uni-leipzig-open-access/json/s41569-022-00771-0

1 line
95 KiB
Plaintext

{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,1,24]],"date-time":"2024-01-24T10:36:23Z","timestamp":1706092583204},"reference-count":258,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2022,10,14]],"date-time":"2022-10-14T00:00:00Z","timestamp":1665705600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,10,14]],"date-time":"2022-10-14T00:00:00Z","timestamp":1665705600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Nat Rev Cardiol"],"published-print":{"date-parts":[[2023,4]]},"DOI":"10.1038\/s41569-022-00771-0","type":"journal-article","created":{"date-parts":[[2022,10,14]],"date-time":"2022-10-14T17:38:22Z","timestamp":1665769102000},"page":"217-235","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":23,"title":["The potential of tailoring the gut microbiome to prevent and treat cardiometabolic disease"],"prefix":"10.1038","volume":"20","author":[{"given":"Rima Mohsen","family":"Chakaroun","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9730-1915","authenticated-orcid":false,"given":"Lisa M.","family":"Olsson","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4871-8818","authenticated-orcid":false,"given":"Fredrik","family":"B\u00e4ckhed","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,10,14]]},"reference":[{"key":"771_CR1","doi-asserted-by":"publisher","first-page":"e139","DOI":"10.1161\/CIR.0000000000000757","volume":"141","author":"SS Virani","year":"2020","unstructured":"Virani, S. S. et al. Heart disease and stroke statistics \u2014 2020 update: a report from the American Heart Association. Circulation 141, e139\u2013e596 (2020).","journal-title":"Circulation"},{"key":"771_CR2","doi-asserted-by":"publisher","first-page":"2982","DOI":"10.1016\/j.jacc.2020.11.010","volume":"76","author":"GA Roth","year":"2020","unstructured":"Roth, G. A. et al. Global burden of cardiovascular diseases and risk factors, 1990\u20132019: update from the GBD 2019 study. J. Am. Coll. Cardiol. 76, 2982\u20133021 (2020).","journal-title":"J. Am. Coll. Cardiol."},{"key":"771_CR3","doi-asserted-by":"publisher","first-page":"2104","DOI":"10.1161\/CIRCULATIONAHA.114.014310","volume":"131","author":"L Fern\u00e1ndez-Friera","year":"2015","unstructured":"Fern\u00e1ndez-Friera, L. et al. Prevalence, vascular distribution, and multiterritorial extent of subclinical atherosclerosis in a middle-aged cohort. Circulation 131, 2104\u20132113 (2015).","journal-title":"Circulation"},{"key":"771_CR4","doi-asserted-by":"publisher","first-page":"1898","DOI":"10.2337\/dc08-0423","volume":"31","author":"ES Ford","year":"2008","unstructured":"Ford, E. S., Li, C. & Sattar, N. Metabolic syndrome and incident diabetes: current state of the evidence. Diabetes Care 31, 1898\u20131904 (2008).","journal-title":"Diabetes Care"},{"key":"771_CR5","doi-asserted-by":"publisher","first-page":"403","DOI":"10.1016\/j.jacc.2006.09.032","volume":"49","author":"AS Gami","year":"2007","unstructured":"Gami, A. S. et al. Metabolic syndrome and risk of incident cardiovascular events and death: a systematic review and meta-analysis of longitudinal studies. J. Am. Coll. Cardiol. 49, 403\u2013414 (2007).","journal-title":"J. Am. Coll. Cardiol."},{"key":"771_CR6","doi-asserted-by":"publisher","first-page":"1978","DOI":"10.1016\/j.jacc.2005.06.082","volume":"46","author":"KK Koh","year":"2005","unstructured":"Koh, K. K., Han, S. H. & Quon, M. J. Inflammatory markers and the metabolic syndrome: insights from therapeutic interventions. J. Am. Coll. Cardiol. 46, 1978\u20131985 (2005).","journal-title":"J. Am. Coll. Cardiol."},{"key":"771_CR7","doi-asserted-by":"publisher","first-page":"391","DOI":"10.1161\/01.CIR.0000055014.62083.05","volume":"107","author":"PM Ridker","year":"2003","unstructured":"Ridker, P. M., Buring, J. E., Cook, N. R. & Rifai, N. C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14 719 initially healthy American women. Circulation 107, 391\u2013397 (2003).","journal-title":"Circulation"},{"key":"771_CR8","doi-asserted-by":"publisher","first-page":"2313","DOI":"10.1093\/eurheartj\/ehz962","volume":"41","author":"J Bor\u00e9n","year":"2020","unstructured":"Bor\u00e9n, J. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 41, 2313\u20132330 (2020).","journal-title":"Eur. Heart J."},{"key":"771_CR9","doi-asserted-by":"publisher","first-page":"1376","DOI":"10.1016\/j.jacc.2019.03.009","volume":"74","author":"DK Arnett","year":"2019","unstructured":"Arnett, D. K. et al. 2019 ACC\/AHA guideline on the primary prevention of cardiovascular disease: executive summary: a report of the American College of Cardiology\/American Heart Association task force on clinical practice guidelines. J. Am. Coll. Cardiol. 74, 1376\u20131414 (2019).","journal-title":"J. Am. Coll. Cardiol."},{"key":"771_CR10","doi-asserted-by":"publisher","first-page":"337","DOI":"10.1016\/j.cell.2016.01.013","volume":"164","author":"R Sender","year":"2016","unstructured":"Sender, R., Fuchs, S. & Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164, 337\u2013340 (2016).","journal-title":"Cell"},{"key":"771_CR11","doi-asserted-by":"publisher","first-page":"210","DOI":"10.1038\/nature25973","volume":"555","author":"D Rothschild","year":"2018","unstructured":"Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210\u2013215 (2018).","journal-title":"Nature"},{"key":"771_CR12","doi-asserted-by":"publisher","first-page":"15718","DOI":"10.1073\/pnas.0407076101","volume":"101","author":"F B\u00e4ckhed","year":"2004","unstructured":"B\u00e4ckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718\u201315723 (2004).","journal-title":"Proc. Natl Acad. Sci. USA"},{"key":"771_CR13","doi-asserted-by":"publisher","first-page":"1241214","DOI":"10.1126\/science.1241214","volume":"341","author":"VK Ridaura","year":"2013","unstructured":"Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).","journal-title":"Science"},{"key":"771_CR14","doi-asserted-by":"publisher","first-page":"913","DOI":"10.1053\/j.gastro.2012.06.031","volume":"143","author":"A Vrieze","year":"2012","unstructured":"Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913\u2013916.e7 (2012).","journal-title":"Gastroenterology"},{"key":"771_CR15","doi-asserted-by":"publisher","first-page":"2043","DOI":"10.1056\/NEJMoa1910437","volume":"381","author":"Z DeFilipp","year":"2019","unstructured":"DeFilipp, Z. et al. Drug-resistant bacteremia transmitted by fecal microbiota transplant. N. Engl. J. Med. 381, 2043\u20132050 (2019).","journal-title":"N. Engl. J. Med."},{"key":"771_CR16","doi-asserted-by":"publisher","first-page":"11070","DOI":"10.1073\/pnas.0504978102","volume":"102","author":"RE Ley","year":"2005","unstructured":"Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. USA 102, 11070\u201311075 (2005).","journal-title":"Proc. Natl Acad. Sci. USA"},{"key":"771_CR17","doi-asserted-by":"publisher","first-page":"979","DOI":"10.1073\/pnas.0605374104","volume":"104","author":"F B\u00e4ckhed","year":"2007","unstructured":"B\u00e4ckhed, F., Manchester, J. K., Semenkovich, C. F. & Gordon, J. I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl Acad. Sci. USA 104, 979\u2013984 (2007).","journal-title":"Proc. Natl Acad. Sci. USA"},{"key":"771_CR18","doi-asserted-by":"publisher","first-page":"e01018-16","DOI":"10.1128\/mBio.01018-16","volume":"7","author":"MA Sze","year":"2016","unstructured":"Sze, M. A. & Schloss, P. D. Looking for a signal in the noise: revisiting obesity and the microbiome. mBio 7, e01018-16 (2016).","journal-title":"mBio"},{"key":"771_CR19","doi-asserted-by":"publisher","first-page":"4223","DOI":"10.1016\/j.febslet.2014.09.039","volume":"588","author":"WA Walters","year":"2014","unstructured":"Walters, W. A., Xu, Z. & Knight, R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 588, 4223\u20134233 (2014).","journal-title":"FEBS Lett."},{"key":"771_CR20","doi-asserted-by":"crossref","unstructured":"Faintuch, J. & Faintuch, S. Microbiome and Metabolome in Diagnosis, Therapy, and other Strategic Applications (Academic, 2019).","DOI":"10.1016\/B978-0-12-815249-2.02001-7"},{"key":"771_CR21","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-017-01973-8","volume":"8","author":"C Duvallet","year":"2017","unstructured":"Duvallet, C., Gibbons, S. M., Gurry, T., Irizarry, R. A. & Alm, E. J. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat. Commun. 8, 1784 (2017).","journal-title":"Nat. Commun."},{"key":"771_CR22","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pcbi.1004977","volume":"12","author":"E Pasolli","year":"2016","unstructured":"Pasolli, E., Truong, D. T., Malik, F., Waldron, L. & Segata, N. Machine learning meta-analysis of large metagenomic datasets: tools and biological insights. PLoS Comput. Biol. 12, e1004977 (2016).","journal-title":"PLoS Comput. Biol."},{"key":"771_CR23","doi-asserted-by":"publisher","first-page":"1073","DOI":"10.1128\/AEM.02340-06","volume":"73","author":"SH Duncan","year":"2007","unstructured":"Duncan, S. H. et al. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl. Environ. Microbiol. 73, 1073\u20131078 (2007).","journal-title":"Appl. Environ. Microbiol."},{"key":"771_CR24","doi-asserted-by":"publisher","DOI":"10.1186\/s12915-019-0699-4","volume":"17","author":"JL Waters","year":"2019","unstructured":"Waters, J. L. & Ley, R. E. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 17, 83 (2019).","journal-title":"BMC Biol."},{"key":"771_CR25","doi-asserted-by":"publisher","first-page":"789","DOI":"10.1016\/j.cell.2014.09.053","volume":"159","author":"JK Goodrich","year":"2014","unstructured":"Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789\u2013799 (2014).","journal-title":"Cell"},{"key":"771_CR26","doi-asserted-by":"publisher","first-page":"1229","DOI":"10.1136\/gutjnl-2019-319322","volume":"69","author":"LM Olsson","year":"2020","unstructured":"Olsson, L. M. et al. Gut microbiota of obese subjects with Prader-Willi syndrome is linked to metabolic health. Gut 69, 1229\u20131238 (2020).","journal-title":"Gut"},{"key":"771_CR27","doi-asserted-by":"publisher","first-page":"2364","DOI":"10.3390\/nu12082364","volume":"12","author":"X Zhong","year":"2020","unstructured":"Zhong, X. et al. Gut microbiota associations with metabolic health and obesity status in older adults. Nutrients 12, 2364 (2020).","journal-title":"Nutrients"},{"key":"771_CR28","doi-asserted-by":"publisher","first-page":"541","DOI":"10.1038\/nature12506","volume":"500","author":"E Le Chatelier","year":"2013","unstructured":"Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541\u2013546 (2013).","journal-title":"Nature"},{"key":"771_CR29","doi-asserted-by":"publisher","first-page":"1770","DOI":"10.1007\/s00125-021-05625-x","volume":"65","author":"C Herder","year":"2022","unstructured":"Herder, C. & Roden, M. A novel diabetes typology: towards precision diabetology from pathogenesis to treatment. Diabetologia 65, 1770\u20131781 (2022).","journal-title":"Diabetologia"},{"key":"771_CR30","doi-asserted-by":"publisher","first-page":"663","DOI":"10.1038\/s41586-019-1236-x","volume":"569","author":"W Zhou","year":"2019","unstructured":"Zhou, W. et al. Longitudinal multi-omics of host-microbe dynamics in prediabetes. Nature 569, 663\u2013671 (2019).","journal-title":"Nature"},{"key":"771_CR31","doi-asserted-by":"publisher","first-page":"379","DOI":"10.1016\/j.cmet.2020.06.011","volume":"32","author":"H Wu","year":"2020","unstructured":"Wu, H. et al. The gut microbiota in prediabetes and diabetes: a population-based cross-sectional study. Cell Metab. 