uni-leipzig-open-access/json/s41467-023-41695-8

1 line
44 KiB
Plaintext

{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,1,19]],"date-time":"2024-01-19T10:56:37Z","timestamp":1705661797727},"reference-count":97,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2023,10,2]],"date-time":"2023-10-02T00:00:00Z","timestamp":1696204800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2023,10,2]],"date-time":"2023-10-02T00:00:00Z","timestamp":1696204800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Nat Commun"],"abstract":"<jats:title>Abstract<\/jats:title><jats:p>The climate effects of atmospheric aerosol particles serving as cloud condensation nuclei (CCN) depend on chemical composition and hygroscopicity, which are highly variable on spatial and temporal scales. Here we present global CCN measurements, covering diverse environments from pristine to highly polluted conditions. We show that the effective aerosol hygroscopicity,<jats:italic>\u03ba<\/jats:italic>, can be derived accurately from the fine aerosol mass fractions of organic particulate matter (<jats:italic>\u03f5<\/jats:italic><jats:sub>org<\/jats:sub>) and inorganic ions (<jats:italic>\u03f5<\/jats:italic><jats:sub>inorg<\/jats:sub>) through a linear combination,<jats:italic>\u03ba<\/jats:italic>\u2009=\u2009<jats:italic>\u03f5<\/jats:italic><jats:sub>org<\/jats:sub>\u2009\u22c5\u2009<jats:italic>\u03ba<\/jats:italic><jats:sub>org<\/jats:sub>\u2009+\u2009<jats:italic>\u03f5<\/jats:italic><jats:sub>inorg<\/jats:sub>\u2009\u22c5\u2009<jats:italic>\u03ba<\/jats:italic><jats:sub>inorg<\/jats:sub>. In spite of the chemical complexity of organic matter, its hygroscopicity is well captured and represented by a global average value of<jats:italic>\u03ba<\/jats:italic><jats:sub>org<\/jats:sub>\u2009=\u20090.12\u2009\u00b1\u20090.02 with<jats:italic>\u03ba<\/jats:italic><jats:sub>inorg<\/jats:sub>\u2009=\u20090.63\u2009\u00b1\u20090.01 as the corresponding value for inorganic ions. By showing that the sensitivity of global climate forcing to changes in<jats:italic>\u03ba<\/jats:italic><jats:sub>org<\/jats:sub>and<jats:italic>\u03ba<\/jats:italic><jats:sub>inorg<\/jats:sub>is small, we constrain a critically important aspect of global climate modelling.<\/jats:p>","DOI":"10.1038\/s41467-023-41695-8","type":"journal-article","created":{"date-parts":[[2023,10,2]],"date-time":"2023-10-02T10:02:21Z","timestamp":1696240941000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Global organic and inorganic aerosol hygroscopicity and its effect on radiative forcing"],"prefix":"10.1038","volume":"14","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-6852-0756","authenticated-orcid":false,"given":"Mira L.","family":"P\u00f6hlker","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6958-425X","authenticated-orcid":false,"given":"Christopher","family":"P\u00f6hlker","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7057-194X","authenticated-orcid":false,"given":"Johannes","family":"Quaas","sequence":"additional","affiliation":[]},{"given":"Johannes","family":"M\u00fclmenst\u00e4dt","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2440-6104","authenticated-orcid":false,"given":"Andrea","family":"Pozzer","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1968-7925","authenticated-orcid":false,"given":"Meinrat O.","family":"Andreae","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7754-3036","authenticated-orcid":false,"given":"Paulo","family":"Artaxo","sequence":"additional","affiliation":[]},{"given":"Karoline","family":"Block","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3264-1713","authenticated-orcid":false,"given":"Hugh","family":"Coe","sequence":"additional","affiliation":[]},{"given":"Barbara","family":"Ervens","sequence":"additional","affiliation":[]},{"given":"Peter","family":"Gallimore","sequence":"additional","affiliation":[]},{"given":"Cassandra J.","family":"Gaston","sequence":"additional","affiliation":[]},{"given":"Sachin S.","family":"Gunthe","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9267-7825","authenticated-orcid":false,"given":"Silvia","family":"Henning","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7044-2101","authenticated-orcid":false,"given":"Hartmut","family":"Herrmann","sequence":"additional","affiliation":[]},{"given":"Ovid O.","family":"Kr\u00fcger","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3423-7896","authenticated-orcid":false,"given":"Gordon","family":"McFiggans","sequence":"additional","affiliation":[]},{"given":"Laurent","family":"Poulain","sequence":"additional","affiliation":[]},{"given":"Subha S.","family":"Raj","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4710-2277","authenticated-orcid":false,"given":"Ernesto","family":"Reyes-Villegas","sequence":"additional","affiliation":[]},{"given":"Haley M.","family":"Royer","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6807-5007","authenticated-orcid":false,"given":"David","family":"Walter","sequence":"additional","affiliation":[]},{"given":"Yuan","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Ulrich","family":"P\u00f6schl","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,10,2]]},"reference":[{"key":"41695_CR1","doi-asserted-by":"crossref","unstructured":"Forster, P. et al. Climate change 2021\u2014the physical science basis: working group i, the earth\u2019s energy budget, climate feedbacks and climate sensitivity, in Report of the Intergovernmental Panel on Climate Change (IPCC) 923\u20131054 (IPCC, 2023).","DOI":"10.1017\/9781009157896.009"},{"key":"41695_CR2","doi-asserted-by":"crossref","first-page":"e2019RG000660","DOI":"10.1029\/2019RG000660","volume":"58","author":"N Bellouin","year":"2020","unstructured":"Bellouin, N. et al. Bounding global aerosol radiative forcing of climate change. Rev. Geophys. 