Tech."},{"key":"749_CR51","doi-asserted-by":"publisher","first-page":"1914","DOI":"10.1002\/2015JD023648","volume":"121","author":"F Taketani","year":"2016","unstructured":"Taketani, F. et al. Shipborne observations of atmospheric black carbon aerosol particles over the Arctic Ocean, Bering Sea, and North Pacific Ocean during September 2014. J. Geophys. Res.-Atmos. 121, 1914\u20131921 (2016).","journal-title":"J. Geophys. Res.-Atmos."},{"key":"749_CR52","doi-asserted-by":"publisher","first-page":"15861","DOI":"10.5194\/acp-21-15861-2021","volume":"21","author":"S Ohata","year":"2021","unstructured":"Ohata, S. et al. Arctic black carbon during pamarcmip 2018 and previous aircraft experiments in spring. Atmos. Chem. Phys. 21, 15861\u201315881 (2021).","journal-title":"Atmos. Chem. Phys."},{"key":"749_CR53","doi-asserted-by":"publisher","first-page":"3446","DOI":"10.1038\/s41467-018-05635-1","volume":"9","author":"H Matsui","year":"2018","unstructured":"Matsui, H., Hamilton, D. S. & Mahowald, N. M. Black carbon radiative effects highly sensitive to emitted particle size when resolving mixing-state diversity. Nat. Comm. 9, 3446 (2018).","journal-title":"Nat. Comm."},{"key":"749_CR54","doi-asserted-by":"publisher","first-page":"1031","DOI":"10.5194\/amt-5-1031-2012","volume":"5","author":"M Laborde","year":"2012","unstructured":"Laborde, M. et al. Sensitivity of the single particle soot photometer to different black carbon types. Atmos. Meas. Tech. 5, 1031\u20131043 (2012).","journal-title":"Atmos. Meas. Tech."},{"key":"749_CR55","doi-asserted-by":"crossref","unstructured":"Moteki, N. et al. Size dependence of wet removal of black carbon aerosols during transport from the boundary layer to the free troposphere. Geophys. Res. Lett. 39, 13 (2012).","DOI":"10.1029\/2012GL052034"},{"key":"749_CR56","doi-asserted-by":"crossref","unstructured":"Bourgeois, Q. & Bey, I. Pollution transport efficiency toward the Arctic: Sensitivity to aerosol scavenging and source regions. J. Geophys. Res.-Atmos. 116, D8 (2011).","DOI":"10.1029\/2010JD015096"},{"key":"749_CR57","doi-asserted-by":"publisher","first-page":"6775","DOI":"10.5194\/acp-12-6775-2012","volume":"12","author":"J Browse","year":"2012","unstructured":"Browse, J., Carslaw, K. S., Arnold, S. R., Pringle, K. & Boucher, O. The scavenging processes controlling the seasonal cycle in Arctic sulphate and black carbon aerosol. Atmos. Chem. Phys. 12, 6775\u20136798 (2012).","journal-title":"Atmos. Chem. Phys."},{"key":"749_CR58","doi-asserted-by":"crossref","unstructured":"Fan, S.-M. et al. Inferring ice formation processes from global-scale black carbon profiles observed in the remote atmosphere and model simulations. J. Geophys. Res.-Atmos. 117, D23 (2012).","DOI":"10.1029\/2012JD018126"},{"key":"749_CR59","doi-asserted-by":"publisher","first-page":"2221","DOI":"10.5194\/acp-16-2221-2016","volume":"16","author":"Z Kipling","year":"2016","unstructured":"Kipling, Z. et al. What controls the vertical distribution of aerosol? relationships between process sensitivity in HadGEM3\u2013UKCA and inter-model variation from AeroCom phase ii. Atmos. Chem. Phys. 16, 2221\u20132241 (2016).","journal-title":"Atmos. Chem. Phys."},{"key":"749_CR60","doi-asserted-by":"publisher","first-page":"7100","DOI":"10.1002\/2016JD024849","volume":"121","author":"R Mahmood","year":"2016","unstructured":"Mahmood, R. et al. Seasonality of global and Arctic black carbon processes in the Arctic monitoring and assessment programme models. J. Geophys. Res.-Atmos. 121, 7100\u20137116 (2016).","journal-title":"J. Geophys. Res.-Atmos."},{"key":"749_CR61","doi-asserted-by":"publisher","first-page":"6003","DOI":"10.5194\/acp-17-6003-2017","volume":"17","author":"MT Lund","year":"2017","unstructured":"Lund, M. T., Berntsen, T. K. & Samset, B. H. Sensitivity of black carbon concentrations and climate impact to aging and scavenging in OsloCTM2\u2013M7. Atmos. Chem. Phys. 17, 6003\u20136022 (2017).","journal-title":"Atmos. Chem. Phys."