32, 379\u2013390.e3 (2020).","journal-title":"Cell Metab."},{"key":"771_CR32","doi-asserted-by":"publisher","first-page":"792","DOI":"10.1038\/s41591-019-0414-6","volume":"25","author":"SM Sch\u00fcssler-Fiorenza Rose","year":"2019","unstructured":"Sch\u00fcssler-Fiorenza Rose, S. M. et al. A longitudinal big data approach for precision health. Nat. Med. 25, 792\u2013804 (2019).","journal-title":"Nat. Med."},{"key":"771_CR33","doi-asserted-by":"publisher","first-page":"55","DOI":"10.1038\/nature11450","volume":"490","author":"J Qin","year":"2012","unstructured":"Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55\u201360 (2012).","journal-title":"Nature"},{"key":"771_CR34","doi-asserted-by":"publisher","DOI":"10.1186\/s13073-021-00856-4","volume":"13","author":"C Alvarez-Silva","year":"2021","unstructured":"Alvarez-Silva, C. et al. Trans-ethnic gut microbiota signatures of type 2 diabetes in Denmark and India. Genome Med. 13, 37 (2021).","journal-title":"Genome Med."},{"key":"771_CR35","doi-asserted-by":"publisher","first-page":"810","DOI":"10.1007\/s00125-018-4550-1","volume":"61","author":"KH Allin","year":"2018","unstructured":"Allin, K. H. et al. Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia 61, 810\u2013820 (2018).","journal-title":"Diabetologia"},{"key":"771_CR36","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1038\/nature12198","volume":"498","author":"FH Karlsson","year":"2013","unstructured":"Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99\u2013103 (2013).","journal-title":"Nature"},{"key":"771_CR37","doi-asserted-by":"publisher","first-page":"262","DOI":"10.1038\/nature15766","volume":"528","author":"K Forslund","year":"2015","unstructured":"Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262\u2013266 (2015).","journal-title":"Nature"},{"key":"771_CR38","doi-asserted-by":"publisher","first-page":"500","DOI":"10.1038\/s41586-021-04177-9","volume":"600","author":"SK Forslund","year":"2021","unstructured":"Forslund, S. K. et al. Combinatorial, additive and dose-dependent drug-microbiome associations. Nature 600, 500\u2013505 (2021).","journal-title":"Nature"},{"key":"771_CR39","doi-asserted-by":"publisher","first-page":"726","DOI":"10.1016\/j.chom.2022.03.002","volume":"30","author":"LM Olsson","year":"2022","unstructured":"Olsson, L. M. et al. Dynamics of the normal gut microbiota: a longitudinal one-year population study in Sweden. Cell Host Microbe 30, 726\u2013739.e3 (2022).","journal-title":"Cell Host Microbe"},{"key":"771_CR40","doi-asserted-by":"publisher","first-page":"252","DOI":"10.1016\/j.chom.2019.07.004","volume":"26","author":"LB Thingholm","year":"2019","unstructured":"Thingholm, L. B. et al. Obese individuals with and without type 2 diabetes show different gut microbial functional capacity and composition. Cell Host Microbe 26, 252\u2013264.e10 (2019).","journal-title":"Cell Host Microbe"},{"key":"771_CR41","doi-asserted-by":"publisher","author":"E Belda","year":"2022","unstructured":"Belda, E. et al. Impairment of gut microbial biotin metabolism and host biotin status in severe obesity: effect of biotin and prebiotic supplementation on improved metabolism. Gut https:\/\/doi.org\/10.1136\/gutjnl-2021-325753 (2022).","journal-title":"Gut","DOI":"10.1136\/gutjnl-2021-325753"},{"key":"771_CR42","doi-asserted-by":"publisher","first-page":"280","DOI":"10.1007\/s12170-015-0440-y","volume":"9","author":"M Urpi-Sarda","year":"2015","unstructured":"Urpi-Sarda, M. et al. Metabolomics for biomarkers of type 2 diabetes mellitus: advances and nutritional intervention trends. Curr. Cardiovasc. Risk Rep. 9, 280\u2013291 (2015).","journal-title":"Curr. Cardiovasc. Risk Rep."},{"key":"771_CR43","doi-asserted-by":"publisher","first-page":"585","DOI":"10.1038\/nature12480","volume":"500","author":"A Cotillard","year":"2013","unstructured":"Cotillard, A. et al. Dietary intervention impact on gut microbial gene richness. Nature 500, 585\u2013588 (2013).","journal-title":"Nature"},{"key":"771_CR44","doi-asserted-by":"publisher","first-page":"817","DOI":"10.1161\/CIRCRESAHA.115.306807","volume":"117","author":"J Fu","year":"2015","unstructured":"Fu, J. et al. The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ. Res. 117, 817\u2013824 (2015).","journal-title":"Circ. Res."},{"key":"771_CR45","doi-asserted-by":"publisher","first-page":"245","DOI":"10.1016\/j.chom.2020.05.013","volume":"28","author":"DJ Kenny","year":"2020","unstructured":"Kenny, D. J. et al. Cholesterol metabolism by uncultured human gut bacteria influences host cholesterol level. Cell Host Microbe 28, 245\u2013257.e6 (2020).","journal-title":"Cell Host Microbe"},{"key":"771_CR46","doi-asserted-by":"publisher","first-page":"416","DOI":"10.1038\/s42255-022-00559-z","volume":"4","author":"A Perino","year":"2022","unstructured":"Perino, A. & Schoonjans, K. Metabolic messengers: bile acids. Nat. Metab. 4, 416\u2013423 (2022).","journal-title":"Nat. Metab."},{"key":"771_CR47","doi-asserted-by":"publisher","first-page":"223","DOI":"10.1038\/s41581-019-0244-2","volume":"16","author":"KT Mills","year":"2020","unstructured":"Mills, K. T., Stefanescu, A. & He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 16, 223\u2013237 (2020).","journal-title":"Nat. Rev. Nephrol."},{"key":"771_CR48","doi-asserted-by":"publisher","first-page":"97","DOI":"10.1097\/MNH.0000000000000476","volume":"28","author":"HA Jama","year":"2019","unstructured":"Jama, H. A., Kaye, D. M. & Marques, F. Z. The gut microbiota and blood pressure in experimental models. Curr. Opin. Nephrol. Hypertens. 28, 97\u2013104 (2019).","journal-title":"Curr. Opin. Nephrol. Hypertens."},{"key":"771_CR49","doi-asserted-by":"publisher","first-page":"1412","DOI":"10.1038\/s41588-018-0205-x","volume":"50","author":"E Evangelou","year":"2018","unstructured":"Evangelou, E. et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 50, 1412\u20131425 (2018).","journal-title":"Nat. Genet."},{"key":"771_CR50","doi-asserted-by":"publisher","first-page":"4259","DOI":"10.1093\/eurheartj\/ehaa704","volume":"41","author":"BJH Verhaar","year":"2020","unstructured":"Verhaar, B. J. H. et al. Associations between gut microbiota, faecal short-chain fatty acids, and blood pressure across ethnic groups: the HELIUS study. Eur. Heart J. 41, 4259\u20134267 (2020).","journal-title":"Eur. Heart J."},{"key":"771_CR51","doi-asserted-by":"publisher","first-page":"1810","DOI":"10.1097\/HJH.0000000000002878","volume":"39","author":"P Louca","year":"2021","unstructured":"Louca, P. et al. Gut microbiome diversity and composition is associated with hypertension in women. J. Hypertens. 39, 1810\u20131816 (2021).","journal-title":"J. Hypertens."},{"key":"771_CR52","doi-asserted-by":"publisher","first-page":"998","DOI":"10.1161\/HYPERTENSIONAHA.118.12109","volume":"73","author":"S Sun","year":"2019","unstructured":"Sun, S. et al. Gut microbiota composition and blood pressure. Hypertension 73, 998\u20131006 (2019).","journal-title":"Hypertension"},{"key":"771_CR53","doi-asserted-by":"publisher","DOI":"10.1186\/s40168-016-0222-x","volume":"5","author":"J Li","year":"2017","unstructured":"Li, J. et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 5, 14 (2017).","journal-title":"Microbiome"},{"key":"771_CR54","doi-asserted-by":"publisher","DOI":"10.1161\/JAHA.120.016641","volume":"9","author":"J Palmu","year":"2020","unstructured":"Palmu, J. et al. Association between the gut microbiota and blood pressure in a population cohort of 6953 individuals. J. Am. Heart Assoc. 9, e016641 (2020).","journal-title":"J. Am. Heart Assoc."},{"key":"771_CR55","doi-asserted-by":"publisher","first-page":"2390","DOI":"10.1093\/eurheartj\/ehy226","volume":"39","author":"C Menni","year":"2018","unstructured":"Menni, C. et al. Gut microbial diversity is associated with lower arterial stiffness in women. Eur. Heart J. 39, 2390\u20132397 (2018).","journal-title":"Eur. Heart J."},{"key":"771_CR56","doi-asserted-by":"publisher","first-page":"1435","DOI":"10.1093\/cvr\/cvz091","volume":"115","author":"HA Jama","year":"2019","unstructured":"Jama, H. A., Beale, A., Shihata, W. A. & Marques, F. Z. The effect of diet on hypertensive pathology: is there a link via gut microbiota-driven immunometabolism? Cardiovasc. Res. 115, 1435\u20131447 (2019).","journal-title":"Cardiovasc. Res."},{"key":"771_CR57","doi-asserted-by":"publisher","DOI":"10.1038\/s41598-020-63475-w","volume":"10","author":"L Calder\u00f3n-P\u00e9rez","year":"2020","unstructured":"Calder\u00f3n-P\u00e9rez, L. et al. Gut metagenomic and short chain fatty acids signature in hypertension: a cross-sectional study. Sci. Rep. 10, 6436 (2020).","journal-title":"Sci. Rep."},{"key":"771_CR58","doi-asserted-by":"publisher","first-page":"983","DOI":"10.1016\/S0140-6736(88)90741-6","volume":"2","author":"P Saikku","year":"1988","unstructured":"Saikku, P. et al. Serological evidence of an association of a novel chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction. Lancet 2, 983\u2013986 (1988).","journal-title":"Lancet"},{"key":"771_CR59","doi-asserted-by":"publisher","first-page":"202","DOI":"10.1016\/j.ahj.2003.09.011","volume":"147","author":"EV Gelfand","year":"2004","unstructured":"Gelfand, E. V. & Cannon, C. P. Antibiotics for secondary prevention of coronary artery disease: an ACES hypothesis but we need to PROVE IT. Am. Heart J. 147, 202\u2013209 (2004).","journal-title":"Am. Heart J."},{"key":"771_CR60","doi-asserted-by":"publisher","first-page":"459","DOI":"10.1016\/j.ijcard.2015.01.020","volume":"182","author":"P Winkel","year":"2015","unstructured":"Winkel, P. et al. Clarithromycin for stable coronary heart disease increases all-cause and cardiovascular mortality and cerebrovascular morbidity over 10 years in the CLARICOR randomised, blinded clinical trial. Int. J. Cardiol. 182, 459\u2013465 (2015).","journal-title":"Int. J. Cardiol."},{"key":"771_CR61","doi-asserted-by":"publisher","first-page":"4592","DOI":"10.1073\/pnas.1011383107","volume":"108","author":"O Koren","year":"2011","unstructured":"Koren, O. et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc. Natl Acad. Sci. USA 108, 4592\u20134598 (2011).","journal-title":"Proc. Natl Acad. Sci. USA"},{"key":"771_CR62","doi-asserted-by":"publisher","DOI":"10.1161\/JAHA.115.002699","volume":"4","author":"J Yin","year":"2015","unstructured":"Yin, J. et al. Dysbiosis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. J. Am. Heart Assoc. 4, e002699 (2015).","journal-title":"J. Am. Heart Assoc."},{"key":"771_CR63","doi-asserted-by":"publisher","first-page":"956","DOI":"10.1161\/CIRCRESAHA.116.309219","volume":"119","author":"TN Kelly","year":"2016","unstructured":"Kelly, T. N. et al. Gut microbiome associates with lifetime cardiovascular disease risk profile among Bogalusa Heart Study participants. Circ. Res. 119, 956\u2013964 (2016).","journal-title":"Circ. Res."