58, e2019RG000660 (2020).","journal-title":"Rev. Geophys."},{"key":"41695_CR3","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1038\/nature12674","volume":"503","author":"KS Carslaw","year":"2013","unstructured":"Carslaw, K. S. et al. Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 503, 67\u201371 (2013).","journal-title":"Nature"},{"key":"41695_CR4","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1007\/s40641-018-0089-y","volume":"4","author":"J M\u00fclmenst\u00e4dt","year":"2018","unstructured":"M\u00fclmenst\u00e4dt, J. & Feingold, G. The radiative forcing of aerosol\u2013cloud interactions in liquid clouds: Wrestling and embracing uncertainty. Curr. Clim. Change Rep. 4, 23\u201340 (2018).","journal-title":"Curr. Clim. Change Rep."},{"key":"41695_CR5","doi-asserted-by":"crossref","first-page":"1251","DOI":"10.1016\/0004-6981(74)90004-3","volume":"8","author":"S Twomey","year":"1974","unstructured":"Twomey, S. Pollution and planetary albedo. Atmos. Environ. 8, 1251\u20131256 (1974).","journal-title":"Atmos. Environ."},{"key":"41695_CR6","doi-asserted-by":"crossref","first-page":"1152","DOI":"10.1039\/TF9363201152","volume":"32","author":"H K\u00f6hler","year":"1936","unstructured":"K\u00f6hler, H. The nucleus in and the growth of hygroscopic droplets. Trans. Faraday Soc. 32, 1152\u20131161 (1936).","journal-title":"Trans. Faraday Soc."},{"key":"41695_CR7","doi-asserted-by":"crossref","first-page":"1961","DOI":"10.5194\/acp-7-1961-2007","volume":"7","author":"MD Petters","year":"2007","unstructured":"Petters, M. D. & Kreidenweis, S. M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 7, 1961\u20131971 (2007).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR8","doi-asserted-by":"crossref","first-page":"717","DOI":"10.5194\/acp-13-717-2013","volume":"13","author":"E Mikhailov","year":"2013","unstructured":"Mikhailov, E., Vlasenko, S., Rose, D. & Poschl, U. Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake. Atmos. Chem. Phys. 13, 717\u2013740 (2013).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR9","doi-asserted-by":"crossref","first-page":"10289","DOI":"10.5194\/acp-18-10289-2018","volume":"18","author":"ML P\u00f6hlker","year":"2018","unstructured":"P\u00f6hlker, M. L. et al. Long-term observations of cloud condensation nuclei over the Amazon rain forest\u2014Part 2: Variability and characteristics of biomass burning, long-range transport, and pristine rain forest aerosols. Atmos. Chem. Phys. 18, 10289\u201310331 (2018).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR10","doi-asserted-by":"crossref","first-page":"12211","DOI":"10.5194\/acp-15-12211-2015","volume":"15","author":"M Paramonov","year":"2015","unstructured":"Paramonov, M. et al. A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network. Atmos. Chem. Phys. 15, 12211\u201312229 (2015).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR11","doi-asserted-by":"crossref","first-page":"1525","DOI":"10.1126\/science.1180353","volume":"326","author":"JL Jimenez","year":"2009","unstructured":"Jimenez, J. L. et al. Evolution of organic aerosols in the atmosphere. Science 326, 1525\u20131529 (2009).","journal-title":"Science"},{"key":"41695_CR12","doi-asserted-by":"crossref","first-page":"5164","DOI":"10.1021\/acs.jpca.7b04114","volume":"121","author":"SS Petters","year":"2017","unstructured":"Petters, S. S. et al. Hygroscopicity of organic compounds as a function of carbon chain length and carboxyl, hydroperoxy, and carbonyl functional groups. J. Phys. Chem. A 121, 5164\u20135174 (2017). PMID: 28621942.","journal-title":"J. Phys. Chem. A"},{"key":"41695_CR13","doi-asserted-by":"crossref","first-page":"1965","DOI":"10.1016\/S1352-2310(96)00355-X","volume":"31","author":"WC Malm","year":"1997","unstructured":"Malm, W. C. & Kreidenweis, S. M. The effects of models of aerosol hygroscopicity on the apportionment of extinction. Atmos. Environ. 31, 1965\u20131976 (1997).","journal-title":"Atmos. Environ."},{"key":"41695_CR14","doi-asserted-by":"crossref","first-page":"4101","DOI":"10.5194\/acp-16-4101-2016","volume":"16","author":"B Jing","year":"2016","unstructured":"Jing, B. et al. Hygroscopic behavior of multicomponent organic aerosols and their internal mixtures with ammonium sulfate. Atmos. Chem. Phys. 16, 4101\u20134118 (2016).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR15","doi-asserted-by":"crossref","first-page":"2126","DOI":"10.1021\/j100879a010","volume":"70","author":"RH Stokes","year":"1966","unstructured":"Stokes, R. H. & Robinson, R. A. Interactions in aqueous nonelectrolyte solutions. Solute-solvent equilibria. J. Phys. Chem. 70, 2126\u20132131 (1966).","journal-title":"J. Phys. Chem."