uni-leipzig-open-access/json/s41586-023-05802-5

1 line
28 KiB
Plaintext

{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,1,23]],"date-time":"2024-01-23T23:08:11Z","timestamp":1706051291347},"reference-count":67,"publisher":"Springer Science and Business Media LLC","issue":"7954","license":[{"start":{"date-parts":[[2023,3,8]],"date-time":"2023-03-08T00:00:00Z","timestamp":1678233600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,3,8]],"date-time":"2023-03-08T00:00:00Z","timestamp":1678233600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Nature"],"published-print":{"date-parts":[[2023,3,30]]},"DOI":"10.1038\/s41586-023-05802-5","type":"journal-article","created":{"date-parts":[[2023,3,8]],"date-time":"2023-03-08T17:03:24Z","timestamp":1678295004000},"page":"945-953","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":10,"title":["Molecular sensing of mechano- and ligand-dependent adhesion GPCR dissociation"],"prefix":"10.1038","volume":"615","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8087-8451","authenticated-orcid":false,"given":"Nicole","family":"Scholz","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1487-0296","authenticated-orcid":false,"given":"Anne-Kristin","family":"Dahse","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8273-8313","authenticated-orcid":false,"given":"Marguerite","family":"Kemkemer","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1599-6456","authenticated-orcid":false,"given":"Anne","family":"Bormann","sequence":"additional","affiliation":[]},{"given":"Genevieve M.","family":"Auger","sequence":"additional","affiliation":[]},{"given":"Fernando","family":"Vieira Contreras","sequence":"additional","affiliation":[]},{"given":"Lucia F.","family":"Ernst","sequence":"additional","affiliation":[]},{"given":"Hauke","family":"Staake","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8221-8975","authenticated-orcid":false,"given":"Marek B.","family":"K\u00f6rner","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5455-0452","authenticated-orcid":false,"given":"Max","family":"Buhlan","sequence":"additional","affiliation":[]},{"given":"Amelie","family":"Meyer-M\u00f6lck","sequence":"additional","affiliation":[]},{"given":"Yin Kwan","family":"Chung","sequence":"additional","affiliation":[]},{"given":"Beatriz","family":"Blanco-Redondo","sequence":"additional","affiliation":[]},{"given":"Franziska","family":"Klose","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5203-235X","authenticated-orcid":false,"given":"Mohamed Ali","family":"Jarboui","sequence":"additional","affiliation":[]},{"given":"Dmitrij","family":"Ljaschenko","sequence":"additional","affiliation":[]},{"given":"Marina","family":"Bigl","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9061-3809","authenticated-orcid":false,"given":"Tobias","family":"Langenhan","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,3,8]]},"reference":[{"key":"5802_CR1","doi-asserted-by":"crossref","unstructured":"Nieberler, M., Kittel, R. J., Petrenko, A. G., Lin, H.