},{"key":"771_CR64","doi-asserted-by":"publisher","first-page":"893","DOI":"10.1152\/physiolgenomics.00070.2018","volume":"50","author":"Q Zhu","year":"2018","unstructured":"Zhu, Q. et al. Dysbiosis signatures of gut microbiota in coronary artery disease. Physiol. Genomics 50, 893\u2013903 (2018).","journal-title":"Physiol. Genomics"},{"key":"771_CR65","doi-asserted-by":"publisher","DOI":"10.1186\/s40168-019-0683-9","volume":"7","author":"H Liu","year":"2019","unstructured":"Liu, H. et al. Alterations in the gut microbiome and metabolism with coronary artery disease severity. Microbiome 7, 68 (2019).","journal-title":"Microbiome"},{"key":"771_CR66","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0227147","volume":"15","author":"T Toya","year":"2020","unstructured":"Toya, T. et al. Coronary artery disease is associated with an altered gut microbiome composition. PLoS ONE 15, e0227147 (2020).","journal-title":"PLoS ONE"},{"key":"771_CR67","doi-asserted-by":"publisher","DOI":"10.1038\/s41598-017-18756-2","volume":"8","author":"X Cui","year":"2018","unstructured":"Cui, X. et al. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci. Rep. 8, 635 (2018).","journal-title":"Sci. Rep."},{"key":"771_CR68","doi-asserted-by":"publisher","DOI":"10.1038\/ncomms2266","volume":"3","author":"FH Karlsson","year":"2012","unstructured":"Karlsson, F. H. et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3, 1245 (2012).","journal-title":"Nat. Commun."},{"key":"771_CR69","doi-asserted-by":"publisher","DOI":"10.1038\/srep22525","volume":"6","author":"Q Feng","year":"2016","unstructured":"Feng, Q. et al. Integrated metabolomics and metagenomics analysis of plasma and urine identified microbial metabolites associated with coronary heart disease. Sci. Rep. 6, 22525 (2016).","journal-title":"Sci. Rep."},{"key":"771_CR70","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-017-00900-1","volume":"8","author":"Z Jie","year":"2017","unstructured":"Jie, Z. et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 8, 845 (2017).","journal-title":"Nat. Commun."},{"key":"771_CR71","doi-asserted-by":"publisher","first-page":"14166","DOI":"10.1096\/fj.202000622R","volume":"34","author":"S Liu","year":"2020","unstructured":"Liu, S., Zhao, W., Liu, X. & Cheng, L. Metagenomic analysis of the gut microbiome in atherosclerosis patients identify cross-cohort microbial signatures and potential therapeutic target. FASEB J. 34, 14166\u201314181 (2020).","journal-title":"FASEB J."},{"key":"771_CR72","doi-asserted-by":"publisher","first-page":"929","DOI":"10.1161\/CIRCULATIONAHA.105.579979","volume":"113","author":"SJ Ott","year":"2006","unstructured":"Ott, S. J. et al. Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation 113, 929\u2013937 (2006).","journal-title":"Circulation"},{"key":"771_CR73","doi-asserted-by":"publisher","first-page":"3548","DOI":"10.1021\/acs.jafc.0c00225","volume":"68","author":"Y-Y Zheng","year":"2020","unstructured":"Zheng, Y.-Y. et al. Gut microbiome-based diagnostic model to predict coronary artery disease. J. Agric. Food Chem. 68, 3548\u20133557 (2020).","journal-title":"J. Agric. Food Chem."},{"key":"771_CR74","doi-asserted-by":"publisher","first-page":"295","DOI":"10.1038\/s41591-022-01686-6","volume":"28","author":"Y Talmor-Barkan","year":"2022","unstructured":"Talmor-Barkan, Y. et al. Metabolomic and microbiome profiling reveals personalized risk factors for coronary artery disease. Nat. Med. 28, 295\u2013302 (2022).","journal-title":"Nat. Med."},{"key":"771_CR75","doi-asserted-by":"publisher","first-page":"303","DOI":"10.1038\/s41591-022-01688-4","volume":"28","author":"S Fromentin","year":"2022","unstructured":"Fromentin, S. et al. Microbiome and metabolome features of the cardiometabolic disease spectrum. Nat. Med. 28, 303\u2013314 (2022).","journal-title":"Nat. Med."},{"key":"771_CR76","doi-asserted-by":"publisher","first-page":"507","DOI":"10.1038\/nature24460","volume":"551","author":"D Vandeputte","year":"2017","unstructured":"Vandeputte, D. et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 551, 507\u2013511 (2017).","journal-title":"Nature"},{"key":"771_CR77","doi-asserted-by":"publisher","first-page":"310","DOI":"10.1038\/s41586-020-2269-x","volume":"581","author":"S Vieira-Silva","year":"2020","unstructured":"Vieira-Silva, S. et al. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature 581, 310\u2013315 (2020).","journal-title":"Nature"},{"key":"771_CR78","doi-asserted-by":"publisher","first-page":"1461","DOI":"10.1038\/s41564-018-0272-x","volume":"3","author":"K Kasahara","year":"2018","unstructured":"Kasahara, K. et al. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat. Microbiol. 3, 1461\u20131471 (2018).","journal-title":"Nat. Microbiol."},{"key":"771_CR79","doi-asserted-by":"publisher","first-page":"862","DOI":"10.1016\/j.cell.2020.02.016","volume":"180","author":"I Nemet","year":"2020","unstructured":"Nemet, I. et al. A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell 180, 862\u2013877.e22 (2020).","journal-title":"Cell"},{"key":"771_CR80","doi-asserted-by":"publisher","first-page":"790783","DOI":"10.3389\/fmed.2021.790783","volume":"8","author":"E Wehedy","year":"2021","unstructured":"Wehedy, E., Shatat, I. F. & Al Khodor, S. The human microbiome in chronic kidney disease: a double-edged sword. Front. Med. 8, 790783 (2021).","journal-title":"Front. Med."},{"key":"771_CR81","doi-asserted-by":"publisher","first-page":"2346","DOI":"10.3389\/fmicb.2019.02346","volume":"10","author":"DA Medina","year":"2019","unstructured":"Medina, D. A. et al. Cross-regional view of functional and taxonomic microbiota composition in obesity and post-obesity treatment shows country specific microbial contribution. Front. Microbiol. 10, 2346 (2019).","journal-title":"Front. Microbiol."},{"key":"771_CR82","doi-asserted-by":"publisher","DOI":"10.1161\/JAHA.116.004947","volume":"6","author":"Y Heianza","year":"2017","unstructured":"Heianza, Y., Ma, W., Manson, J. E., Rexrode, K. M. & Qi, L. Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death: a systematic review and meta-analysis of prospective studies. J. Am. Heart Assoc. 6, e004947 (2017).","journal-title":"J. Am. Heart Assoc."},{"key":"771_CR83","doi-asserted-by":"publisher","first-page":"1979","DOI":"10.3389\/fmicb.2017.01979","volume":"8","author":"CD Filippo","year":"2017","unstructured":"Filippo, C. D. et al. Diet, environments, and gut microbiota. A preliminary investigation in children living in rural and urban Burkina Faso and Italy. Front. Microbiol. 8, 1979 (2017).","journal-title":"Front. Microbiol."},{"key":"771_CR84","doi-asserted-by":"publisher","first-page":"567","DOI":"10.1152\/physrev.1990.70.2.567","volume":"70","author":"EN Bergman","year":"1990","unstructured":"Bergman, E. N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70, 567\u2013590 (1990).","journal-title":"Physiol. Rev."},{"key":"771_CR85","doi-asserted-by":"publisher","first-page":"858","DOI":"10.3390\/nu3100858","volume":"3","author":"MAR Vinolo","year":"2011","unstructured":"Vinolo, M. A. R., Rodrigues, H. G., Nachbar, R. T. & Curi, R. Regulation of inflammation by short chain fatty acids. Nutrients 3, 858\u2013876 (2011).","journal-title":"Nutrients"},{"key":"771_CR86","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1016\/B978-0-12-800100-4.00003-9","volume":"121","author":"J Tan","year":"2014","unstructured":"Tan, J. et al. The role of short-chain fatty acids in health and disease. Adv. Immunol. 121, 91\u2013119 (2014).","journal-title":"Adv. Immunol."},{"key":"771_CR87","doi-asserted-by":"publisher","first-page":"2325","DOI":"10.1194\/jlr.R036012","volume":"54","author":"G den Besten","year":"2013","unstructured":"den Besten, G. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325\u20132340 (2013).","journal-title":"J. Lipid Res."},{"key":"771_CR88","doi-asserted-by":"publisher","first-page":"570","DOI":"10.1126\/science.aam9949","volume":"357","author":"MX Byndloss","year":"2017","unstructured":"Byndloss, M. X. et al. Microbiota-activated PPAR-\u03b3 signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 357, 570\u2013575 (2017).","journal-title":"Science"},{"key":"771_CR89","doi-asserted-by":"publisher","DOI":"10.1126\/sciadv.1500183","volume":"1","author":"JC Clemente","year":"2015","unstructured":"Clemente, J. C. et al. The microbiome of uncontacted Amerindians. Sci. Adv. 1, e1500183 (2015).","journal-title":"Sci. Adv."},{"key":"771_CR90","doi-asserted-by":"publisher","first-page":"339","DOI":"10.1111\/joim.12508","volume":"280","author":"T Arora","year":"2016","unstructured":"Arora, T. & B\u00e4ckhed, F. The gut microbiota and metabolic disease: current understanding and future perspectives. J. Intern. Med. 280, 339\u2013349 (2016).","journal-title":"J. Intern. Med."},{"key":"771_CR91","doi-asserted-by":"publisher","first-page":"1332","DOI":"10.1016\/j.cell.2016.05.041","volume":"165","author":"A Koh","year":"2016","unstructured":"Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & B\u00e4ckhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332\u20131345 (2016).","journal-title":"Cell"},{"key":"771_CR92","doi-asserted-by":"publisher","first-page":"584","DOI":"10.1016\/j.molcel.2020.03.005","volume":"78","author":"A Koh","year":"2020","unstructured":"Koh, A. & B\u00e4ckhed, F. From association to causality: the role of the gut microbiota and its functional products on host metabolism. Mol. Cell 78, 584\u2013596 (2020).","journal-title":"Mol. Cell"},{"key":"771_CR93","doi-asserted-by":"publisher","first-page":"84","DOI":"10.1016\/j.cell.2013.12.016","volume":"156","author":"F De Vadder","year":"2014","unstructured":"De Vadder, F. et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156, 84\u201396 (2014).","journal-title":"Cell"},{"key":"771_CR94","doi-asserted-by":"publisher","first-page":"1391","DOI":"10.1136\/gut.31.12.1391","volume":"31","author":"FV Mortensen","year":"1990","unstructured":"Mortensen, F. V., Nielsen, H., Mulvany, M. J. & Hessov, I. Short chain fatty acids dilate isolated human colonic resistance arteries. Gut 31, 1391\u20131394 (1990).","journal-title":"Gut"},{"key":"771_CR95","doi-asserted-by":"publisher","first-page":"826","DOI":"10.1152\/physiolgenomics.00089.2016","volume":"48","author":"N Natarajan","year":"2016","unstructured":"Natarajan, N. et al. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41. Physiol. Genomics 48, 826\u2013834 (2016).","journal-title":"Physiol. Genomics"},{"key":"771_CR96","doi-asserted-by":"publisher","first-page":"A030","DOI":"10.1161\/hyp.66.suppl_1.030","volume":"66","author":"N Natarajan","year":"2015","unstructured":"Natarajan, N., Hori, D., Berkowitz, D. E. & Pluznick, J. L. Microbial short chain fatty acid (SCFA) metabolites lower blood pressure (BP) via endothelial G-protein coupled receptor 41 (gpr41) [abstract 030]. Hypertension 66, A030 (2015).","journal-title":"Hypertension"},{"key":"771_CR97","doi-asserted-by":"publisher","first-page":"518","DOI":"10.1093\/eurheartj\/ehab644","volume":"43","author":"A Haghikia","year":"2022","unstructured":"Haghikia, A. et al. Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism. Eur. Heart J. 43, 518\u2013533 (2022).","journal-title":"Eur. Heart J."},{"key":"771_CR98","doi-asserted-by":"publisher","first-page":"212","DOI":"10.1038\/nature16504","volume":"529","author":"ED Sonnenburg","year":"2016","unstructured":"Sonnenburg, E. D. et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212\u2013215 (2016).","journal-title":"Nature"},{"key":"771_CR99","doi-asserted-by":"publisher","first-page":"541","DOI":"10.1113\/JP272613","volume":"595","author":"E Boets","year":"2017","unstructured":"Boets, E. et al. Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: a stable isotope study. J. Physiol. 595, 541\u2013555 (2017).","journal-title":"J. Physiol."},{"key":"771_CR100","doi-asserted-by":"publisher","first-page":"2620","DOI":"10.1016\/j.jacc.2016.03.546","volume":"67","author":"V Senthong","year":"2016","unstructured":"Senthong, V. et al. Plasma trimethylamine N-oxide, a gut microbe-generated phosphatidylcholine metabolite, is associated with atherosclerotic burden. J. Am. Coll. Cardiol. 67, 2620\u20132628 (2016).","journal-title":"J. Am. Coll. Cardiol."},{"key":"771_CR101","doi-asserted-by":"publisher","first-page":"1575","DOI":"10.1056\/NEJMoa1109400","volume":"368","author":"WHW Tang","year":"2013","unstructured":"Tang, W. H. W. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368, 1575\u20131584 (2013).","journal-title":"N. Engl. J. Med."},{"key":"771_CR102","doi-asserted-by":"publisher","first-page":"2948","DOI":"10.1093\/eurheartj\/ehx342","volume":"38","author":"GG Schiattarella","year":"2017","unstructured":"Schiattarella, G. G. et al. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis. Eur. Heart J. 38, 2948\u20132956 (2017).","journal-title":"Eur. Heart J."},{"key":"771_CR103","doi-asserted-by":"publisher","first-page":"2225","DOI":"10.1161\/ATVBAHA.118.311023","volume":"38","author":"A Haghikia","year":"2018","unstructured":"Haghikia, A. et al. Gut microbiota-dependent trimethylamine N-oxide predicts risk of cardiovascular events in patients with stroke and is related to proinflammatory monocytes. Arterioscler. Thromb. Vasc. Biol. 38, 2225\u20132235 (2018).","journal-title":"Arterioscler. Thromb. Vasc. Biol."},{"key":"771_CR104","first-page":"814","volume":"38","author":"XS Li","year":"2017","unstructured":"Li, X. S. et al. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur. Heart J. 38, 814\u2013824 (2017).","journal-title":"Eur. Heart J."},{"key":"771_CR105","doi-asserted-by":"publisher","first-page":"5647","DOI":"10.1074\/jbc.M114.618249","volume":"290","author":"JC Gregory","year":"2015","unstructured":"Gregory, J. C. et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J. Biol. Chem. 290, 5647\u20135660 (2015).","journal-title":"J. Biol. Chem."},{"key":"771_CR106","doi-asserted-by":"publisher","first-page":"904","DOI":"10.1093\/eurheartj\/ehu002","volume":"35","author":"Z Wang","year":"2014","unstructured":"Wang, Z. et al. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur. Heart J. 35, 904\u2013910 (2014).","journal-title":"Eur. Heart J."},{"key":"771_CR107","doi-asserted-by":"publisher","first-page":"576","DOI":"10.1038\/nm.3145","volume":"19","author":"RA Koeth","year":"2013","unstructured":"Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576\u2013585 (2013).","journal-title":"Nat. Med."},{"key":"771_CR108","doi-asserted-by":"publisher","first-page":"1398","DOI":"10.3390\/nu10101398","volume":"10","author":"MH Janeiro","year":"2018","unstructured":"Janeiro, M. H., Ram\u00edrez, M. J., Milagro, F. I., Mart\u00ednez, J. A. & Solas, M. Implication of trimethylamine N-oxide (TMAO) in disease: potential biomarker or new therapeutic target. Nutrients 10, 1398 (2018).","journal-title":"Nutrients"},{"key":"771_CR109","doi-asserted-by":"publisher","first-page":"57","DOI":"10.1038\/nature09922","volume":"472","author":"Z Wang","year":"2011","unstructured":"Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57\u201363 (2011).","journal-title":"Nature"},{"key":"771_CR110","doi-asserted-by":"publisher","first-page":"111","DOI":"10.1016\/j.cell.2016.02.011","volume":"165","author":"W Zhu","year":"2016","unstructured":"Zhu, W. et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165, 111\u2013124 (2016).","journal-title":"Cell"},{"key":"771_CR111","doi-asserted-by":"publisher","first-page":"BSR20160244","DOI":"10.1042\/BSR20160244","volume":"37","author":"G Ma","year":"2017","unstructured":"Ma, G. et al. Trimethylamine N-oxide in atherogenesis: impairing endothelial self-repair capacity and enhancing monocyte adhesion. Biosci. Rep. 37, BSR20160244 (2017).","journal-title":"Biosci. Rep."},{"key":"771_CR112","doi-asserted-by":"publisher","first-page":"139","DOI":"10.3389\/fphys.2017.00139","volume":"8","author":"K Chen","year":"2017","unstructured":"Chen, K., Zheng, X., Feng, M., Li, D. & Zhang, H. Gut microbiota-dependent metabolite trimethylamine N-oxide contributes to cardiac dysfunction in western diet-induced obese mice. Front. Physiol. 8, 139 (2017).","journal-title":"Front. Physiol."},{"key":"771_CR113","doi-asserted-by":"publisher","first-page":"2801","DOI":"10.1080\/10408398.2020.1770199","volume":"60","author":"MA Farhangi","year":"2020","unstructured":"Farhangi, M. A. & Vajdi, M. Novel findings of the association between gut microbiota-derived metabolite trimethylamine oxide and inflammation: results from a systematic review and dose-response meta-analysis. Crit. Rev. Food Sci. Nutr. 60, 2801\u20132823 (2020).","journal-title":"Crit. Rev. Food Sci. Nutr."},{"key":"771_CR114","doi-asserted-by":"publisher","DOI":"10.1038\/s41598-019-40638-y","volume":"9","author":"R-H Chou","year":"2019","unstructured":"Chou, R.-H. et al. Trimethylamine N-oxide, circulating endothelial progenitor cells, and endothelial function in patients with stable angina. Sci. Rep. 9, 4249 (2019).","journal-title":"Sci. Rep."},{"key":"771_CR115","doi-asserted-by":"publisher","DOI":"10.1161\/CIRCINTERVENTIONS.118.007281","volume":"12","author":"Y Tan","year":"2019","unstructured":"Tan, Y. et al. Plasma trimethylamine N-oxide as a novel biomarker for plaque rupture in patients with ST-segment-elevation myocardial infarction. Circ. Cardiovasc. Interv. 12, e007281 (2019).","journal-title":"Circ. Cardiovasc. Interv."},{"key":"771_CR116","doi-asserted-by":"publisher","first-page":"346","DOI":"10.1038\/s41374-018-0091-y","volume":"99","author":"Z Li","year":"2019","unstructured":"Li, Z. et al. Gut microbe-derived metabolite trimethylamine N-oxide induces cardiac hypertrophy and fibrosis. Lab. Invest. 99, 346\u2013357 (2019).","journal-title":"Lab. Invest."},{"key":"771_CR117","doi-asserted-by":"publisher","first-page":"102115","DOI":"10.1016\/j.redox.2021.102115","volume":"46","author":"S Jiang","year":"2021","unstructured":"Jiang, S. et al. Gut microbiota dependent trimethylamine N-oxide aggravates angiotensin II-induced hypertension. Redox Biol. 46, 102115 (2021).","journal-title":"Redox Biol."},{"key":"771_CR118","doi-asserted-by":"publisher","first-page":"1022","DOI":"10.1093\/nutrit\/nuaa111","volume":"79","author":"M Abbasalizad Farhangi","year":"2021","unstructured":"Abbasalizad Farhangi, M. & Vajdi, M. Gut microbiota-associated trimethylamine N-oxide and increased cardiometabolic risk in adults: a systematic review and dose-response meta-analysis. Nutr. Rev. 79, 1022\u20131042 (2021).","journal-title":"Nutr. Rev."},{"key":"771_CR119","doi-asserted-by":"publisher","first-page":"448","DOI":"10.1161\/CIRCRESAHA.116.305360","volume":"116","author":"WHW Tang","year":"2015","unstructured":"Tang, W. H. W. et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ. Res. 116, 448\u2013455 (2015).","journal-title":"Circ. Res."},{"key":"771_CR120","doi-asserted-by":"publisher","first-page":"1330","DOI":"10.3390\/nu12051330","volume":"12","author":"C Papandreou","year":"2020","unstructured":"Papandreou, C., Mor\u00e9, M. & Bellamine, A. Trimethylamine N-oxide in relation to cardiometabolic health\u2013cause or effect? Nutrients 12, 1330 (2020).","journal-title":"Nutrients"},{"key":"771_CR121","doi-asserted-by":"publisher","DOI":"10.1161\/JAHA.116.003970","volume":"5","author":"KA Meyer","year":"2016","unstructured":"Meyer, K. A. et al. Microbiota-dependent metabolite trimethylamine N-oxide and coronary artery calcium in the coronary artery risk development in young adults study (CARDIA). J. Am. Heart Assoc. 5, e003970 (2016).","journal-title":"J. Am. Heart Assoc."},{"key":"771_CR122","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-020-19589-w","volume":"11","author":"A Molinaro","year":"2020","unstructured":"Molinaro, A. et al. Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology. Nat. Commun. 11, 5881 (2020).","journal-title":"Nat. Commun."},{"key":"771_CR123","doi-asserted-by":"publisher","first-page":"947","DOI":"10.1016\/j.cell.2018.09.055","volume":"175","author":"A Koh","year":"2018","unstructured":"Koh, A. et al. Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell 175, 947\u2013961.e17 (2018).","journal-title":"Cell"},{"key":"771_CR124","doi-asserted-by":"publisher","first-page":"643","DOI":"10.1016\/j.cmet.2020.07.012","volume":"32","author":"A Koh","year":"2020","unstructured":"Koh, A. et al. Microbial imidazole propionate affects responses to metformin through p38\u03b3-dependent inhibitory AMPK phosphorylation. Cell Metab. 32, 643\u2013653.e4 (2020).","journal-title":"Cell Metab."},{"key":"771_CR125","doi-asserted-by":"publisher","first-page":"705","DOI":"10.1016\/j.cardiores.2005.04.018","volume":"67","author":"Y Liao","year":"2005","unstructured":"Liao, Y. et al. Exacerbation of heart failure in adiponectin-deficient mice due to impaired regulation of AMPK and glucose metabolism. Cardiovasc. Res. 67, 705\u2013713 (2005).","journal-title":"Cardiovasc. Res."},{"key":"771_CR126","doi-asserted-by":"publisher","first-page":"77","DOI":"10.1038\/s41579-020-0438-4","volume":"19","author":"KA Krautkramer","year":"2021","unstructured":"Krautkramer, K. A., Fan, J. & B\u00e4ckhed, F. Gut microbial metabolites as multi-kingdom intermediates. Nat. Rev. Microbiol. 19, 77\u201394 (2021).","journal-title":"Nat. Rev. Microbiol."},{"key":"771_CR127","doi-asserted-by":"publisher","first-page":"31","DOI":"10.1016\/j.tem.2017.11.002","volume":"29","author":"A Molinaro","year":"2018","unstructured":"Molinaro, A., Wahlstr\u00f6m, A. & Marschall, H.-U. Role of bile acids in metabolic control. Trends Endocrinol. Metab. 29, 31\u201341 (2018).","journal-title":"Trends Endocrinol. Metab."},{"key":"771_CR128","doi-asserted-by":"publisher","DOI":"10.1038\/s41598-021-02144-y","volume":"11","author":"C Chong Nguyen","year":"2021","unstructured":"Chong Nguyen, C. et al. Circulating bile acids concentration is predictive of coronary artery disease in human. Sci. Rep. 11, 22661 (2021).","journal-title":"Sci. Rep."},{"key":"771_CR129","doi-asserted-by":"publisher","first-page":"102","DOI":"10.1186\/s13098-017-0299-9","volume":"9","author":"PM Ryan","year":"2017","unstructured":"Ryan, P. M., Stanton, C. & Caplice, N. M. Bile acids at the cross-roads of gut microbiome-host cardiometabolic interactions. Diabetol. Metab. Syndr. 9, 102 (2017).","journal-title":"Diabetol. Metab. Syndr."},{"key":"771_CR130","doi-asserted-by":"publisher","DOI":"10.1172\/JCI142865","volume":"131","author":"Q Wu","year":"2021","unstructured":"Wu, Q. et al. Suppressing the intestinal farnesoid X receptor\/sphingomyelin phosphodiesterase 3 axis decreases atherosclerosis. J. Clin. Invest. 131, e142865 (2021).","journal-title":"J. Clin. Invest."},{"key":"771_CR131","doi-asserted-by":"publisher","first-page":"25","DOI":"10.1016\/j.jhep.2019.10.006","volume":"72","author":"MS Siddiqui","year":"2020","unstructured":"Siddiqui, M. S. et al. Impact of obeticholic acid on the lipoprotein profile in patients with non-alcoholic steatohepatitis. J. Hepatol. 