},{"key":"749_CR62","doi-asserted-by":"crossref","first-page":"e2020JD033890","DOI":"10.1029\/2020JD033890","volume":"126","author":"M Liu","year":"2021","unstructured":"Liu, M. & Matsui, H. Improved simulations of global black carbon distributions by modifying wet scavenging processes in convective and mixed-phase clouds. J. Geophys. Res.-Atmos. 126, e2020JD033890 (2021).","journal-title":"J. Geophys. Res.-Atmos."},{"key":"749_CR63","doi-asserted-by":"crossref","unstructured":"Sato, Y. et al. Unrealistically pristine air in the arctic produced by current global scale models. Sci. Rep. 6, 26561 (2016).","DOI":"10.1038\/srep26561"},{"key":"749_CR64","doi-asserted-by":"publisher","first-page":"4808","DOI":"10.1002\/2014JD021595","volume":"119","author":"RJ Allen","year":"2014","unstructured":"Allen, R. J. & Landuyt, W. The vertical distribution of black carbon in cmip5 models: comparison to observations and the importance of convective transport. J. Geophys. Res.-Atmos. 119, 4808\u20134835 (2014).","journal-title":"J. Geophys. Res.-Atmos."},{"key":"749_CR65","doi-asserted-by":"publisher","first-page":"153044","DOI":"10.1016\/j.scitotenv.2022.153044","volume":"817","author":"Y Han","year":"2022","unstructured":"Han, Y. et al. Impact of the initial hydrophilic ratio on black carbon aerosols in the arctic. Sci. Tot. Environ. 817, 153044 (2022).","journal-title":"Sci. Tot. Environ."},{"key":"749_CR66","doi-asserted-by":"publisher","first-page":"7843 \u2013 7856","DOI":"10.1175\/JCLI-D-20-0994.1","volume":"34","author":"H Matsui","year":"2021","unstructured":"Matsui, H. & Liu, M. Importance of supersaturation in arctic black carbon simulations. J. Climate 34, 7843 \u2013 7856 (2021).","journal-title":"J. Climate"},{"key":"749_CR67","doi-asserted-by":"publisher","first-page":"8833","DOI":"10.5194\/acp-13-8833-2013","volume":"13","author":"A Stohl","year":"2013","unstructured":"Stohl, A. et al. Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions. Atmos. Chem. Phys. 13, 8833\u20138855 (2013).","journal-title":"Atmos. Chem. Phys."},{"key":"749_CR68","doi-asserted-by":"publisher","first-page":"094011","DOI":"10.1088\/1748-9326\/ab374d","volume":"14","author":"M-H Cho","year":"2019","unstructured":"Cho, M.-H. et al. A missing component of arctic warming: black carbon from gas flaring. Environ. Res. Lett. 14, 094011 (2019).","journal-title":"Environ. Res. Lett."},{"key":"749_CR69","doi-asserted-by":"crossref","unstructured":"Alfred-Wegener-Institut Helmholtz-Zentrum f\u00fcr Polar- und Meeresforschung. Polar aircraft Polar5 and Polar6 operated by the Alfred Wegener Institute. J. Large-Scale Res. Facil. 2, A87 (2016).","DOI":"10.17815\/jlsrf-2-153"},{"key":"749_CR70","doi-asserted-by":"publisher","first-page":"11107","DOI":"10.5194\/acp-16-11107-2016","volume":"16","author":"WR Leaitch","year":"2016","unstructured":"Leaitch, W. R. et al. Effects of 20\u2013100 nm particles on liquid clouds in the clean summertime Arctic. Atmos. Chem. Phys. 16, 11107\u201311124 (2016).","journal-title":"Atmos. Chem. Phys."},{"key":"749_CR71","doi-asserted-by":"publisher","first-page":"1853","DOI":"10.5194\/essd-11-1853-2019","volume":"11","author":"A Ehrlich","year":"2019","unstructured":"Ehrlich, A. et al. A comprehensive in situ and remote sensing data set from the Arctic cloud observations using airborne measurements during polar day (ACLOUD) campaign. Earth Syst. Sci. Data 11, 1853\u20131881 (2019).","journal-title":"Earth Syst. Sci. Data"},{"key":"749_CR72","doi-asserted-by":"publisher","first-page":"663","DOI":"10.1080\/02786826.2010.484450","volume":"44","author":"N Moteki","year":"2010","unstructured":"Moteki, N. & Kondo, Y. Dependence of laser-induced incandescence on physical properties of black carbon aerosols: Measurements and theoretical interpretation. Aerosol Sci. Tech. 44, 663\u2013675 (2010).","journal-title":"Aerosol Sci. Tech."