-H. & Langenhan, T. in Adhesion G Protein-coupled Receptors: Molecular, Physiological and Pharmacological Principles in Health and Disease (eds Langenhan, T. & Sch\u00f6neberg, T.) 83\u2013109 (2016).","DOI":"10.1007\/978-3-319-41523-9_5"},{"key":"5802_CR2","doi-asserted-by":"publisher","first-page":"729","DOI":"10.1016\/j.devcel.2015.05.004","volume":"33","author":"WR Gordon","year":"2015","unstructured":"Gordon, W. R. et al. Mechanical allostery: evidence for a force requirement in the proteolytic activation of Notch. Dev. Cell 33, 729\u2013736 (2015).","journal-title":"Dev. Cell"},{"key":"5802_CR3","doi-asserted-by":"publisher","first-page":"1299","DOI":"10.1016\/j.devcel.2012.04.005","volume":"22","author":"L Meloty-Kapella","year":"2012","unstructured":"Meloty-Kapella, L., Shergill, B., Kuon, J., Botvinick, E. & Weinmaster, G. Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins, and actin. Dev. Cell 22, 1299\u20131312 (2012).","journal-title":"Dev. Cell"},{"key":"5802_CR4","doi-asserted-by":"publisher","first-page":"1383","DOI":"10.1016\/j.cell.2017.10.048","volume":"171","author":"PD Langridge","year":"2017","unstructured":"Langridge, P. D. & Struhl, G. Epsin-dependent ligand endocytosis activates Notch by force. Cell 171, 1383\u20131396 (2017).","journal-title":"Cell"},{"key":"5802_CR5","doi-asserted-by":"publisher","first-page":"31823","DOI":"10.1074\/jbc.M402974200","volume":"279","author":"H-H Lin","year":"2004","unstructured":"Lin, H.-H. et al. Autocatalytic cleavage of the EMR2 receptor occurs at a conserved G protein-coupled receptor proteolytic site motif. J. Biol. Chem. 279, 31823\u201331832 (2004).","journal-title":"J. Biol. Chem."},{"key":"5802_CR6","doi-asserted-by":"publisher","first-page":"1364","DOI":"10.1038\/emboj.2012.26","volume":"31","author":"D Ara\u00e7","year":"2012","unstructured":"Ara\u00e7, D. et al. A novel evolutionarily conserved domain of cell\u2010adhesion GPCRs mediates autoproteolysis. EMBO J. 31, 1364\u20131378 (2012).","journal-title":"EMBO J."},{"key":"5802_CR7","doi-asserted-by":"publisher","first-page":"925","DOI":"10.1016\/S0896-6273(00)80332-3","volume":"18","author":"VG Krasnoperov","year":"1997","unstructured":"Krasnoperov, V. G. et al. \u03b1-Latrotoxin stimulates exocytosis by the interaction with a neuronal G-protein-coupled receptor. Neuron 18, 925\u2013937 (1997).","journal-title":"Neuron"},{"key":"5802_CR8","doi-asserted-by":"publisher","first-page":"5438","DOI":"10.4049\/jimmunol.157.12.5438","volume":"157","author":"JX Gray","year":"1996","unstructured":"Gray, J. X. et al. CD97 is a processed, seven-transmembrane, heterodimeric receptor associated with inflammation. J. Immunol. 157, 5438\u20135447 (1996).","journal-title":"J. Immunol."},{"key":"5802_CR9","doi-asserted-by":"publisher","first-page":"866","DOI":"10.1016\/j.celrep.2015.04.008","volume":"11","author":"N Scholz","year":"2015","unstructured":"Scholz, N. et al. The adhesion GPCR latrophilin\/CIRL shapes mechanosensation. Cell Rep. 11, 866\u2013874 (2015).","journal-title":"Cell Rep."},{"key":"5802_CR10","doi-asserted-by":"publisher","first-page":"e28360","DOI":"10.7554\/eLife.28360","volume":"6","author":"N Scholz","year":"2017","unstructured":"Scholz, N. et al. Mechano-dependent signaling by latrophilin\/CIRL quenches cAMP in proprioceptive neurons. eLife 6, e28360 (2017).","journal-title":"eLife"},{"key":"5802_CR11","doi-asserted-by":"publisher","first-page":"e56738","DOI":"10.7554\/eLife.56738","volume":"9","author":"S Dannh\u00e4user","year":"2020","unstructured":"Dannh\u00e4user, S. et al. Antinociceptive modulation by the adhesion GPCR CIRL promotes mechanosensory signal discrimination. eLife 9, e56738 (2020).","journal-title":"eLife"},{"key":"5802_CR12","doi-asserted-by":"publisher","first-page":"1574","DOI":"10.1016\/j.devcel.2021.03.030","volume":"56","author":"J Lavalou","year":"2021","unstructured":"Lavalou, J. et al. Formation of polarized contractile interfaces by self-organized Toll-8\/Cirl GPCR asymmetry. Dev. Cell 56, 1574\u20131588 (2021).","journal-title":"Dev. Cell"},{"key":"5802_CR13","doi-asserted-by":"publisher","first-page":"869","DOI":"10.1038\/s41573-019-0039-y","volume":"18","author":"F Bassilana","year":"2019","unstructured":"Bassilana, F., Nash, M. & Ludwig, M.