},{"key":"41695_CR16","doi-asserted-by":"crossref","first-page":"7551","DOI":"10.5194\/acp-9-7551-2009","volume":"9","author":"SS Gunthe","year":"2009","unstructured":"Gunthe, S. S. et al. Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity. Atmos. Chem. Phys. 9, 7551\u20137575 (2009).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR17","doi-asserted-by":"crossref","first-page":"721","DOI":"10.1080\/02786820701422278","volume":"41","author":"PSK Liu","year":"2007","unstructured":"Liu, P. S. K. et al. Transmission efficiency of an aerodynamic focusing lens system: comparison of model calculations and laboratory measurements for the aerodyne aerosol mass spectrometer. Aerosol Sci. Technol. 41, 721\u2013733 (2007).","journal-title":"Aerosol Sci. Technol."},{"key":"41695_CR18","doi-asserted-by":"crossref","first-page":"5155","DOI":"10.5194\/acp-9-5155-2009","volume":"9","author":"M Hallquist","year":"2009","unstructured":"Hallquist, M. et al. The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys. 9, 5155\u20135236 (2009).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR19","doi-asserted-by":"crossref","first-page":"15709","DOI":"10.5194\/acp-16-15709-2016","volume":"16","author":"ML P\u00f6hlker","year":"2016","unstructured":"P\u00f6hlker, M. L. et al. Long-term observations of cloud condensation nuclei in the Amazon rain forest\u2014Part 1: aerosol size distribution, hygroscopicity, and new model parameterizations for CCN prediction. Atmos. Chem. Phys. 16, 15709\u201315740 (2016).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR20","doi-asserted-by":"crossref","first-page":"2853","DOI":"10.5194\/acp-18-2853-2018","volume":"18","author":"J Schmale","year":"2018","unstructured":"Schmale, J. et al. Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories. Atmos. Chem. Phys. 18, 2853\u20132881 (2018).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR21","doi-asserted-by":"crossref","first-page":"2657","DOI":"10.5194\/acp-14-2657-2014","volume":"14","author":"EJT Levin","year":"2014","unstructured":"Levin, E. J. T. et al. Size-resolved aerosol composition and its link to hygroscopicity at a forested site in colorado. Atmos. Chem. Phys. 14, 2657\u20132667 (2014).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR22","doi-asserted-by":"crossref","first-page":"1293","DOI":"10.5194\/acp-8-1293-2008","volume":"8","author":"JD Allan","year":"2008","unstructured":"Allan, J. D. et al. Clouds and aerosols in Puerto Rico\u2014a new evaluation. Atmos. Chem. Phys. 8, 1293\u20131309 (2008).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR23","first-page":"32575","volume":"2013","author":"D Rose","year":"2013","unstructured":"Rose, D. et al. Size-resolved and integral measurements of cloud condensation nuclei (CCN) at the high-alpine site Jungfraujoch. Atmos. Chem. Phys. Discuss. 2013, 32575\u201332624 (2013).","journal-title":"Atmos. Chem. Phys. Discuss."},{"key":"41695_CR24","doi-asserted-by":"publisher","unstructured":"Dusek, U. et al. Enhanced organic mass fraction and decreased hygroscopicity of cloud condensation nuclei (CCN) during new particle formation events. Geophys. Res. Lett. https:\/\/doi.org\/10.1029\/2009GL040930 (2010).","DOI":"10.1029\/2009GL040930"},{"key":"41695_CR25","doi-asserted-by":"crossref","first-page":"6727","DOI":"10.5194\/acp-9-6727-2009","volume":"9","author":"Y Shinozuka","year":"2009","unstructured":"Shinozuka, Y. et al. Aerosol optical properties relevant to regional remote sensing of CCN activity and links to their organic mass fraction: airborne observations over Central Mexico and the US West Coast during MILAGRO\/INTEX-B. Atmos. Chem. Phys. 9, 6727\u20136742 (2009).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR26","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1016\/j.earscirev.2008.03.001","volume":"89","author":"MO Andreae","year":"2008","unstructured":"Andreae, M. O. & Rosenfeld, D. Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth Sci. Rev. 89, 13\u201341 (2008).","journal-title":"Earth Sci. Rev."},{"key":"41695_CR27","doi-asserted-by":"crossref","first-page":"e1500157","DOI":"10.1126\/sciadv.1500157","volume":"1","author":"DT McCoy","year":"2015","unstructured":"McCoy, D. T. et al. Natural aerosols explain seasonal and spatial patterns of southern ocean cloud albedo. Sci. Adv. 1, e1500157 (2015).","journal-title":"Sci. Adv."},{"key":"41695_CR28","doi-asserted-by":"crossref","first-page":"12515","DOI":"10.5194\/acp-20-12515-2020","volume":"20","author":"G Zheng","year":"2020","unstructured":"Zheng, G., Kuang, C., Uin, J., Watson, T. & Wang, J. Large contribution of organics to condensational growth and formation of cloud condensation nuclei (CCN) in the remote marine boundary layer. Atmos. Chem. Phys. 20, 12515\u201312525 (2020).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR29","doi-asserted-by":"publisher","unstructured":"Ervens, B. et al. Prediction of cloud condensation nucleus number concentration using measurements of aerosol size distributions and composition and light scattering enhancement due to humidity. J. Geophys. Res. Atmos. https:\/\/doi.org\/10.1029\/2006JD007426 (2007).","DOI":"10.1029\/2006JD007426"},{"key":"41695_CR30","doi-asserted-by":"crossref","first-page":"602","DOI":"10.1080\/02786820119445","volume":"35","author":"BJ Turpin","year":"2001","unstructured":"Turpin, B. J. & Lim, H. J. Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci. Technol. 35, 602\u2013610 (2001).","journal-title":"Aerosol Sci. Technol."},{"key":"41695_CR31","doi-asserted-by":"crossref","first-page":"401","DOI":"10.1002\/2017JD027603","volume":"123","author":"C Zhou","year":"2018","unstructured":"Zhou, C., Zhang, H., Zhao, S. & Li, J. On effective radiative forcing of partial internally and externally mixed aerosols and their effects on global climate. J. Geophys. Res. Atmos. 123, 401\u2013423 (2018).","journal-title":"J. Geophys. Res. Atmos."},{"key":"41695_CR32","doi-asserted-by":"crossref","first-page":"17727","DOI":"10.5194\/acp-21-17727-2021","volume":"21","author":"Z Zheng","year":"2021","unstructured":"Zheng, Z. et al. Quantifying the structural uncertainty of the aerosol mixing state representation in a modal model. Atmos. Chem. Phys. 21, 17727\u201317741 (2021).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR33","doi-asserted-by":"crossref","first-page":"11345","DOI":"10.5194\/acp-18-11345-2018","volume":"18","author":"JK Kodros","year":"2018","unstructured":"Kodros, J. K. et al. Size-resolved mixing state of black carbon in the canadian high arctic and implications for simulated direct radiative effect. Atmos. Chem. Phys. 18, 11345\u201311361 (2018).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR34","doi-asserted-by":"crossref","first-page":"4795","DOI":"10.5194\/acp-10-4795-2010","volume":"10","author":"B Ervens","year":"2010","unstructured":"Ervens, B. et al. CCN predictions using simplified assumptions of organic aerosol composition and mixing state: a synthesis from six different locations. Atmos. Chem. Phys. 10, 4795\u20134807 (2010).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR35","doi-asserted-by":"crossref","first-page":"1620","DOI":"10.1126\/science.232.4758.1620","volume":"232","author":"MO Andreae","year":"1986","unstructured":"Andreae, M. O. et al. Internal mixture of sea salt, silicates, and excess sulfate in marine aerosols. Science 232, 1620\u20131623 (1986).","journal-title":"Science"},{"key":"41695_CR36","doi-asserted-by":"crossref","first-page":"11,473\u201311,482","DOI":"10.1029\/2018GL079404","volume":"45","author":"N Sharma","year":"2018","unstructured":"Sharma, N. et al. Physical properties of aerosol internally mixed with soot particles in a biogenically dominated environment in california. Geophys. Res. Lett. 45, 11,473\u201311,482 (2018).","journal-title":"Geophys. Res. Lett."},{"key":"41695_CR37","doi-asserted-by":"crossref","first-page":"12595","DOI":"10.5194\/acp-18-12595-2018","volume":"18","author":"AL Bondy","year":"2018","unstructured":"Bondy, A. L. et al. The diverse chemical mixing state of aerosol particles in the southeastern united states. Atmos. Chem. Phys. 18, 12595\u201312612 (2018).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR38","doi-asserted-by":"crossref","first-page":"10823","DOI":"10.1021\/acs.est.6b01675","volume":"50","author":"AL Vogel","year":"2016","unstructured":"Vogel, A. L. et al. Aerosol chemistry resolved by mass spectrometry: Linking field measurements of cloud condensation nuclei activity to organic aerosol composition. Environ. Sci. Technol. 50, 10823\u201310832 (2016).","journal-title":"Environ. Sci. Technol."},{"key":"41695_CR39","doi-asserted-by":"crossref","first-page":"146","DOI":"10.1002\/jame.20015","volume":"5","author":"B Stevens","year":"2013","unstructured":"Stevens, B. et al. Atmospheric component of the MPI-M Earth System Model: ECHAM6. J. Adv. Model. Earth Syst. 5, 146\u2013172 (2013).","journal-title":"J. Adv. Model. Earth Syst."},{"key":"41695_CR40","doi-asserted-by":"crossref","first-page":"1643","DOI":"10.5194\/gmd-12-1643-2019","volume":"12","author":"I Tegen","year":"2019","unstructured":"Tegen, I. et al. The global aerosol\u2013climate model ECHAM6.3\u2013HAM2.3\u2014Part 1: aerosol evaluation. Geosci. Model Dev. 12, 1643\u20131677 (2019).","journal-title":"Geosci. Model Dev."},{"key":"41695_CR41","doi-asserted-by":"crossref","first-page":"1853","DOI":"10.5194\/acp-13-1853-2013","volume":"13","author":"G Myhre","year":"2013","unstructured":"Myhre, G. et al. Radiative forcing of the direct aerosol effect from aerocom phase ii simulations. Atmos. Chem. Phys. 13, 1853\u20131877 (2013).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR42","doi-asserted-by":"crossref","first-page":"1375","DOI":"10.1126\/science.1125261","volume":"312","author":"U Dusek","year":"2006","unstructured":"Dusek, U. et al. Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science 312, 1375\u20131378 (2006).","journal-title":"Science"},{"key":"41695_CR43","doi-asserted-by":"crossref","first-page":"3999","DOI":"10.5194\/acp-9-3999-2009","volume":"9","author":"MD Petters","year":"2009","unstructured":"Petters, M. D. et al. Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol\u2014part 2: theoretical approaches. Atmos. Chem. Phys. 9, 3999\u20134009 (2009).