72, 25\u201333 (2020).","journal-title":"J. Hepatol."},{"key":"771_CR132","doi-asserted-by":"publisher","first-page":"189","DOI":"10.1002\/hep.28890","volume":"65","author":"MS Desai","year":"2017","unstructured":"Desai, M. S. et al. Bile acid excess induces cardiomyopathy and metabolic dysfunctions in the heart. Hepatology 65, 189\u2013201 (2017).","journal-title":"Hepatology"},{"key":"771_CR133","doi-asserted-by":"publisher","first-page":"194","DOI":"10.1016\/S0140-6736(00)97447-6","volume":"229","author":"AT Fuller","year":"1937","unstructured":"Fuller, A. T. Is p-aminobenzenesulphonamide the active agent in prontosil therapy? Lancet 229, 194\u2013198 (1937).","journal-title":"Lancet"},{"key":"771_CR134","doi-asserted-by":"publisher","first-page":"273","DOI":"10.1038\/nrmicro.2016.17","volume":"14","author":"P Spanogiannopoulos","year":"2016","unstructured":"Spanogiannopoulos, P., Bess, E. N., Carmody, R. N. & Turnbaugh, P. J. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat. Rev. Microbiol. 14, 273\u2013287 (2016).","journal-title":"Nat. Rev. Microbiol."},{"key":"771_CR135","doi-asserted-by":"publisher","first-page":"533","DOI":"10.1038\/s41586-021-03891-8","volume":"597","author":"M Kl\u00fcnemann","year":"2021","unstructured":"Kl\u00fcnemann, M. et al. Bioaccumulation of therapeutic drugs by human gut bacteria. Nature 597, 533\u2013538 (2021).","journal-title":"Nature"},{"key":"771_CR136","doi-asserted-by":"publisher","first-page":"S125","DOI":"10.2337\/dc22-S009","volume":"45","author":"American Diabetes Association Professional Practice Committee.","year":"2022","unstructured":"American Diabetes Association Professional Practice Committee. Pharmacologic approaches to glycemic treatment: Standards of Medical Care in Diabetes \u2014 2022. Diabetes Care 45, S125\u2013S143 (2022).","journal-title":"Diabetes Care"},{"key":"771_CR137","doi-asserted-by":"publisher","first-page":"854","DOI":"10.1016\/S0140-6736(98)07037-8","volume":"352","author":"No authors listed.","year":"1998","unstructured":"No authors listed. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352, 854\u2013865 (1998).","journal-title":"Lancet"},{"key":"771_CR138","doi-asserted-by":"publisher","first-page":"198","DOI":"10.2337\/dc15-0488","volume":"39","author":"JB Buse","year":"2016","unstructured":"Buse, J. B. et al. The primary glucose-lowering effect of metformin resides in the gut, not the circulation: results from short-term pharmacokinetic and 12-week dose-ranging studies. Diabetes Care 39, 198\u2013205 (2016).","journal-title":"Diabetes Care"},{"key":"771_CR139","doi-asserted-by":"publisher","first-page":"850","DOI":"10.1038\/nm.4345","volume":"23","author":"H Wu","year":"2017","unstructured":"Wu, H. et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23, 850\u2013858 (2017).","journal-title":"Nat. Med."},{"key":"771_CR140","doi-asserted-by":"publisher","first-page":"187","DOI":"10.1007\/BF01219698","volume":"13","author":"WF Caspary","year":"1977","unstructured":"Caspary, W. F. et al. Alteration of bile acid metabolism and vitamin-B12-absorption in diabetics on biguanides. Diabetologia 13, 187\u2013193 (1977).","journal-title":"Diabetologia"},{"key":"771_CR141","doi-asserted-by":"publisher","first-page":"167","DOI":"10.1016\/j.cmet.2009.08.001","volume":"10","author":"C Thomas","year":"2009","unstructured":"Thomas, C. et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 10, 167\u2013177 (2009).","journal-title":"Cell Metab."},{"key":"771_CR142","doi-asserted-by":"publisher","first-page":"432","DOI":"10.1007\/s00125-011-2382-3","volume":"55","author":"C Beysen","year":"2012","unstructured":"Beysen, C. et al. Effect of bile acid sequestrants on glucose metabolism, hepatic de novo lipogenesis, and cholesterol and bile acid kinetics in type 2 diabetes: a randomised controlled study. Diabetologia 55, 432\u2013442 (2012).","journal-title":"Diabetologia"},{"key":"771_CR143","doi-asserted-by":"publisher","first-page":"228","DOI":"10.1016\/j.cell.2013.02.035","volume":"153","author":"F Cabreiro","year":"2013","unstructured":"Cabreiro, F. et al. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153, 228\u2013239 (2013).","journal-title":"Cell"},{"key":"771_CR144","doi-asserted-by":"publisher","first-page":"327","DOI":"10.2337\/dc11-1582","volume":"35","author":"L Reinstatler","year":"2012","unstructured":"Reinstatler, L., Qi, Y. P., Williamson, R. S., Garn, J. V. & Oakley, G. P. Jr. Association of biochemical B12 deficiency with metformin therapy and vitamin B12 supplements: the National Health and Nutrition Examination Survey, 1999\u20132006. Diabetes Care 35, 327\u2013333 (2012).","journal-title":"Diabetes Care"},{"key":"771_CR145","doi-asserted-by":"publisher","first-page":"49","DOI":"10.3109\/00498259409043220","volume":"24","author":"C Wilcock","year":"1994","unstructured":"Wilcock, C. & Bailey, C. J. Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica 24, 49\u201357 (1994).","journal-title":"Xenobiotica"},{"key":"771_CR146","doi-asserted-by":"publisher","first-page":"458","DOI":"10.1016\/j.chom.2018.03.011","volume":"23","author":"K Martinez-Guryn","year":"2018","unstructured":"Martinez-Guryn, K. et al. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe 23, 458\u2013469.e5 (2018).","journal-title":"Cell Host Microbe"},{"key":"771_CR147","doi-asserted-by":"publisher","first-page":"388","DOI":"10.1016\/j.medj.2022.04.007","volume":"3","author":"T Wilmanski","year":"2022","unstructured":"Wilmanski, T. et al. Heterogeneity in statin responses explained by variation in the human gut microbiome. Med 3, 388\u2013405.e6 (2022).","journal-title":"Med"},{"key":"771_CR148","doi-asserted-by":"publisher","first-page":"253","DOI":"10.1111\/j.2042-7158.1997.tb06790.x","volume":"49","author":"S Kitamura","year":"2011","unstructured":"Kitamura, S., Sugihara, K., Kuwasako, M. & Tatsumi, K. The role of mammalian intestinal bacteria in the reductive metabolism of zonisamide. J. Pharm. Pharmacol. 49, 253\u2013256 (2011).","journal-title":"J. Pharm. Pharmacol."},{"key":"771_CR149","doi-asserted-by":"publisher","first-page":"969","DOI":"10.1053\/j.gastro.2020.05.004","volume":"159","author":"R Zhao","year":"2020","unstructured":"Zhao, R. et al. Aspirin reduces colorectal tumor development in mice and gut microbes reduce its bioavailability and chemopreventive effects. Gastroenterology 159, 969\u2013983.e4 (2020).","journal-title":"Gastroenterology"},{"key":"771_CR150","doi-asserted-by":"publisher","first-page":"72","DOI":"10.1016\/j.bcp.2016.09.023","volume":"122","author":"IS Kim","year":"2016","unstructured":"Kim, I. S. et al. Reduced metabolic activity of gut microbiota by antibiotics can potentiate the antithrombotic effect of aspirin. Biochem. Pharmacol. 122, 72\u201379 (2016).","journal-title":"Biochem. Pharmacol."},{"key":"771_CR151","doi-asserted-by":"publisher","first-page":"740","DOI":"10.1136\/gutjnl-2015-310376","volume":"65","author":"F Imhann","year":"2016","unstructured":"Imhann, F. et al. Proton pump inhibitors affect the gut microbiome. Gut 65, 740\u2013748 (2016).","journal-title":"Gut"},{"key":"771_CR152","doi-asserted-by":"publisher","first-page":"560","DOI":"10.1126\/science.aad3503","volume":"352","author":"G Falony","year":"2016","unstructured":"Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560\u2013564 (2016).","journal-title":"Science"},{"key":"771_CR153","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-019-14177-z","volume":"11","author":"A Vich Vila","year":"2020","unstructured":"Vich Vila, A. et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun. 11, 362 (2020).","journal-title":"Nat. Commun."},{"key":"771_CR154","doi-asserted-by":"publisher","DOI":"10.1038\/ctg.2015.20","volume":"6","author":"A Tsuda","year":"2015","unstructured":"Tsuda, A. et al. Influence of proton-pump inhibitors on the luminal microbiota in the gastrointestinal tract. Clin. Transl. Gastroenterol. 6, e89 (2015).","journal-title":"Clin. Transl. Gastroenterol."},{"key":"771_CR155","doi-asserted-by":"publisher","first-page":"623","DOI":"10.1038\/nature25979","volume":"555","author":"L Maier","year":"2018","unstructured":"Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623\u2013628 (2018).","journal-title":"Nature"},{"key":"771_CR156","doi-asserted-by":"publisher","first-page":"2173","DOI":"10.1016\/j.jacc.2015.09.029","volume":"66","author":"Y-J Cheng","year":"2015","unstructured":"Cheng, Y.-J. et al. The role of macrolide antibiotics in increasing cardiovascular risk. J. Am. Coll. Cardiol. 66, 2173\u20132184 (2015).","journal-title":"J. Am. Coll. Cardiol."},{"key":"771_CR157","doi-asserted-by":"publisher","first-page":"16062","DOI":"10.3748\/wjg.v20.i43.16062","volume":"20","author":"N Gaci","year":"2014","unstructured":"Gaci, N., Borrel, G., Tottey, W., O\u2019Toole, P. W. & Brug\u00e8re, J.-F. Archaea and the human gut: new beginning of an old story. World J. Gastroenterol. 20, 16062\u201316078 (2014).","journal-title":"World J. Gastroenterol."},{"key":"771_CR158","doi-asserted-by":"publisher","first-page":"295","DOI":"10.1126\/science.1235872","volume":"341","author":"HJ Haiser","year":"2013","unstructured":"Haiser, H. J. et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341, 295\u2013298 (2013).","journal-title":"Science"},{"key":"771_CR159","doi-asserted-by":"publisher","first-page":"1299","DOI":"10.1016\/j.cell.2019.08.003","volume":"178","author":"R Pryor","year":"2019","unstructured":"Pryor, R. et al. Host-microbe-drug-nutrient screen identifies bacterial effectors of metformin therapy. Cell 178, 1299\u20131312.e29 (2019).","journal-title":"Cell"},{"key":"771_CR160","doi-asserted-by":"publisher","first-page":"649","DOI":"10.1038\/s41575-021-00440-6","volume":"18","author":"S Salminen","year":"2021","unstructured":"Salminen, S. et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 18, 649\u2013667 (2021).","journal-title":"Nat. Rev. Gastroenterol. Hepatol."},{"key":"771_CR161","doi-asserted-by":"publisher","first-page":"705","DOI":"10.1016\/j.chom.2018.05.012","volume":"23","author":"K Makki","year":"2018","unstructured":"Makki, K., Deehan, E. C., Walter, J. & B\u00e4ckhed, F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23, 705\u2013715 (2018).","journal-title":"Cell Host Microbe"},{"key":"771_CR162","doi-asserted-by":"publisher","first-page":"59","DOI":"10.1016\/j.mib.2017.04.005","volume":"38","author":"HJ Flint","year":"2017","unstructured":"Flint, H. J., Duncan, S. H. & Louis, P. The impact of nutrition on intestinal bacterial communities. Curr. Opin. Microbiol. 38, 59\u201365 (2017).","journal-title":"Curr. Opin. Microbiol."},{"key":"771_CR163","doi-asserted-by":"publisher","first-page":"4137","DOI":"10.1016\/j.cell.2021.06.019","volume":"184","author":"HC Wastyk","year":"2021","unstructured":"Wastyk, H. C. et al. Gut-microbiota-targeted diets modulate human immune status. Cell 184, 4137\u20134153.e14 (2021).","journal-title":"Cell"},{"key":"771_CR164","doi-asserted-by":"publisher","first-page":"1127","DOI":"10.1093\/ajcn\/nqaa046","volume":"111","author":"GK Fragiadakis","year":"2020","unstructured":"Fragiadakis, G. K. et al. Long-term dietary intervention reveals resilience of the gut microbiota despite changes in diet and weight. Am. J. Clin. Nutr. 111, 1127\u20131136 (2020).","journal-title":"Am. J. Clin. Nutr."