-G. Adhesion G protein-coupled receptors: opportunities for drug discovery. Nat. Rev. Drug Discov. 18, 869\u2013884 (2019).","journal-title":"Nat. Rev. Drug Discov."},{"key":"5802_CR14","doi-asserted-by":"publisher","first-page":"338","DOI":"10.1124\/pr.114.009647","volume":"67","author":"J Hamann","year":"2015","unstructured":"Hamann, J. et al. International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors. Pharmacol. Rev. 67, 338\u2013367 (2015).","journal-title":"Pharmacol. Rev."},{"key":"5802_CR15","doi-asserted-by":"publisher","first-page":"28275","DOI":"10.1073\/pnas.2008921117","volume":"117","author":"J Yeung","year":"2020","unstructured":"Yeung, J. et al. GPR56\/ADGRG1 is a platelet collagen-responsive GPCR and hemostatic sensor of shear force. Proc. Natl Acad. Sci. USA 117, 28275\u201328286 (2020).","journal-title":"Proc. Natl Acad. Sci. USA"},{"key":"5802_CR16","doi-asserted-by":"publisher","first-page":"656","DOI":"10.1056\/NEJMoa1500611","volume":"374","author":"SE Boyden","year":"2016","unstructured":"Boyden, S. E. et al. Vibratory urticaria associated with a missense variant in ADGRE2. N. Engl. J. Med. 374, 656\u2013663 (2016).","journal-title":"N. Engl. J. Med."},{"key":"5802_CR17","doi-asserted-by":"publisher","first-page":"eabi5965","DOI":"10.1126\/science.abi5965","volume":"375","author":"D Liu","year":"2022","unstructured":"Liu, D. et al. CD97 promotes spleen dendritic cell homeostasis through the mechanosensing of red blood cells. Science 375, eabi5965 (2022).","journal-title":"Science"},{"key":"5802_CR18","doi-asserted-by":"publisher","first-page":"755","DOI":"10.1016\/j.neuron.2014.12.057","volume":"85","author":"SC Petersen","year":"2015","unstructured":"Petersen, S. C. et al. The adhesion GPCR GPR126 has distinct, domain-dependent functions in Schwann cell development mediated by interaction with Laminin-211. Neuron 85, 755\u2013769 (2015).","journal-title":"Neuron"},{"key":"5802_CR19","doi-asserted-by":"crossref","unstructured":"Scholz, N., Monk, K. R., Kittel, R. J. & Langenhan, T. in Adhesion G Protein-coupled Receptors: Molecular, Physiological and Pharmacological Principles in Health and Disease (eds Langenhan, T. & Sch\u00f6neberg, T.) 221\u2013247 (2016).","DOI":"10.1007\/978-3-319-41523-9_10"},{"key":"5802_CR20","doi-asserted-by":"publisher","first-page":"14065","DOI":"10.1074\/jbc.REV120.007423","volume":"295","author":"A Vizurraga","year":"2020","unstructured":"Vizurraga, A., Adhikari, R., Yeung, J., Yu, M. & Tall, G. G. Mechanisms of adhesion G protein-coupled receptor activation. J. Biol. Chem. 295, 14065\u201314083 (2020).","journal-title":"J. Biol. Chem."