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR44","doi-asserted-by":"crossref","first-page":"105680","DOI":"10.1016\/j.envint.2020.105680","volume":"139","author":"G Zheng","year":"2020","unstructured":"Zheng, G. et al. Long-range transported north american wildfire aerosols observed in marine boundary layer of eastern north atlantic. Environ. Int. 139, 105680 (2020).","journal-title":"Environ. Int."},{"key":"41695_CR45","doi-asserted-by":"crossref","first-page":"6999","DOI":"10.5194\/acp-21-6999-2021","volume":"21","author":"EF Mikhailov","year":"2021","unstructured":"Mikhailov, E. F. et al. Water uptake of subpollen aerosol particles: hygroscopic growth, cloud condensation nuclei activation, and liquid\u2013liquid phase separation. Atmos. Chem. Phys. 21, 6999\u20137022 (2021).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR46","doi-asserted-by":"crossref","first-page":"8679","DOI":"10.5194\/acp-15-8679-2015","volume":"15","author":"KM Cerully","year":"2015","unstructured":"Cerully, K. M. et al. On the link between hygroscopicity, volatility, and oxidation state of ambient and water-soluble aerosols in the southeastern united states. Atmos. Chem. Phys. 15, 8679\u20138694 (2015).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR47","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1080\/027868200410840","volume":"33","author":"JT Jayne","year":"2000","unstructured":"Jayne, J. T. et al. Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol. Sci. Technol. 33, 49\u201370 (2000).","journal-title":"Aerosol. Sci. Technol."},{"key":"41695_CR48","doi-asserted-by":"crossref","first-page":"780","DOI":"10.1080\/02786826.2011.560211","volume":"45","author":"NL Ng","year":"2011","unstructured":"Ng, N. L. et al. An Aerosol Chemical Speciation Monitor (ACSM) for routine monitoring of the composition and mass concentrations of ambient aerosol. Aerosol. Sci. Technol. 45, 780\u2013794 (2011).","journal-title":"Aerosol. Sci. Technol."},{"key":"41695_CR49","doi-asserted-by":"crossref","first-page":"206","DOI":"10.1080\/027868290913988","volume":"39","author":"GC Roberts","year":"2005","unstructured":"Roberts, G. C. & Nenes, A. A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements. Aerosol. Sci. Technol. 39, 206\u2013221 (2005).","journal-title":"Aerosol. Sci. Technol."},{"key":"41695_CR50","doi-asserted-by":"crossref","first-page":"2615","DOI":"10.5194\/amt-7-2615-2014","volume":"7","author":"ML Kr\u00fcger","year":"2014","unstructured":"Kr\u00fcger, M. L. et al. Assessment of cloud supersaturation by size-resolved aerosol particle and cloud condensation nuclei (CCN) measurements. Atmos. Meas. Tech. 7, 2615\u20132629 (2014).","journal-title":"Atmos. Meas. Tech."},{"key":"41695_CR51","doi-asserted-by":"crossref","first-page":"1153","DOI":"10.5194\/acp-8-1153-2008","volume":"8","author":"D Rose","year":"2008","unstructured":"Rose, D. et al. Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment. Atmos. Chem. Phys. 8, 1153\u20131179 (2008).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR52","doi-asserted-by":"crossref","first-page":"10723","DOI":"10.5194\/acp-15-10723-2015","volume":"15","author":"MO Andreae","year":"2015","unstructured":"Andreae, M. O. et al. The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols. Atmos. Chem. Phys. 15, 10723\u201310776 (2015).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR53","doi-asserted-by":"crossref","first-page":"8425","DOI":"10.5194\/acp-19-8425-2019","volume":"19","author":"C P\u00f6hlker","year":"2019","unstructured":"P\u00f6hlker, C. et al. Land cover and its transformation in the backward trajectory footprint region of the Amazon Tall Tower observatory. Atmos. Chem. Phys. 19, 8425\u20138470 (2019).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR54","doi-asserted-by":"crossref","first-page":"RG2002","DOI":"10.1029\/2008RG000280","volume":"48","author":"ST Martin","year":"2010","unstructured":"Martin, S. T. et al. Sources and properties of Amazonian aerosol particles. Rev. Geophys. 48, RG2002 (2010).","journal-title":"Rev. Geophys."},{"key":"41695_CR55","doi-asserted-by":"crossref","first-page":"12817","DOI":"10.5194\/acp-18-12817-2018","volume":"18","author":"J Saturno","year":"2018","unstructured":"Saturno, J. et al. Black and brown carbon over central Amazonia: long-term aerosol measurements at the ATTO site. Atmos. Chem. Phys. 18, 12817\u201312843 (2018).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR56","doi-asserted-by":"crossref","first-page":"4757","DOI":"10.5194\/acp-20-4757-2020","volume":"20","author":"BA Holanda","year":"2020","unstructured":"Holanda, B. A. et al. Influx of african biomass burning aerosol during the amazonian dry season through layered transatlantic transport of black carbon-rich smoke. Atmos. Chem. Phys. 20, 4757\u20134785 (2020).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR57","doi-asserted-by":"crossref","first-page":"5161","DOI":"10.5194\/acp-8-5161-2008","volume":"8","author":"RM Garland","year":"2008","unstructured":"Garland, R. M. et al. Aerosol optical properties in a rural environment near the mega-city Guangzhou, China: implications for regional air pollution, radiative forcing and remote sensing. Atmos. Chem. Phys. 8, 5161\u20135186 (2008).