},{"key":"771_CR165","doi-asserted-by":"publisher","first-page":"863","DOI":"10.1016\/j.chom.2022.05.003","volume":"30","author":"L Guthrie","year":"2022","unstructured":"Guthrie, L. et al. Impact of a 7-day homogeneous diet on interpersonal variation in human gut microbiomes and metabolomes. Cell Host Microbe 30, 863\u2013874.e4 (2022).","journal-title":"Cell Host Microbe"},{"key":"771_CR166","doi-asserted-by":"publisher","first-page":"742","DOI":"10.1038\/s41579-019-0256-8","volume":"17","author":"AA Kolodziejczyk","year":"2019","unstructured":"Kolodziejczyk, A. A., Zheng, D. & Elinav, E. Diet-microbiota interactions and personalized nutrition. Nat. Rev. Microbiol. 17, 742\u2013753 (2019).","journal-title":"Nat. Rev. Microbiol."},{"key":"771_CR167","doi-asserted-by":"publisher","first-page":"1339","DOI":"10.1016\/j.cell.2016.10.043","volume":"167","author":"MS Desai","year":"2016","unstructured":"Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339\u20131353.e21 (2016).","journal-title":"Cell"},{"key":"771_CR168","doi-asserted-by":"publisher","first-page":"101504","DOI":"10.1016\/j.beem.2021.101504","volume":"35","author":"TPN Bui","year":"2021","unstructured":"Bui, T. P. N. & de Vos, W. M. Next-generation therapeutic bacteria for treatment of obesity, diabetes, and other endocrine diseases. Best Pract. Res. Clin. Endocrinol. Metab. 35, 101504 (2021).","journal-title":"Best Pract. Res. Clin. Endocrinol. Metab."},{"key":"771_CR169","doi-asserted-by":"crossref","unstructured":"Ochoa-Reparaz, J. & Mangalam, A. K. (eds) The Role of the Gut Microbiota in Health and Inflammatory Diseases (Frontiers, 2020).","DOI":"10.3389\/978-2-88966-156-5"},{"key":"771_CR170","doi-asserted-by":"publisher","first-page":"104177","DOI":"10.1016\/j.jff.2020.104177","volume":"74","author":"J Jiang","year":"2020","unstructured":"Jiang, J. et al. Effects of probiotic supplementation on cardiovascular risk factors in hypercholesterolemia: a systematic review and meta-analysis of randomized clinical trial. J. Funct. Foods 74, 104177 (2020).","journal-title":"J. Funct. Foods"},{"key":"771_CR171","doi-asserted-by":"publisher","first-page":"2857","DOI":"10.1007\/s00394-020-02248-7","volume":"59","author":"A Hadi","year":"2020","unstructured":"Hadi, A., Ghaedi, E., Khalesi, S., Pourmasoumi, M. & Arab, A. Effects of synbiotic consumption on lipid profile: a systematic review and meta-analysis of randomized controlled clinical trials. Eur. J. Nutr. 59, 2857\u20132874 (2020).","journal-title":"Eur. J. Nutr."},{"key":"771_CR172","doi-asserted-by":"publisher","first-page":"419","DOI":"10.2174\/0929867327666191230110128","volume":"28","author":"H Qu","year":"2021","unstructured":"Qu, H., Song, L., Zhang, Y., Gao, Z.-Y. & Shi, D.-Z. The effect of prebiotic products on decreasing adiposity parameters in overweight and obese individuals: a systematic review and meta-analysis. Curr. Med. Chem. 28, 419\u2013431 (2021).","journal-title":"Curr. Med. Chem."},{"key":"771_CR173","doi-asserted-by":"publisher","first-page":"26","DOI":"10.1007\/s00125-020-05295-1","volume":"64","author":"PM Bock","year":"2021","unstructured":"Bock, P. M. et al. The effect of probiotics, prebiotics or synbiotics on metabolic outcomes in individuals with diabetes: a systematic review and meta-analysis. Diabetologia 64, 26\u201341 (2021).","journal-title":"Diabetologia"},{"key":"771_CR174","doi-asserted-by":"publisher","first-page":"1617","DOI":"10.1023\/A:1005577330695","volume":"45","author":"MY Lin","year":"2000","unstructured":"Lin, M. Y. & Chang, F. J. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Dig. Dis. Sci. 45, 1617\u20131622 (2000).","journal-title":"Dig. Dis. Sci."},{"key":"771_CR175","doi-asserted-by":"publisher","first-page":"1971","DOI":"10.3390\/microorganisms9091971","volume":"9","author":"K-T Kim","year":"2021","unstructured":"Kim, K.-T. et al. Antioxidant and anti-inflammatory effect and probiotic properties of lactic acid bacteria isolated from canine and feline feces. Microorganisms 9, 1971 (2021).","journal-title":"Microorganisms"},{"key":"771_CR176","doi-asserted-by":"publisher","first-page":"1091","DOI":"10.1161\/CIRCRESAHA.118.313565","volume":"123","author":"M Malik","year":"2018","unstructured":"Malik, M. et al. Lactobacillus plantarum 299v supplementation improves vascular endothelial function and reduces inflammatory biomarkers in men with stable coronary artery disease. Circ. Res. 123, 1091\u20131102 (2018).","journal-title":"Circ. Res."},{"key":"771_CR177","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-022-28856-x","volume":"13","author":"AC Tolonen","year":"2022","unstructured":"Tolonen, A. C. et al. Synthetic glycans control gut microbiome structure and mitigate colitis in mice. Nat. Commun. 13, 1244 (2022).","journal-title":"Nat. Commun."},{"key":"771_CR178","doi-asserted-by":"publisher","first-page":"2495","DOI":"10.1016\/j.cell.2022.06.004","volume":"185","author":"ND Han","year":"2022","unstructured":"Han, N. D. et al. Microbial liberation of N-methylserotonin from orange fiber in gnotobiotic mice and humans. Cell 185, 2495\u20132509.e11 (2022).","journal-title":"Cell"},{"key":"771_CR179","doi-asserted-by":"publisher","first-page":"725","DOI":"10.1038\/s41579-019-0255-9","volume":"17","author":"CE Lawson","year":"2019","unstructured":"Lawson, C. E. et al. Common principles and best practices for engineering microbiomes. Nat. Rev. Microbiol. 17, 725\u2013741 (2019).","journal-title":"Nat. Rev. Microbiol."},{"key":"771_CR180","doi-asserted-by":"publisher","first-page":"1005","DOI":"10.1084\/jem.20190609","volume":"216","author":"M Jimenez","year":"2019","unstructured":"Jimenez, M., Langer, R. & Traverso, G. Microbial therapeutics: new opportunities for drug delivery. J. Exp. Med. 216, 1005\u20131009 (2019).","journal-title":"J. Exp. Med."},{"key":"771_CR181","doi-asserted-by":"publisher","first-page":"331","DOI":"10.1038\/s41396-021-01088-5","volume":"16","author":"MBN Albright","year":"2022","unstructured":"Albright, M. B. N. et al. Solutions in microbiome engineering: prioritizing barriers to organism establishment. ISME J. 16, 331\u2013338 (2022).","journal-title":"ISME J."},{"key":"771_CR182","doi-asserted-by":"publisher","first-page":"220","DOI":"10.1056\/NEJMoa2106516","volume":"386","author":"P Feuerstadt","year":"2022","unstructured":"Feuerstadt, P. et al. SER-109, an oral microbiome therapy for recurrent infection. N. Engl. J. Med. 386, 220\u2013229 (2022).","journal-title":"N. Engl. J. Med."},{"key":"771_CR183","unstructured":"US National Library of Medicine. ClinicalTrials.gov https:\/\/clinicaltrials.gov\/ct2\/show\/NCT03751007 (2021)."},{"key":"771_CR184","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1038\/s41586-021-03671-4","volume":"595","author":"O Delannoy-Bruno","year":"2021","unstructured":"Delannoy-Bruno, O. et al. Evaluating microbiome-directed fibre snacks in gnotobiotic mice and humans. Nature 595, 91\u201395 (2021).","journal-title":"Nature"},{"key":"771_CR185","doi-asserted-by":"publisher","first-page":"1096","DOI":"10.1038\/s41591-019-0495-2","volume":"25","author":"C Depommier","year":"2019","unstructured":"Depommier, C. et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 25, 1096\u20131103 (2019).","journal-title":"Nat. Med."},{"key":"771_CR186","doi-asserted-by":"publisher","first-page":"761834","DOI":"10.3389\/fendo.2021.761834","volume":"12","author":"T Arora","year":"2021","unstructured":"Arora, T. & Tremaroli, V. Therapeutic potential of butyrate for treatment of type 2 diabetes. Front. Endocrinol. 12, 761834 (2021).","journal-title":"Front. Endocrinol."},{"key":"771_CR187","doi-asserted-by":"publisher","first-page":"886","DOI":"10.1055\/s-0043-119089","volume":"49","author":"N Roshanravan","year":"2017","unstructured":"Roshanravan, N. et al. Effect of butyrate and inulin supplementation on glycemic status, lipid profile and glucagon-like peptide 1 level in patients with type 2 diabetes: a randomized double-blind, placebo-controlled trial. Horm. Metab. Res. 49, 886\u2013891 (2017).","journal-title":"Horm. Metab. Res."},{"key":"771_CR188","doi-asserted-by":"publisher","DOI":"10.1038\/s41598-018-37246-7","volume":"9","author":"MCP Cleophas","year":"2019","unstructured":"Cleophas, M. C. P. et al. Effects of oral butyrate supplementation on inflammatory potential of circulating peripheral blood mononuclear cells in healthy and obese males. Sci. Rep. 9, 775 (2019).","journal-title":"Sci. Rep."},{"key":"771_CR189","doi-asserted-by":"publisher","first-page":"155","DOI":"10.1038\/s41424-018-0025-4","volume":"9","author":"K Bouter","year":"2018","unstructured":"Bouter, K. et al. Differential metabolic effects of oral butyrate treatment in lean versus metabolic syndrome subjects. Clin. Transl. Gastroenterol. 9, 155 (2018).","journal-title":"Clin. Transl. Gastroenterol."},{"key":"771_CR190","doi-asserted-by":"publisher","first-page":"718674","DOI":"10.3389\/fcvm.2021.718674","volume":"8","author":"Z Yu","year":"2021","unstructured":"Yu, Z. et al. Oral supplementation with butyrate improves myocardial ischemia\/reperfusion injury via a gut-brain neural circuit. Front. Cardiovasc. Med. 8, 718674 (2021).","journal-title":"Front. Cardiovasc. Med."},{"key":"771_CR191","doi-asserted-by":"publisher","first-page":"415","DOI":"10.1136\/gutjnl-2014-307649","volume":"65","author":"E Qu\u00e9vrain","year":"2016","unstructured":"Qu\u00e9vrain, E. et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn\u2019s disease. Gut 65, 415\u2013425 (2016).","journal-title":"Gut"},{"key":"771_CR192","doi-asserted-by":"publisher","first-page":"1744","DOI":"10.1136\/gutjnl-2014-307913","volume":"64","author":"ES Chambers","year":"2015","unstructured":"Chambers, E. S. et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64, 1744\u20131754 (2015).","journal-title":"Gut"},{"key":"771_CR193","doi-asserted-by":"publisher","first-page":"257","DOI":"10.1111\/dom.12811","volume":"19","author":"A Pingitore","year":"2017","unstructured":"Pingitore, A. et al. The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes. Metab. 19, 257\u2013265 (2017).","journal-title":"Diabetes Obes. Metab."},{"key":"771_CR194","doi-asserted-by":"publisher","first-page":"1585","DOI":"10.1016\/j.cell.2015.11.055","volume":"163","author":"Z Wang","year":"2015","unstructured":"Wang, Z. et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163, 1585\u20131595 (2015).","journal-title":"Cell"},{"key":"771_CR195","doi-asserted-by":"publisher","first-page":"1407","DOI":"10.1038\/s41591-018-0128-1","volume":"24","author":"AB Roberts","year":"2018","unstructured":"Roberts, A. B. et al. Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat. Med. 24, 1407\u20131417 (2018).","journal-title":"Nat. Med."},{"key":"771_CR196","doi-asserted-by":"publisher","first-page":"2876","DOI":"10.2337\/db13-1236","volume":"63","author":"S Robert","year":"2014","unstructured":"Robert, S. et al. Oral delivery of glutamic acid decarboxylase (GAD)-65 and IL10 by Lactococcus lactis reverses diabetes in recent-onset NOD mice. Diabetes 63, 2876\u20132887 (2014).","journal-title":"Diabetes"},{"key":"771_CR197","doi-asserted-by":"publisher","first-page":"725","DOI":"10.1016\/j.molmet.2016.06.006","volume":"5","author":"T Arora","year":"2016","unstructured":"Arora, T. et al. Microbially produced glucagon-like peptide 1 improves glucose tolerance in mice. Mol. Metab. 