},{"key":"5802_CR21","doi-asserted-by":"publisher","first-page":"905","DOI":"10.1016\/j.molcel.2020.12.042","volume":"81","author":"G Beliu","year":"2021","unstructured":"Beliu, G. et al. Tethered agonist exposure in intact adhesion\/class B2 GPCRs through intrinsic structural flexibility of the GAIN domain. Mol. Cell 81, 905\u2013921 (2021).","journal-title":"Mol. Cell"},{"key":"5802_CR22","doi-asserted-by":"publisher","first-page":"6194","DOI":"10.1073\/pnas.1421785112","volume":"112","author":"HM Stoveken","year":"2015","unstructured":"Stoveken, H. M., Hajduczok, A. G., Xu, L. & Tall, G. G. Adhesion G protein-coupled receptors are activated by exposure of a cryptic tethered agonist. Proc. Natl Acad. Sci. USA 112, 6194\u20136199 (2015).","journal-title":"Proc. Natl Acad. Sci. USA"},{"key":"5802_CR23","doi-asserted-by":"publisher","first-page":"2018","DOI":"10.1016\/j.celrep.2014.11.036","volume":"9","author":"I Liebscher","year":"2014","unstructured":"Liebscher, I. et al. A tethered agonist within the ectodomain activates the adhesion g protein-coupled receptors GPR126 and GPR133. Cell Rep. 9, 2018\u20132026 (2014).","journal-title":"Cell Rep."},{"key":"5802_CR24","doi-asserted-by":"publisher","first-page":"41912","DOI":"10.1074\/jbc.C111.265934","volume":"286","author":"J Bohnekamp","year":"2011","unstructured":"Bohnekamp, J. & Sch\u00f6neberg, T. Cell adhesion receptor GPR133 couples to Gs protein. J. Biol. Chem. 286, 41912\u201341916 (2011).","journal-title":"J. Biol. Chem."},{"key":"5802_CR25","doi-asserted-by":"publisher","first-page":"eaav7969","DOI":"10.1126\/science.aav7969","volume":"363","author":"R Sando","year":"2019","unstructured":"Sando, R., Jiang, X. & S\u00fcdhof, T. C. Latrophilin GPCRs direct synapse specificity by coincident binding of FLRTs and teneurins. Science 363, eaav7969 (2019).","journal-title":"Science"},{"key":"5802_CR26","doi-asserted-by":"publisher","first-page":"100798","DOI":"10.1016\/j.jbc.2021.100798","volume":"296","author":"JD Frenster","year":"2021","unstructured":"Frenster, J. D. et al. Functional impact of intramolecular cleavage and dissociation of adhesion G protein\u2013coupled receptor GPR133 (ADGRD1) on canonical signaling. J. Biol. Chem. 296, 100798 (2021).","journal-title":"J. Biol. Chem."},{"key":"5802_CR27","doi-asserted-by":"publisher","first-page":"779","DOI":"10.1038\/s41586-022-04580-w","volume":"604","author":"X Qu","year":"2022","unstructured":"Qu, X. et al. Structural basis of tethered agonism of the adhesion GPCRs ADGRD1 and ADGRF1. Nature 604, 779\u2013785 (2022).","journal-title":"Nature"},{"key":"5802_CR28","doi-asserted-by":"publisher","first-page":"757","DOI":"10.1038\/s41586-022-04575-7","volume":"604","author":"X Barros-\u00c1lvarez","year":"2022","unstructured":"Barros-\u00c1lvarez, X. et al. The tethered peptide activation mechanism of adhesion GPCRs. Nature 604, 757\u2013762 (2022).","journal-title":"Nature"},{"key":"5802_CR29","doi-asserted-by":"publisher","first-page":"771","DOI":"10.1038\/s41586-022-04590-8","volume":"604","author":"P Xiao","year":"2022","unstructured":"Xiao, P. et al. Tethered peptide activation mechanism of the adhesion GPCRs ADGRG2 and ADGRG4. Nature 604, 771\u2013778 (2022).","journal-title":"Nature"},{"key":"5802_CR30","doi-asserted-by":"publisher","first-page":"763","DOI":"10.1038\/s41586-022-04619-y","volume":"604","author":"Y-Q Ping","year":"2022","unstructured":"Ping, Y.-Q. et al. Structural basis for the tethered peptide activation of adhesion GPCRs. Nature 604, 763\u2013770 (2022).","journal-title":"Nature"},{"key":"5802_CR31","doi-asserted-by":"publisher","first-page":"216","DOI":"10.1016\/j.cell.2009.03.045","volume":"137","author":"R Kopan","year":"2009","unstructured":"Kopan, R. & Ilagan, Ma. X. G. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216\u2013233 (2009).","journal-title":"Cell"},{"key":"5802_CR32","doi-asserted-by":"publisher","first-page":"E2757","DOI":"10.1073\/pnas.1205788109","volume":"109","author":"NL Stephenson","year":"2012","unstructured":"Stephenson, N. L. & Avis, J. M. Direct observation of proteolytic cleavage at the S2 site upon forced unfolding of the Notch negative regulatory region. Proc. Natl Acad. Sci. USA 109, E2757\u2013E2765 (2012).","journal-title":"Proc. Natl Acad. Sci. USA"},{"key":"5802_CR33","doi-asserted-by":"publisher","first-page":"382","DOI":"10.1038\/30756","volume":"393","author":"EH Schroeter","year":"1998","unstructured":"Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382\u2013386 (1998).","journal-title":"Nature"},{"key":"5802_CR34","doi-asserted-by":"publisher","first-page":"518","DOI":"10.1038\/19083","volume":"398","author":"BD Strooper","year":"1999","unstructured":"Strooper, B. D. et al. A presenilin-1-dependent \u03b3-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518\u2013522 (1999).","journal-title":"Nature"},{"key":"5802_CR35","doi-asserted-by":"publisher","first-page":"649","DOI":"10.1016\/S0092-8674(00)81193-9","volume":"93","author":"G Struhl","year":"1998","unstructured":"Struhl, G. & Adachi, A. Nuclear access and action of Notch in vivo. Cell 93, 649\u2013660 (1998).","journal-title":"Cell"},{"key":"5802_CR36","doi-asserted-by":"publisher","first-page":"197","DOI":"10.1016\/S1097-2765(00)80416-5","volume":"5","author":"JS Mumm","year":"2000","unstructured":"Mumm, J. S. et al. A ligand-induced extracellular cleavage regulates \u03b3-secretase-like proteolytic activation of Notch1. Mol. Cell 5, 197\u2013206 (2000).","journal-title":"Mol. Cell"},{"key":"5802_CR37","doi-asserted-by":"publisher","first-page":"319","DOI":"10.1016\/0092-8674(93)90423-N","volume":"74","author":"I Rebay","year":"1993","unstructured":"Rebay, I., Fehon, R. G. & Artavanis-Tsakonas, S. Specific truncations of Drosophila Notch define dominant activated and dominant negative forms of the receptor. Cell 74, 319\u2013329 (1993).","journal-title":"Cell"},{"key":"5802_CR38","doi-asserted-by":"publisher","first-page":"3740","DOI":"10.4049\/jimmunol.1202192","volume":"190","author":"ON Karpus","year":"2013","unstructured":"Karpus, O. N. et al. Shear stress-dependent downregulation of the adhesion-G protein-coupled receptor CD97 on circulating leukocytes upon contact with its ligand CD55. J. Immunol. 190, 3740\u20133748 (2013).","journal-title":"J. Immunol."},{"key":"5802_CR39","doi-asserted-by":"publisher","first-page":"1256","DOI":"10.1126\/science.1247761","volume":"343","author":"BS Desai","year":"2014","unstructured":"Desai, B. S., Chadha, A. & Cook, B. The stum gene is essential for mechanical sensing in proprioceptive neurons. Science 343, 1256\u20131259 (2014).","journal-title":"Science"},{"key":"5802_CR40","doi-asserted-by":"publisher","first-page":"e46181","DOI":"10.7554\/eLife.46181","volume":"8","author":"L He","year":"2019","unstructured":"He, L., Binari, R., Huang, J., Falo-Sanjuan, J. & Perrimon, N. In vivo study of gene expression with an enhanced dual-color fluorescent transcriptional timer. eLife 8, e46181 (2019).","journal-title":"eLife"},{"key":"5802_CR41","doi-asserted-by":"publisher","first-page":"3230","DOI":"10.1021\/bi802163p","volume":"48","author":"V