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR58","doi-asserted-by":"crossref","first-page":"3365","DOI":"10.5194\/acp-10-3365-2010","volume":"10","author":"D Rose","year":"2010","unstructured":"Rose, D. et al. Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China\u2014Part 1: size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity. Atmos. Chem. Phys. 10, 3365\u20133383 (2010).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR59","doi-asserted-by":"crossref","first-page":"2817","DOI":"10.5194\/acp-11-2817-2011","volume":"11","author":"D Rose","year":"2011","unstructured":"Rose, D. et al. Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China\u2014Part 2: size-resolved aerosol chemical composition, diurnal cycles, and externally mixed weakly CCN-active soot particles. Atmos. Chem. Phys. 11, 2817\u20132836 (2011).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR60","doi-asserted-by":"publisher","unstructured":"Garland, R. M. et al. Aerosol optical properties observed during Campaign of Air Quality Research in Beijing 2006 (CAREBeijing-2006): characteristic differences between the inflow and outflow of Beijing city air. J. Geophys. Res. Atmos. https:\/\/doi.org\/10.1029\/2008JD010780 (2009).","DOI":"10.1029\/2008JD010780"},{"key":"41695_CR61","doi-asserted-by":"crossref","first-page":"11023","DOI":"10.5194\/acp-11-11023-2011","volume":"11","author":"SS Gunthe","year":"2011","unstructured":"Gunthe, S. S. et al. Cloud condensation nuclei (CCN) from fresh and aged air pollution in the megacity region of Beijing. Atmos. Chem. Phys. 11, 11023\u201311039 (2011).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR62","doi-asserted-by":"crossref","first-page":"e2021JD035681","DOI":"10.1029\/2021JD035681","volume":"126","author":"S S. Raj","year":"2021","unstructured":"S. Raj, S. et al. Planetary boundary layer height modulates aerosol-water vapor interactions during winter in the megacity of Delhi. J. Geophys. Res. Atmos. 126, e2021JD035681 (2021).","journal-title":"J. Geophys. Res. Atmos."},{"key":"41695_CR63","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1038\/s41561-020-00677-x","volume":"14","author":"SS Gunthe","year":"2021","unstructured":"Gunthe, S. S. et al. Enhanced aerosol particle growth sustained by high continental chlorine emission in india. Nat. Geosci. 14, 77\u201384 (2021).","journal-title":"Nat. Geosci."},{"key":"41695_CR64","doi-asserted-by":"crossref","first-page":"11655","DOI":"10.5194\/acp-21-11655-2021","volume":"21","author":"E Reyes-Villegas","year":"2021","unstructured":"Reyes-Villegas, E. et al. Pm1 composition and source apportionment at two sites in delhi, india, across multiple seasons. Atmos. Chem. Phys. 21, 11655\u201311667 (2021).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR65","doi-asserted-by":"crossref","first-page":"4067","DOI":"10.5194\/essd-13-4067-2021","volume":"13","author":"B Stevens","year":"2021","unstructured":"Stevens, B. et al. Eurec4a. Earth Syst. Sci. Data 13, 4067\u20134119 (2021).","journal-title":"Earth Syst. Sci. Data"},{"key":"41695_CR66","doi-asserted-by":"crossref","first-page":"1759","DOI":"10.5194\/essd-13-1759-2021","volume":"13","author":"PK Quinn","year":"2021","unstructured":"Quinn, P. K. et al. Measurements from the RV Ronald H. Brown and related platforms as part of the Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC). Earth Syst. Sci. Data 13, 1759\u20131790 (2021).","journal-title":"Earth Syst. Sci. Data"},{"key":"41695_CR67","doi-asserted-by":"crossref","first-page":"11415","DOI":"10.5194\/acp-10-11415-2010","volume":"10","author":"ST Martin","year":"2010","unstructured":"Martin, S. T. et al. An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08). Atmos. Chem. Phys. 10, 11415\u201311438 (2010).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR68","doi-asserted-by":"crossref","first-page":"10285","DOI":"10.5194\/acp-13-10285-2013","volume":"13","author":"M Paramonov","year":"2013","unstructured":"Paramonov, M. et al. The analysis of size-segregated cloud condensation nuclei counter (ccnc) data and its implications for cloud droplet activation. Atmos. Chem. Phys. 13, 10285\u201310301 (2013).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR69","doi-asserted-by":"crossref","first-page":"8697","DOI":"10.5194\/acp-10-8697-2010","volume":"10","author":"LT Molina","year":"2010","unstructured":"Molina, L. T. et al. An overview of the MILAGRO 2006 campaign: Mexico city emissions and their transport and transformation. Atmos. Chem. Phys. 10, 8697\u20138760 (2010).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR70","doi-asserted-by":"crossref","first-page":"5049","DOI":"10.5194\/acp-13-5049-2013","volume":"13","author":"S Lance","year":"2013","unstructured":"Lance, S. et al. Aerosol mixing state, hygroscopic growth and cloud activation efficiency during MIRAGE 2006. Atmos. Chem. Phys. 13, 5049\u20135062 (2013).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR71","doi-asserted-by":"crossref","first-page":"2301","DOI":"10.5194\/acp-9-2301-2009","volume":"9","author":"HB Singh","year":"2009","unstructured":"Singh, H. B., Brune, W. H., Crawford, J. H., Flocke, F. & Jacob, D. J. Chemistry and transport of pollution over the Gulf of Mexico and the Pacific: spring 2006 INTEX-B campaign overview and first results. Atmos. Chem. Phys. 9, 2301\u20132318 (2009).