5, 725\u2013730 (2016).","journal-title":"Mol. Metab."},{"key":"771_CR198","doi-asserted-by":"publisher","first-page":"214","DOI":"10.1016\/j.cels.2016.03.007","volume":"2","author":"M Mimee","year":"2016","unstructured":"Mimee, M., Tucker, A. C., Voigt, C. A. & Lu, T. K. Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Syst. 2, 214 (2016).","journal-title":"Cell Syst."},{"key":"771_CR199","doi-asserted-by":"publisher","first-page":"775","DOI":"10.1016\/j.chom.2018.05.004","volume":"23","author":"Y Bhattarai","year":"2018","unstructured":"Bhattarai, Y. et al. Gut microbiota-produced tryptamine activates an epithelial G-protein-coupled receptor to increase colonic secretion. Cell Host Microbe 23, 775\u2013785.e5 (2018).","journal-title":"Cell Host Microbe"},{"key":"771_CR200","doi-asserted-by":"publisher","first-page":"101798","DOI":"10.1016\/j.isci.2020.101798","volume":"23","author":"Y Bhattarai","year":"2020","unstructured":"Bhattarai, Y. et al. Bacterially derived tryptamine increases mucus release by activating a host receptor in a mouse model of inflammatory bowel disease. iScience 23, 101798 (2020).","journal-title":"iScience"},{"key":"771_CR201","doi-asserted-by":"publisher","first-page":"566","DOI":"10.1038\/s41586-020-2396-4","volume":"582","author":"M Funabashi","year":"2020","unstructured":"Funabashi, M. et al. A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature 582, 566\u2013570 (2020).","journal-title":"Nature"},{"key":"771_CR202","doi-asserted-by":"publisher","first-page":"364","DOI":"10.1161\/CIRCRESAHA.119.315279","volume":"126","author":"Y Heianza","year":"2020","unstructured":"Heianza, Y. et al. Duration and life-stage of antibiotic use and risks of all-cause and cause-specific mortality: prospective cohort study. Circ. Res. 126, 364\u2013373 (2020).","journal-title":"Circ. Res."},{"key":"771_CR203","doi-asserted-by":"publisher","first-page":"985","DOI":"10.1111\/jam.14535","volume":"128","author":"M Kwiatek","year":"2020","unstructured":"Kwiatek, M., Parasion, S. & Nakonieczna, A. Therapeutic bacteriophages as a rescue treatment for drug-resistant infections \u2013 an in vivo studies overview. J. Appl. Microbiol. 128, 985\u20131002 (2020).","journal-title":"J. Appl. Microbiol."},{"key":"771_CR204","doi-asserted-by":"publisher","first-page":"784","DOI":"10.3389\/fendo.2019.00784","volume":"10","author":"TDS Sutton","year":"2019","unstructured":"Sutton, T. D. S. & Hill, C. Gut bacteriophage: current understanding and challenges. Front. Endocrinol. 10, 784 (2019).","journal-title":"Front. Endocrinol."},{"key":"771_CR205","doi-asserted-by":"publisher","first-page":"109930","DOI":"10.1016\/j.celrep.2021.109930","volume":"37","author":"KN Lam","year":"2021","unstructured":"Lam, K. N. et al. Phage-delivered CRISPR-Cas9 for strain-specific depletion and genomic deletions in the gut microbiome. Cell Rep. 37, 109930 (2021).","journal-title":"Cell Rep."},{"key":"771_CR206","doi-asserted-by":"publisher","first-page":"eabp9960","DOI":"10.1126\/science.abp9960","volume":"377","author":"J-Y Lee","year":"2022","unstructured":"Lee, J.-Y., Tsolis, R. M. & B\u00e4umler, A. J. The microbiome and gut homeostasis. Science 377, eabp9960 (2022).","journal-title":"Science"},{"key":"771_CR207","doi-asserted-by":"publisher","first-page":"359","DOI":"10.1126\/science.aan4526","volume":"358","author":"K Atarashi","year":"2017","unstructured":"Atarashi, K. et al. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. Science 358, 359\u2013365 (2017).","journal-title":"Science"},{"key":"771_CR208","doi-asserted-by":"publisher","first-page":"314","DOI":"10.1016\/j.chom.2019.08.011","volume":"26","author":"K Martinez-Guryn","year":"2019","unstructured":"Martinez-Guryn, K., Leone, V. & Chang, E. B. Regional diversity of the gastrointestinal microbiome. Cell Host Microbe 26, 314\u2013324 (2019).","journal-title":"Cell Host Microbe"},{"key":"771_CR209","doi-asserted-by":"publisher","first-page":"215","DOI":"10.1038\/nature11209","volume":"486","author":"Human Microbiome Project Consortium.","year":"2012","unstructured":"Human Microbiome Project Consortium. A framework for human microbiome research. Nature 486, 215\u2013221 (2012).","journal-title":"Nature"},{"key":"771_CR210","doi-asserted-by":"publisher","first-page":"236","DOI":"10.1126\/science.1180614","volume":"326","author":"PSG Chain","year":"2009","unstructured":"Chain, P. S. G. et al. Genome Project standards in a new era of sequencing. Science 326, 236\u2013237 (2009).","journal-title":"Science"},{"key":"771_CR211","doi-asserted-by":"publisher","first-page":"1069","DOI":"10.1038\/nbt.3960","volume":"35","author":"PI Costea","year":"2017","unstructured":"Costea, P. I. et al. Towards standards for human fecal sample processing in metagenomic studies. Nat. Biotechnol. 35, 1069\u20131076 (2017).","journal-title":"Nat. Biotechnol."},{"key":"771_CR212","doi-asserted-by":"publisher","first-page":"1063","DOI":"10.1038\/nmeth.4458","volume":"14","author":"A Sczyrba","year":"2017","unstructured":"Sczyrba, A. et al. Critical Assessment of Metagenome Interpretation\u2013a benchmark of metagenomics software. Nat. Methods 14, 1063\u20131071 (2017).","journal-title":"Nat. Methods"},{"key":"771_CR213","doi-asserted-by":"publisher","first-page":"1217","DOI":"10.1038\/s41587-019-0233-9","volume":"37","author":"T Wilmanski","year":"2019","unstructured":"Wilmanski, T. et al. Blood metabolome predicts gut microbiome \u03b1-diversity in humans. Nat. Biotechnol. 37, 1217\u20131228 (2019).","journal-title":"Nat. Biotechnol."},{"key":"771_CR214","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-020-16438-8","volume":"11","author":"E Pasolli","year":"2020","unstructured":"Pasolli, E. et al. Large-scale genome-wide analysis links lactic acid bacteria from food with the gut microbiome. Nat. Commun. 11, 2610 (2020).","journal-title":"Nat. Commun."},{"key":"771_CR215","doi-asserted-by":"publisher","DOI":"10.1128\/mSystems.00881-21","volume":"6","author":"F Hildebrand","year":"2021","unstructured":"Hildebrand, F. Ultra-resolution metagenomics: when enough is not enough. mSystems 6, e0088121 (2021).","journal-title":"mSystems"},{"key":"771_CR216","doi-asserted-by":"publisher","first-page":"361","DOI":"10.1016\/S2213-8587(18)30051-2","volume":"6","author":"E Ahlqvist","year":"2018","unstructured":"Ahlqvist, E. et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 6, 361\u2013369 (2018).","journal-title":"Lancet Diabetes Endocrinol."},{"key":"771_CR217","doi-asserted-by":"publisher","first-page":"179","DOI":"10.1038\/s41587-018-0008-8","volume":"37","author":"Y Zou","year":"2019","unstructured":"Zou, Y. et al. 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat. Biotechnol. 37, 179\u2013185 (2019).","journal-title":"Nat. Biotechnol."},{"key":"771_CR218","doi-asserted-by":"publisher","first-page":"17121","DOI":"10.1038\/nmicrobiol.2017.121","volume":"2","author":"JR Zaneveld","year":"2017","unstructured":"Zaneveld, J. R., McMinds, R. & Vega Thurber, R. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2, 17121 (2017).","journal-title":"Nat. Microbiol."},{"key":"771_CR219","doi-asserted-by":"publisher","first-page":"1442","DOI":"10.1038\/s41591-019-0559-3","volume":"25","author":"M Poyet","year":"2019","unstructured":"Poyet, M. et al. A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research. Nat. Med. 25, 1442\u20131452 (2019).","journal-title":"Nat. Med."},{"key":"771_CR220","doi-asserted-by":"publisher","first-page":"423","DOI":"10.1111\/1751-7915.13479","volume":"13","author":"H Br\u00fcssow","year":"2020","unstructured":"Br\u00fcssow, H. Problems with the concept of gut microbiota dysbiosis. Microb. Biotechnol. 13, 423\u2013434 (2020).","journal-title":"Microb. Biotechnol."},{"key":"771_CR221","doi-asserted-by":"publisher","first-page":"161","DOI":"10.1051\/jbio\/2017019","volume":"211","author":"P Debr\u00e9","year":"2017","unstructured":"Debr\u00e9, P. Louis Pasteur and Claude Bernard: about a posthumous controversy [French]. Biol. Aujourdhui 211, 161\u2013164 (2017).","journal-title":"Biol. Aujourdhui"},{"key":"771_CR222","unstructured":"Gilbert, J. A. & Gibbons, S. M. Integrating microbiomes into clinical trials\u2013the importance of time. BioTechniques https:\/\/www.biotechniques.com\/microbiology\/microbiome_sptl-integrating-microbiomes-into-clinical-trials-the-importance-of-time\/ (2020)."},{"key":"771_CR223","doi-asserted-by":"publisher","first-page":"260","DOI":"10.3389\/fendo.2019.00260","volume":"10","author":"JJ Holst","year":"2019","unstructured":"Holst, J. J. From the incretin concept and the discovery of GLP-1 to today\u2019s diabetes therapy. Front. Endocrinol. 10, 260 (2019).","journal-title":"Front. Endocrinol."},{"key":"771_CR224","doi-asserted-by":"publisher","first-page":"1024","DOI":"10.1111\/cmi.12308","volume":"16","author":"C Petersen","year":"2014","unstructured":"Petersen, C. & Round, J. L. Defining dysbiosis and its influence on host immunity and disease. Cell. Microbiol. 16, 1024\u20131033 (2014).","journal-title":"Cell. Microbiol."},{"key":"771_CR225","doi-asserted-by":"publisher","first-page":"1365","DOI":"10.1126\/science.284.5418.1365","volume":"284","author":"DJ Parks","year":"1999","unstructured":"Parks, D. J. et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 284, 1365\u20131368 (1999).","journal-title":"Science"},{"key":"771_CR226","doi-asserted-by":"publisher","DOI":"10.1161\/JAHA.116.005022","volume":"6","author":"S-C Hung","year":"2017","unstructured":"Hung, S.-C., Kuo, K.-L., Wu, C.-C. & Tarng, D.-C. Indoxyl sulfate: a novel cardiovascular risk factor in chronic kidney disease. J. Am. Heart Assoc. 6, e005022 (2017).","journal-title":"J. Am. Heart Assoc."},{"key":"771_CR227","doi-asserted-by":"publisher","first-page":"551","DOI":"10.1159\/000191468","volume":"29","author":"Z Tumur","year":"2009","unstructured":"Tumur, Z. & Niwa, T. Indoxyl sulfate inhibits nitric oxide production and cell viability by inducing oxidative stress in vascular endothelial cells. Am. J. Nephrol. 29, 551\u2013557 (2009).","journal-title":"Am. J. Nephrol."},{"key":"771_CR228","doi-asserted-by":"publisher","first-page":"502","DOI":"10.3390\/toxins12080502","volume":"12","author":"S Tanaka","year":"2020","unstructured":"Tanaka, S. et al. Indoxyl sulfate contributes to adipose tissue inflammation through the activation of NADPH oxidase. Toxins 12, 502 (2020).","journal-title":"Toxins"},{"key":"771_CR229","doi-asserted-by":"publisher","first-page":"1180","DOI":"10.1016\/j.lfs.2013.05.008","volume":"92","author":"M Yisireyili","year":"2013","unstructured":"Yisireyili, M. et al. Indoxyl sulfate promotes cardiac fibrosis with enhanced oxidative stress in hypertensive rats. Life Sci. 92, 1180\u20131185 (2013).","journal-title":"Life Sci."},{"key":"771_CR230","doi-asserted-by":"publisher","first-page":"538","DOI":"10.1016\/j.bbrc.2018.09.018","volume":"504","author":"H Asai","year":"2018","unstructured":"Asai, H., Hirata, J. & Watanabe-Akanuma, M. Indoxyl glucuronide, a protein-bound uremic toxin, inhibits hypoxia-inducible factor-dependent erythropoietin expression through activation of aryl hydrocarbon receptor. Biochem. Biophys. Res. Commun. 504, 538\u2013544 (2018).","journal-title":"Biochem. Biophys. Res. Commun."