},{"key":"749_CR73","doi-asserted-by":"crossref","unstructured":"Schwarz, J. P. et al. Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere. J. Geophys. Res.-Atmos. 111, D16 (2006).","DOI":"10.1029\/2006JD007076"},{"key":"749_CR74","doi-asserted-by":"publisher","first-page":"2851","DOI":"10.5194\/amt-4-2851-2011","volume":"4","author":"M Gysel","year":"2011","unstructured":"Gysel, M., Laborde, M., Olfert, J. S., Subramanian, R. & Gr\u00f6hn, A. J. Effective density of Aquadag and fullerene soot black carbon reference materials used for SP2 calibration. Atmos. Meas. Tech. 4, 2851\u20132858 (2011).","journal-title":"Atmos. Meas. Tech."},{"key":"749_CR75","doi-asserted-by":"publisher","first-page":"1441","DOI":"10.5194\/gmd-5-1441-2012","volume":"5","author":"OA S\u00f8vde","year":"2012","unstructured":"S\u00f8vde, O. A. et al. The chemical transport model Oslo CTM3. Geosci. Model Dev. 5, 1441\u20131469 (2012).","journal-title":"Geosci. Model Dev."},{"key":"749_CR76","doi-asserted-by":"crossref","unstructured":"Lund, M. T. et al. Short black carbon lifetime inferred from a global set of aircraft observations. npj Climate Atmos. Sci. 1, 1 (2018).","DOI":"10.1038\/s41612-018-0040-x"},{"key":"749_CR77","doi-asserted-by":"publisher","first-page":"369","DOI":"10.5194\/gmd-11-369-2018","volume":"11","author":"RM Hoesly","year":"2018","unstructured":"Hoesly, R. M. et al. Historical (1750\u20132014) anthropogenic emissions of reactive gases and aerosols from the community emissions data system (CEDS). Geosci. Model Dev. 11, 369\u2013408 (2018).","journal-title":"Geosci. Model Dev."},{"key":"749_CR78","doi-asserted-by":"publisher","first-page":"251","DOI":"10.1016\/j.gloenvcha.2016.06.004","volume":"42","author":"O Fricko","year":"2017","unstructured":"Fricko, O. et al. The marker quantification of the shared socioeconomic pathway 2: A middle-of-the-road scenario for the 21st century. Global Environ. Change 42, 251\u2013267 (2017).","journal-title":"Global Environ. Change"},{"key":"749_CR79","doi-asserted-by":"publisher","first-page":"697","DOI":"10.5194\/essd-9-697-2017","volume":"9","author":"GR van der Werf","year":"2017","unstructured":"van der Werf, G. R. et al. Global fire emissions estimates during 1997\u20132016. Earth Syst. Sci. Data 9, 697\u2013720 (2017).","journal-title":"Earth Syst. Sci. Data"},{"key":"749_CR80","doi-asserted-by":"publisher","first-page":"320","DOI":"10.3390\/atmos3030320","volume":"3","author":"A Lampert","year":"2012","unstructured":"Lampert, A. et al. The spring-time boundary layer in the central Arctic observed during PAMARCMiP 2009. Atmosphere 3, 320\u2013351 (2012).","journal-title":"Atmosphere"}],"container-title":["Communications Earth &amp; Environment"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.nature.com\/articles\/s43247-023-00749-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s43247-023-00749-x","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s43247-023-00749-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,9]],"date-time":"2023-12-09T14:21:44Z","timestamp":1702131704000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.nature.com\/articles\/s43247-023-00749-x"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3,24]]},"references-count":80,"journal-issue":{"issue":"1","published-online":{"date-parts":[[2023,12]]}},"alternative-id":["749"],"URL":"http:\/\/dx.doi.org\/10.1038\/s43247-023-00749-x","relation":{},"ISSN":["2662-4435"],"issn-type":[{"value":"2662-4435","type":"electronic"}],"subject":["General Earth and Planetary Sciences","General Environmental Science"],"published":{"date-parts":[[2023,3,24]]},"assertion":[{"value":"7 August 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"8 March 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"24 March 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"The authors declare no competing interests.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}],"article-number":"91"}}