Krasnoperov","year":"2009","unstructured":"Krasnoperov, V. et al. Dissociation of the subunits of the calcium-independent receptor of \u03b1-latrotoxin as a result of two-step proteolysis. Biochemistry 48, 3230\u20133238 (2009).","journal-title":"Biochemistry"},{"key":"5802_CR42","doi-asserted-by":"publisher","first-page":"5534","DOI":"10.1523\/JNEUROSCI.4708-05.2006","volume":"26","author":"W Pereanu","year":"2006","unstructured":"Pereanu, W. & Hartenstein, V. Neural lineages of the Drosophila brain: a three-dimensional digital atlas of the pattern of lineage location and projection at the late larval stage. J. Neurosci. 26, 5534\u20135553 (2006).","journal-title":"J. Neurosci."},{"key":"5802_CR43","doi-asserted-by":"publisher","first-page":"94","DOI":"10.1016\/j.jneumeth.2018.05.014","volume":"306","author":"HK Shearin","year":"2018","unstructured":"Shearin, H. K., Quinn, C. D., Mackin, R. D., Macdonald, I. S. & Stowers, R. S. t-GRASP, a targeted GRASP for assessing neuronal connectivity. J. Neurosci. Meth. 306, 94\u2013102 (2018).","journal-title":"J. Neurosci. Meth."},{"key":"5802_CR44","doi-asserted-by":"publisher","first-page":"353","DOI":"10.1016\/j.neuron.2007.11.030","volume":"57","author":"EH Feinberg","year":"2008","unstructured":"Feinberg, E. H. et al. GFP reconstitution across synaptic partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57, 353\u2013363 (2008).","journal-title":"Neuron"},{"key":"5802_CR45","doi-asserted-by":"publisher","first-page":"284","DOI":"10.1007\/BF02179499","volume":"204","author":"K Ito","year":"1995","unstructured":"Ito, K., Urban, J. & Technau, G. M. Distribution, classification, and development of Drosophila glial cells in the late embryonic and early larval ventral nerve cord. Rouxs Arch. Dev. Biol. 204, 284\u2013307 (1995).","journal-title":"Rouxs Arch. Dev. Biol."},{"key":"5802_CR46","doi-asserted-by":"publisher","first-page":"585","DOI":"10.1016\/S0092-8674(00)80046-X","volume":"98","author":"T Usui","year":"1999","unstructured":"Usui, T. et al. Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 98, 585\u2013595 (1999).","journal-title":"Cell"},{"key":"5802_CR47","doi-asserted-by":"publisher","first-page":"80","DOI":"10.1111\/nyas.14192","volume":"1456","author":"N Scholz","year":"2019","unstructured":"Scholz, N., Langenhan, T. & Sch\u00f6neberg, T. Revisiting the classification of adhesion GPCRs. Ann. NY Acad. Sci. 1456, 80\u201395 (2019).","journal-title":"Ann. NY Acad. Sci."},{"key":"5802_CR48","doi-asserted-by":"publisher","first-page":"3109","DOI":"10.1534\/g3.118.200565","volume":"8","author":"B Blanco-Redondo","year":"2018","unstructured":"Blanco-Redondo, B. & Langenhan, T. Parallel genomic engineering of two Drosophila genes using orthogonal attB\/attP sites. G3 8, 3109\u20133118 (2018).","journal-title":"G3"},{"key":"5802_CR49","doi-asserted-by":"publisher","first-page":"461","DOI":"10.3389\/fimmu.2014.00461","volume":"5","author":"T Kawasaki","year":"2014","unstructured":"Kawasaki, T. & Kawai, T. Toll-Like receptor signaling pathways. Front. Immunol. 5, 461 (2014).","journal-title":"Front. Immunol."},{"key":"5802_CR50","doi-asserted-by":"publisher","first-page":"86","DOI":"10.1038\/nature08959","volume":"465","author":"D Sprinzak","year":"2010","unstructured":"Sprinzak, D. et al. Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature 465, 86\u201390 (2010).","journal-title":"Nature"},{"key":"5802_CR51","doi-asserted-by":"publisher","first-page":"236","DOI":"10.4161\/fly.6817","volume":"2","author":"S Diegelmann","year":"2008","unstructured":"Diegelmann, S., Bate, M. & Landgraf, M. Gateway cloning vectors for the LexA-based binary expression system in Drosophila. Fly 2, 236\u2013239 (2008).","journal-title":"Fly"},{"key":"5802_CR52","doi-asserted-by":"publisher","first-page":"703","DOI":"10.1038\/nn1681","volume":"9","author":"S-L Lai","year":"2006","unstructured":"Lai, S.-L. & Lee, T. Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat. Neurosci. 9, 703\u2013709 (2006).","journal-title":"Nat. Neurosci."},{"key":"5802_CR53","doi-asserted-by":"publisher","first-page":"625","DOI":"10.1016\/S1097-2765(00)00061-7","volume":"6","author":"G Struhl","year":"2000","unstructured":"Struhl, G. & Adachi, A. Requirements for presenilin-dependent cleavage of notch and other transmembrane proteins. Mol. Cell 6, 625\u2013636 (2000).","journal-title":"Mol. Cell"},{"key":"5802_CR54","doi-asserted-by":"publisher","first-page":"765","DOI":"10.2144\/000112884","volume":"44","author":"B Harder","year":"2008","unstructured":"Harder, B. et al. TEV protease-mediated cleavage in Drosophila as a tool to analyze protein functions in living organisms. Biotechniques 44, 765\u2013772 (2008).","journal-title":"Biotechniques"},{"key":"5802_CR55","doi-asserted-by":"publisher","first-page":"553","DOI":"10.1242\/dev.055376","volume":"138","author":"S Baas","year":"2011","unstructured":"Baas, S. et al. Sugar-free frosting, a homolog of SAD kinase, drives neural-specific glycan expression in the Drosophila embryo. Development 138, 553\u2013563 (2011).","journal-title":"Development"},{"key":"5802_CR56","doi-asserted-by":"crossref","unstructured":"Ayyar, S. et al. NF-\u03baB\/Rel-mediated regulation of the neural fate in Drosophila. PLoS ONE\u00a02, e1178 (2007).","DOI":"10.1371\/journal.pone.0001178"},{"key":"5802_CR57","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-021-26462-x","volume":"12","author":"N Pogodalla","year":"2021","unstructured":"Pogodalla, N. et al. Drosophila \u00dfHeavy-Spectrin is required in polarized ensheathing glia that form a diffusion-barrier around the neuropil. Nat. Commun. 12, 6357 (2021).","journal-title":"Nat. Commun."},{"key":"5802_CR58","doi-asserted-by":"publisher","first-page":"897","DOI":"10.1016\/j.celrep.2014.06.065","volume":"8","author":"H-H Li","year":"2014","unstructured":"Li, H.-H. et al. A GAL4 driver resource for developmental and behavioral studies on the larval CNS of Drosophila. Cell Rep. 8, 897\u2013908 (2014).","journal-title":"Cell Rep."},{"key":"5802_CR59","doi-asserted-by":"publisher","first-page":"371","DOI":"10.1016\/j.gep.2009.01.002","volume":"9","author":"S Sanyal","year":"2009","unstructured":"Sanyal, S. Genomic mapping and expression patterns of C380, OK6 and D42 enhancer trap lines in the larval nervous system of Drosophila. Gene Expr. Patterns 9, 371\u2013380 (2009).","journal-title":"Gene Expr. Patterns"},{"key":"5802_CR60","doi-asserted-by":"publisher","first-page":"536","DOI":"10.1016\/j.cell.2010.02.025","volume":"141","author":"CJ Potter","year":"2010","unstructured":"Potter, C. J., Tasic, B., Russler, E. V., Liang, L. & Luo, L. The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141, 536\u2013548 (2010).","journal-title":"Cell"},{"key":"5802_CR61","doi-asserted-by":"publisher","first-page":"1407","DOI":"10.1016\/j.celrep.2013.04.003","volume":"3","author":"D Ljaschenko","year":"2013","unstructured":"Ljaschenko, D., Ehmann, N. & Kittel, R. J. Hebbian plasticity guides maturation of glutamate receptor fields in vivo. Cell Rep. 3, 1407\u20131413 (2013).","journal-title":"Cell Rep."