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR72","doi-asserted-by":"crossref","first-page":"12369","DOI":"10.5194\/acp-11-12369-2011","volume":"11","author":"KM Cerully","year":"2011","unstructured":"Cerully, K. M. et al. Aerosol hygroscopicity and CCN activation kinetics in a boreal forest environment during the 2007 EUCAARI campaign. Atmos. Chem. Phys. 11, 12369\u201312386 (2011).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR73","first-page":"n\/a\u2013n\/a","volume":"117","author":"EJT Levin","year":"2012","unstructured":"Levin, E. J. T. et al. An annual cycle of size-resolved aerosol hygroscopicity at a forested site in colorado. J. Geophys. Res. Atmos. 117, n\/a\u2013n\/a (2012).","journal-title":"J. Geophys. Res. Atmos."},{"key":"41695_CR74","doi-asserted-by":"crossref","first-page":"5477","DOI":"10.5194\/acp-8-5477-2008","volume":"8","author":"CA Cantrell","year":"2008","unstructured":"Cantrell, C. A. Technical note: review of methods for linear least-squares fitting of data and application to atmospheric chemistry problems. Atmos. Chem. Phys. 8, 5477\u20135487 (2008).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR75","doi-asserted-by":"crossref","first-page":"9491","DOI":"10.5194\/acp-9-9491-2009","volume":"9","author":"E Mikhailov","year":"2009","unstructured":"Mikhailov, E., Vlasenko, S., Martin, S. T., Koop, T. & P\u00f6schl, U. Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations. Atmos. Chem. Phys. 9, 9491\u20139522 (2009).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR76","doi-asserted-by":"crossref","unstructured":"P\u00f6schl, U., Rose, D. & Andreae, M. O. Climatologies of Cloud-related Aerosols. Part 2: Particle Hygroscopicity and Cloud Condensation Nucleus Activity 58\u201372 (MIT Press, Cambridge, 2009).","DOI":"10.7551\/mitpress\/9780262012874.003.0032"},{"key":"41695_CR77","doi-asserted-by":"publisher","unstructured":"King, S. M., Rosenoern, T., Shilling, J. E., Chen, Q. & Martin, S. T. Cloud condensation nucleus activity of secondary organic aerosol particles mixed with sulfate. Geophys. Res. Lett. https:\/\/doi.org\/10.1029\/2007GL030390 (2007).","DOI":"10.1029\/2007GL030390"},{"key":"41695_CR78","doi-asserted-by":"crossref","first-page":"11997","DOI":"10.5194\/acp-14-11997-2014","volume":"14","author":"D Neubauer","year":"2014","unstructured":"Neubauer, D., Lohmann, U., Hoose, C. & Frontoso, M. G. Impact of the representation of marine stratocumulus clouds on the anthropogenic aerosol effect. Atmos. Chem. Phys. 14, 11997\u201312022 (2014).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR79","doi-asserted-by":"crossref","first-page":"1125","DOI":"10.5194\/acp-5-1125-2005","volume":"5","author":"P Stier","year":"2005","unstructured":"Stier, P. et al. The aerosol-climate model ECHAM5-HAM. Atmos. Chem. Phys. 5, 1125\u20131156 (2005).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR80","doi-asserted-by":"crossref","first-page":"8911","DOI":"10.5194\/acp-12-8911-2012","volume":"12","author":"K Zhang","year":"2012","unstructured":"Zhang, K. et al. The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations. Atmos. Chem. Phys. 12, 8911\u20138949 (2012).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR81","doi-asserted-by":"crossref","first-page":"D20302","DOI":"10.1029\/2006JD007879","volume":"112","author":"DE Kinnison","year":"2007","unstructured":"Kinnison, D. E. et al. Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model. J. Geophys. Res. 112, D20302 (2007).","journal-title":"J. Geophys. Res."},{"key":"41695_CR82","doi-asserted-by":"crossref","first-page":"6837","DOI":"10.1029\/1999JD901161","volume":"105","author":"H Abdul-Razzak","year":"2000","unstructured":"Abdul-Razzak, H. & Ghan, S. J. A parameterization of aerosol activation: 2. Multiple aerosol types. J. Geophys. Res. 105, 6837 (2000).","journal-title":"J. Geophys. Res."},{"key":"41695_CR83","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1175\/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2","volume":"128","author":"M Khairoutdinov","year":"2000","unstructured":"Khairoutdinov, M. & Kogan, Y. A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Weather Rev. 128, 229\u2013243 (2000).","journal-title":"Mon. Weather Rev."},{"key":"41695_CR84","doi-asserted-by":"crossref","first-page":"4653","DOI":"10.5194\/acp-9-4653-2009","volume":"9","author":"B Croft","year":"2009","unstructured":"Croft, B. et al. Aerosol size-dependent below-cloud scavenging by rain and snow in the ECHAM5-HAM. Atmos. Chem. Phys. 9, 4653\u20134675 (2009).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR85","doi-asserted-by":"crossref","first-page":"1511","DOI":"10.5194\/acp-10-1511-2010","volume":"10","author":"B Croft","year":"2010","unstructured":"Croft, B. et al. Influences of in-cloud aerosol scavenging parameterizations on aerosol concentrations and wet deposition in ECHAM5-HAM. Atmos. Chem. Phys. 10, 1511\u20131543 (2010).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR86","doi-asserted-by":"crossref","first-page":"557","DOI":"10.1007\/BF00207939","volume":"12","author":"U Lohmann","year":"1996","unstructured":"Lohmann, U. & Roeckner, E. Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model. Clim. Dynam. 12, 557\u2013572 (1996).","journal-title":"Clim. Dynam."},{"key":"41695_CR87","doi-asserted-by":"crossref","first-page":"3425","DOI":"10.5194\/acp-7-3425-2007","volume":"7","author":"U Lohmann","year":"2007","unstructured":"Lohmann, U. et al. Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM. Atmos. Chem. Phys. 7, 3425\u20133446 (2007).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR88","doi-asserted-by":"crossref","first-page":"8917","DOI":"10.5194\/acp-9-8917-2009","volume":"9","author":"U Lohmann","year":"2009","unstructured":"Lohmann, U. & Hoose, C. Sensitivity studies of different aerosol indirect effects in mixed-phase clouds. Atmos. Chem. Phys. 9, 8917\u20138934 (2009).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR89","doi-asserted-by":"crossref","first-page":"1641","DOI":"10.1175\/1520-0493(1989)117<1641:CACPSW>2.0.CO;2","volume":"117","author":"H Sundqvist","year":"1989","unstructured":"Sundqvist, H., Berge, E. & Kristjansson, J. Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon. Weather Rev. 117, 1641\u20131657 (1989).","journal-title":"Mon. Weather Rev."},{"key":"41695_CR90","doi-asserted-by":"crossref","first-page":"553","DOI":"10.1002\/qj.828","volume":"137","author":"DP Dee","year":"2011","unstructured":"Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteorol. Soc. 137, 553\u2013597 (2011).","journal-title":"Quart. J. Roy. Meteorol. Soc."},{"key":"41695_CR91","doi-asserted-by":"crossref","first-page":"D23204","DOI":"10.1029\/2012JD018588","volume":"117","author":"GJ Kooperman","year":"2012","unstructured":"Kooperman, G. J. et al. Constraining the influence of natural variability to improve estimates of global aerosol indirect effects in a nudged version of the community atmosphere model 5. J. Geophys. Res. 117, D23204 (2012).","journal-title":"J. Geophys. Res."},{"key":"41695_CR92","doi-asserted-by":"crossref","first-page":"8631","DOI":"10.5194\/acp-14-8631-2014","volume":"14","author":"K Zhang","year":"2014","unstructured":"Zhang, K. et al. Technical note: On the use of nudging for aerosol-climate model intercomparison studies. Atmos. Chem. Phys. 14, 8631\u20138645 (2014).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR93","doi-asserted-by":"crossref","first-page":"7017","DOI":"10.5194\/acp-10-7017-2010","volume":"10","author":"J-F Lamarque","year":"2010","unstructured":"Lamarque, J.-F. et al. Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos. Chem. Phys. 10, 7017\u20137039 (2010).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR94","unstructured":"Lin, H. & Leaitch, R. in Development of an in-cloud aerosol activation parameterization for climate modeling (eds Baumgardner, D. & Raga, G.) Proc. WMO Workshop on Measurements of Cloud Properties for Forecasts of Weather and Climate 328\u2013335 (World Meteorological Organization, 1997)."},{"key":"41695_CR95","doi-asserted-by":"crossref","first-page":"8589","DOI":"10.5194\/acp-18-8589-2018","volume":"18","author":"P Petersik","year":"2018","unstructured":"Petersik, P. et al. Subgrid-scale variability of clear-sky relative humidity and forcing by aerosol-radiation interactions in an atmosphere model. Atmos. Chem. Phys. 18, 8589\u20138599 (2018).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR96","doi-asserted-by":"crossref","first-page":"9971","DOI":"10.5194\/acp-13-9971-2013","volume":"13","author":"SJ Ghan","year":"2013","unstructured":"Ghan, S. J. Technical note: estimating aerosol effects on cloud radiative forcing. Atmos. Chem. Phys. 13, 9971\u20139974 (2013).","journal-title":"Atmos. Chem. Phys."},{"key":"41695_CR97","doi-asserted-by":"crossref","unstructured":"Zieger, P. et al. Revising the hygroscopicity of inorganic sea salt particles. Nat. Commun. 8, 15883 (2017).","DOI":"10.1038\/ncomms15883"}],"container-title":["Nature Communications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.nature.com\/articles\/s41467-023-41695-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s41467-023-41695-8","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s41467-023-41695-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,23]],"date-time":"2023-12-23T05:52:34Z","timestamp":1703310754000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.nature.com\/articles\/s41467-023-41695-8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,10,2]]},"references-count":97,"journal-issue":{"issue":"1","published-online":{"date-parts":[[2023,12]]}},"alternative-id":["41695"],"URL":"http:\/\/dx.doi.org\/10.1038\/s41467-023-41695-8","relation":{},"ISSN":["2041-1723"],"issn-type":[{"value":"2041-1723","type":"electronic"}],"subject":["General Physics and Astronomy","General Biochemistry, Genetics and Molecular Biology","General Chemistry","Multidisciplinary"],"published":{"date-parts":[[2023,10,2]]},"assertion":[{"value":"27 July 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"11 September 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"2 October 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"The authors declare no competing interests.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}],"article-number":"6139"}}