},{"key":"771_CR231","doi-asserted-by":"publisher","first-page":"1623","DOI":"10.3389\/fphys.2018.01623","volume":"9","author":"M Karbowska","year":"2018","unstructured":"Karbowska, M. et al. Indoxyl sulfate promotes arterial thrombosis in rat model via increased levels of complex TF\/VII, PAI-1, platelet activation as well as decreased contents of SIRT1 and SIRT3. Front. Physiol. 9, 1623 (2018).","journal-title":"Front. Physiol."},{"key":"771_CR232","doi-asserted-by":"publisher","first-page":"776","DOI":"10.1038\/nrmicro1978","volume":"6","author":"RE Ley","year":"2008","unstructured":"Ley, R. E., Lozupone, C. A., Hamady, M., Knight, R. & Gordon, J. I. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 6, 776\u2013788 (2008).","journal-title":"Nat. Rev. Microbiol."},{"key":"771_CR233","doi-asserted-by":"publisher","first-page":"1157","DOI":"10.1161\/CIRCULATIONAHA.120.050686","volume":"143","author":"J Jankowski","year":"2021","unstructured":"Jankowski, J., Floege, J., Fliser, D., B\u00f6hm, M. & Marx, N. Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation 143, 1157\u20131172 (2021).","journal-title":"Circulation"},{"key":"771_CR234","doi-asserted-by":"publisher","first-page":"590","DOI":"10.3390\/toxins12090590","volume":"12","author":"AL Graboski","year":"2020","unstructured":"Graboski, A. L. & Redinbo, M. R. Gut-derived protein-bound uremic toxins. Toxins 12, 590 (2020).","journal-title":"Toxins"},{"key":"771_CR235","doi-asserted-by":"publisher","first-page":"737","DOI":"10.1016\/j.cmet.2018.07.001","volume":"28","author":"JM Natividad","year":"2018","unstructured":"Natividad, J. M. et al. Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metab. 28, 737\u2013749.e4 (2018).","journal-title":"Cell Metab."},{"key":"771_CR236","doi-asserted-by":"publisher","first-page":"1552","DOI":"10.1016\/j.jvs.2017.09.029","volume":"68","author":"CA Cason","year":"2018","unstructured":"Cason, C. A. et al. Plasma microbiome-modulated indole- and phenyl-derived metabolites associate with advanced atherosclerosis and postoperative outcomes. J. Vasc. Surg. 68, 1552\u20131562.e7 (2018).","journal-title":"J. Vasc. Surg."},{"key":"771_CR237","doi-asserted-by":"publisher","first-page":"2302","DOI":"10.1016\/j.cell.2021.03.024","volume":"184","author":"L Chen","year":"2021","unstructured":"Chen, L. et al. The long-term genetic stability and individual specificity of the human gut microbiome. Cell 184, 2302\u20132315.e12 (2021).","journal-title":"Cell"},{"key":"771_CR238","doi-asserted-by":"publisher","first-page":"1169","DOI":"10.1093\/ndt\/gfr453","volume":"27","author":"I-W Wu","year":"2012","unstructured":"Wu, I.-W. et al. Serum free p-cresyl sulfate levels predict cardiovascular and all-cause mortality in elderly hemodialysis patients \u2013 a prospective cohort study. Nephrol. Dial. Transpl. 27, 1169\u20131175 (2012).","journal-title":"Nephrol. Dial. Transpl."},{"key":"771_CR239","doi-asserted-by":"publisher","DOI":"10.1038\/s41598-020-67574-6","volume":"10","author":"F Guerrero","year":"2020","unstructured":"Guerrero, F. et al. Role of endothelial microvesicles released by p-cresol on endothelial dysfunction. Sci. Rep. 10, 10657 (2020).","journal-title":"Sci. Rep."},{"key":"771_CR240","doi-asserted-by":"publisher","DOI":"10.1161\/JAHA.115.001852","volume":"4","author":"H Han","year":"2015","unstructured":"Han, H. et al. p\u2010Cresyl sulfate aggravates cardiac dysfunction associated with chronic kidney disease by enhancing apoptosis of cardiomyocytes. J. Am. Heart Assoc. 4, e001852 (2015).","journal-title":"J. Am. Heart Assoc."},{"key":"771_CR241","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0132589","volume":"10","author":"C-J Lin","year":"2015","unstructured":"Lin, C.-J., Wu, V., Wu, P.-C. & Wu, C.-J. Meta-analysis of the associations of p-cresyl sulfate (PCS) and indoxyl sulfate (IS) with cardiovascular events and all-cause mortality in patients with chronic renal failure. PLoS ONE 10, e0132589 (2015).","journal-title":"PLoS ONE"},{"key":"771_CR242","doi-asserted-by":"publisher","first-page":"3479","DOI":"10.1681\/ASN.2015121302","volume":"27","author":"R Poesen","year":"2016","unstructured":"Poesen, R. et al. Microbiota-derived phenylacetylglutamine associates with overall mortality and cardiovascular disease in patients with CKD. J. Am. Soc. Nephrol. 27, 3479\u20133487 (2016).","journal-title":"J. Am. Soc. Nephrol."},{"key":"771_CR243","doi-asserted-by":"publisher","first-page":"24","DOI":"10.1016\/j.trsl.2016.04.007","volume":"179","author":"A Nallu","year":"2017","unstructured":"Nallu, A., Sharma, S., Ramezani, A., Muralidharan, J. & Raj, D. Gut microbiome in chronic kidney disease: challenges and opportunities. Transl. Res. 179, 24\u201337 (2017).","journal-title":"Transl. Res."},{"key":"771_CR244","doi-asserted-by":"publisher","first-page":"323","DOI":"10.1093\/ajcn\/nqx072","volume":"107","author":"RL Loo","year":"2018","unstructured":"Loo, R. L., Zou, X., Appel, L. J., Nicholson, J. K. & Holmes, E. Characterization of metabolic responses to healthy diets and association with blood pressure: application to the optimal macronutrient intake trial for heart health (OmniHeart), a randomized controlled study. Am. J. Clin. Nutr. 107, 323\u2013334 (2018).","journal-title":"Am. J. Clin. Nutr."},{"key":"771_CR245","doi-asserted-by":"publisher","first-page":"791","DOI":"10.1097\/HJH.0000000000000467","volume":"33","author":"C Menni","year":"2015","unstructured":"Menni, C. et al. Metabolomic study of carotid-femoral pulse-wave velocity in women. J. Hypertens. 33, 791\u2013796 (2015).","journal-title":"J. Hypertens."},{"key":"771_CR246","doi-asserted-by":"publisher","first-page":"9474","DOI":"10.3390\/ijms21249474","volume":"21","author":"Y Patel","year":"2020","unstructured":"Patel, Y. & Joseph, J. Sodium intake and heart failure. Int. J. Mol. Sci. 21, 9474 (2020).","journal-title":"Int. J. Mol. Sci."},{"key":"771_CR247","doi-asserted-by":"publisher","first-page":"585","DOI":"10.1038\/nature24628","volume":"551","author":"N Wilck","year":"2017","unstructured":"Wilck, N. et al. Salt-responsive gut commensal modulates T17 axis and disease. Nature 551, 585\u2013589 (2017).","journal-title":"Nature"},{"key":"771_CR248","doi-asserted-by":"publisher","first-page":"586","DOI":"10.1038\/nm.4106","volume":"22","author":"V Rothhammer","year":"2016","unstructured":"Rothhammer, V. et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22, 586\u2013597 (2016).","journal-title":"Nat. Med."},{"key":"771_CR249","doi-asserted-by":"publisher","first-page":"407","DOI":"10.1056\/NEJMoa1205037","volume":"368","author":"E van Nood","year":"2013","unstructured":"van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407\u2013415 (2013).","journal-title":"N. Engl. J. Med."},{"key":"771_CR250","doi-asserted-by":"publisher","first-page":"102","DOI":"10.1053\/j.gastro.2015.04.001","volume":"149","author":"P Moayyedi","year":"2015","unstructured":"Moayyedi, P. et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 149, 102\u2013109.e6 (2015).","journal-title":"Gastroenterology"},{"key":"771_CR251","doi-asserted-by":"publisher","first-page":"156","DOI":"10.1001\/jama.2018.20046","volume":"321","author":"SP Costello","year":"2019","unstructured":"Costello, S. P. et al. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial. JAMA 321, 156\u2013164 (2019).","journal-title":"JAMA"},{"key":"771_CR252","doi-asserted-by":"publisher","first-page":"1702","DOI":"10.1097\/MIB.0000000000001228","volume":"23","author":"N Narula","year":"2017","unstructured":"Narula, N. et al. Systematic review and meta-analysis: fecal microbiota transplantation for treatment of active ulcerative colitis. Inflamm. Bowel Dis. 23, 1702\u20131709 (2017).","journal-title":"Inflamm. Bowel Dis."},{"key":"771_CR253","doi-asserted-by":"publisher","first-page":"110","DOI":"10.1053\/j.gastro.2015.03.045","volume":"149","author":"NG Rossen","year":"2015","unstructured":"Rossen, N. G. et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology 149, 110\u2013118.e4 (2015).","journal-title":"Gastroenterology"},{"key":"771_CR254","doi-asserted-by":"publisher","first-page":"611","DOI":"10.1016\/j.cmet.2017.09.008","volume":"26","author":"RS Kootte","year":"2017","unstructured":"Kootte, R. S. et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 26, 611\u2013619.e6 (2017).","journal-title":"Cell Metab."},{"key":"771_CR255","doi-asserted-by":"publisher","first-page":"158","DOI":"10.1053\/j.gastro.2020.08.041","volume":"160","author":"E Rinott","year":"2021","unstructured":"Rinott, E. et al. Effects of diet-modulated autologous fecal microbiota transplantation on weight regain. Gastroenterology 160, 158\u2013173.e10 (2021).","journal-title":"Gastroenterology"},{"key":"771_CR256","doi-asserted-by":"publisher","first-page":"1272","DOI":"10.1038\/s41591-021-01399-2","volume":"27","author":"V Mocanu","year":"2021","unstructured":"Mocanu, V. et al. Fecal microbial transplantation and fiber supplementation in patients with severe obesity and metabolic syndrome: a randomized double-blind, placebo-controlled phase 2 trial. Nat. Med. 27, 1272\u20131279 (2021).","journal-title":"Nat. Med."},{"key":"771_CR257","doi-asserted-by":"publisher","DOI":"10.1161\/JAHA.117.008342","volume":"7","author":"LP Smits","year":"2018","unstructured":"Smits, L. P. et al. Effect of vegan fecal microbiota transplantation on carnitine- and choline-derived trimethylamine-N-oxide production and vascular inflammation in patients with metabolic syndrome. J. Am. Heart Assoc. 7, e008342 (2018).","journal-title":"J. Am. Heart Assoc."},{"key":"771_CR258","doi-asserted-by":"publisher","first-page":"ofz095","DOI":"10.1093\/ofid\/ofz095","volume":"6","author":"KF Blount","year":"2019","unstructured":"Blount, K. F., Shannon, W. D., Deych, E. & Jones, C. Restoration of bacterial microbiome composition and diversity among treatment responders in a phase 2 trial of RBX2660: an investigational microbiome restoration therapeutic. Open Forum Infect. Dis. 6, ofz095 (2019).","journal-title":"Open Forum Infect. Dis."}],"container-title":["Nature Reviews Cardiology"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.nature.com\/articles\/s41569-022-00771-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s41569-022-00771-0","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s41569-022-00771-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,17]],"date-time":"2023-03-17T14:07:48Z","timestamp":1679062068000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.nature.com\/articles\/s41569-022-00771-0"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,10,14]]},"references-count":258,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2023,4]]}},"alternative-id":["771"],"URL":"http:\/\/dx.doi.org\/10.1038\/s41569-022-00771-0","relation":{},"ISSN":["1759-5002","1759-5010"],"issn-type":[{"value":"1759-5002","type":"print"},{"value":"1759-5010","type":"electronic"}],"subject":["Cardiology and Cardiovascular Medicine"],"published":{"date-parts":[[2022,10,14]]},"assertion":[{"value":"5 September 2022","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"14 October 2022","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"F.B. is a shareholder in Implexion Pharma AB, is on the scientific advisory board of Bactolife A\/S and receives research funds from BioGaia AB. The other authors declare no competing interests.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}]}}