},{"key":"5802_CR62","doi-asserted-by":"publisher","first-page":"179","DOI":"10.1007\/BF00215114","volume":"175","author":"BA Stewart","year":"1994","unstructured":"Stewart, B. A., Atwood, H. L., Renger, J. J., Wang, J. & Wu, C.-F. Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions. J. Comp. Physiol. 175, 179\u2013191 (1994).","journal-title":"J. Comp. Physiol."},{"key":"5802_CR63","doi-asserted-by":"crossref","unstructured":"Schmid, A. & Sigrist, S. J. in Drosophila, Methods and Protocols 1st edn (ed. Dahmann, C.) 239\u2013251 (2008).","DOI":"10.1007\/978-1-59745-583-1_14"},{"key":"5802_CR64","doi-asserted-by":"publisher","first-page":"2301","DOI":"10.1038\/nprot.2016.136","volume":"11","author":"S Tyanova","year":"2016","unstructured":"Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301\u20132319 (2016).","journal-title":"Nat. Protoc."},{"key":"5802_CR65","doi-asserted-by":"publisher","first-page":"731","DOI":"10.1038\/nmeth.3901","volume":"13","author":"S Tyanova","year":"2016","unstructured":"Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731\u2013740 (2016).","journal-title":"Nat. Methods"},{"key":"5802_CR66","doi-asserted-by":"crossref","unstructured":"Schmied, C. & Tomancak, P. in Drosophila, Methods and Protocols 2nd edn (ed. Dahmann, C.) 189\u2013202 (2016).","DOI":"10.1007\/978-1-4939-6371-3_10"},{"key":"5802_CR67","doi-asserted-by":"publisher","first-page":"1046","DOI":"10.1016\/j.cell.2016.01.014","volume":"164","author":"JC Tuthill","year":"2016","unstructured":"Tuthill, J. C. & Wilson, R. I. Parallel transformation of tactile signals in central circuits of Drosophila. Cell 164, 1046\u20131059 (2016).","journal-title":"Cell"}],"container-title":["Nature"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.nature.com\/articles\/s41586-023-05802-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s41586-023-05802-5","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s41586-023-05802-5.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,9]],"date-time":"2023-11-09T15:03:41Z","timestamp":1699542221000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.nature.com\/articles\/s41586-023-05802-5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3,8]]},"references-count":67,"journal-issue":{"issue":"7954","published-print":{"date-parts":[[2023,3,30]]}},"alternative-id":["5802"],"URL":"http:\/\/dx.doi.org\/10.1038\/s41586-023-05802-5","relation":{},"ISSN":["0028-0836","1476-4687"],"issn-type":[{"value":"0028-0836","type":"print"},{"value":"1476-4687","type":"electronic"}],"subject":["Multidisciplinary"],"published":{"date-parts":[[2023,3,8]]},"assertion":[{"value":"12 May 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"6 February 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"8 March 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"N.S. and T.L. are co-inventors of a pending patent covering NTF release sensors for aGPCRs (WO\/2022\/063915; priority application: EP 3974535; applicant: Leipzig University) covered in this manuscript. The remaining authors declare no competing interests.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}]}}