uni-leipzig-open-access/json/s41467-023-37415-x

1 line
32 KiB
Plaintext

{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,12,31]],"date-time":"2023-12-31T11:52:04Z","timestamp":1704023524947},"reference-count":76,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2023,4,5]],"date-time":"2023-04-05T00:00:00Z","timestamp":1680652800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2023,4,5]],"date-time":"2023-04-05T00:00:00Z","timestamp":1680652800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/100010661","name":"EC | Horizon 2020 Framework Programme","doi-asserted-by":"publisher","award":["887913","887913","887913","887913","887913"]},{"DOI":"10.13039\/501100006360","name":"Bundesministerium f\u00fcr Wirtschaft und Energie","doi-asserted-by":"publisher","award":["46SKD023X"]},{"DOI":"10.13039\/100007636","name":"Deutsche Bundesstiftung Umwelt","doi-asserted-by":"publisher","award":["20018\/565"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Nat Commun"],"abstract":"<jats:title>Abstract<\/jats:title><jats:p>The recently discovered metagenomic-derived polyester hydrolase PHL7 is able to efficiently degrade amorphous polyethylene terephthalate (PET) in post-consumer plastic waste. We present the cocrystal structure of this hydrolase with its hydrolysis product terephthalic acid and elucidate the influence of 17 single mutations on the PET-hydrolytic activity and thermal stability of PHL7. The substrate-binding mode of terephthalic acid is similar to that of the thermophilic polyester hydrolase LCC and deviates from the mesophilic<jats:italic>Is<\/jats:italic>PETase. The subsite I modifications L93F and Q95Y, derived from LCC, increased the thermal stability, while exchange of H185S, derived from<jats:italic>Is<\/jats:italic>PETase, reduced the stability of PHL7. The subsite II residue H130 is suggested to represent an adaptation for high thermal stability, whereas L210 emerged as the main contributor to the observed high PET-hydrolytic activity. Variant L210T showed significantly higher activity, achieving a degradation rate of 20\u2009\u00b5m\u2009h<jats:sup>\u22121<\/jats:sup>with amorphous PET films.<\/jats:p>","DOI":"10.1038\/s41467-023-37415-x","type":"journal-article","created":{"date-parts":[[2023,4,5]],"date-time":"2023-04-05T16:03:23Z","timestamp":1680710603000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":12,"title":["Structure and function of the metagenomic plastic-degrading polyester hydrolase PHL7 bound to its product"],"prefix":"10.1038","volume":"14","author":[{"given":"P. Konstantin","family":"Richter","sequence":"first","affiliation":[]},{"given":"Paula","family":"Bl\u00e1zquez-S\u00e1nchez","sequence":"additional","affiliation":[]},{"given":"Ziyue","family":"Zhao","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1529-932X","authenticated-orcid":false,"given":"Felipe","family":"Engelberger","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1286-0860","authenticated-orcid":false,"given":"Christian","family":"Wiebeler","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1799-346X","authenticated-orcid":false,"given":"Georg","family":"K\u00fcnze","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5455-8497","authenticated-orcid":false,"given":"Ronny","family":"Frank","sequence":"additional","affiliation":[]},{"given":"Dana","family":"Krinke","sequence":"additional","affiliation":[]},{"given":"Emanuele","family":"Frezzotti","sequence":"additional","affiliation":[]},{"given":"Yuliia","family":"Lihanova","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8332-688X","authenticated-orcid":false,"given":"Patricia","family":"Falkenstein","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7800-7443","authenticated-orcid":false,"given":"J\u00f6rg","family":"Matysik","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5730-6663","authenticated-orcid":false,"given":"Wolfgang","family":"Zimmermann","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2001-0500","authenticated-orcid":false,"given":"Norbert","family":"Str\u00e4ter","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7904-7343","authenticated-orcid":false,"given":"Christian","family":"Sonnendecker","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,4,5]]},"reference":[{"key":"37415_CR1","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1126\/sciadv.1700782","volume":"3","author":"R Geyer","year":"2017","unstructured":"Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, 1\u20135 (2017).","journal-title":"Sci. Adv."},{"key":"37415_CR2","unstructured":"Science for Environment Policy, European Comission. Plastic Waste: Ecological and Human Health Impacts. In-depth report (2011)."},{"key":"37415_CR3","doi-asserted-by":"publisher","first-page":"1302","DOI":"10.1111\/1751-7915.12714","volume":"10","author":"R Wei","year":"2017","unstructured":"Wei, R. & Zimmermann, W. Biocatalysis as a green route for recycling the recalcitrant plastic polyethylene terephthalate. Micro. Biotechnol. 10, 1302\u20131307 (2017).","journal-title":"Micro. Biotechnol."},{"key":"37415_CR4","doi-asserted-by":"crossref","unstructured":"Sonnendecker, C. et al. Low carbon footprint recycling of post-consumer PET plastic with a metagenomic polyester hydrolase. ChemSusChem 15, e202101062 (2021).","DOI":"10.1002\/cssc.202101062"},{"key":"37415_CR5","doi-asserted-by":"publisher","first-page":"216","DOI":"10.1038\/s41586-020-2149-4","volume":"580","author":"V Tournier","year":"2020","unstructured":"Tournier, V. et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216\u2013219 (2020).","journal-title":"Nature"},{"key":"37415_CR6","doi-asserted-by":"publisher","first-page":"662","DOI":"10.1038\/s41586-022-04599-z","volume":"604","author":"H Lu","year":"2022","unstructured":"Lu, H. et al. Machine learning-aided engineering of hydrolases for PET depolymerization. Nature 604, 662\u2013667 (2022).","journal-title":"Nature"},{"key":"37415_CR7","doi-asserted-by":"publisher","first-page":"5128","DOI":"10.1021\/ma9005318","volume":"42","author":"\u00c5M Ronkvist","year":"2009","unstructured":"Ronkvist, \u00c5. M., Xie, W., Lu, W. & Gross, R. A. Cutinase-catalyzed hydrolysis of Poly(ethylene terephthalate). Macromolecules 42, 5128\u20135138 (2009).","journal-title":"Macromolecules"},{"key":"37415_CR8","doi-asserted-by":"publisher","first-page":"1023","DOI":"10.1002\/pro.2489","volume":"23","author":"D Kold","year":"2014","unstructured":"Kold, D. et al. Thermodynamic and structural investigation of the specific SDS binding of Humicola insolens cutinase. Protein Sci. 23, 1023\u20131035 (2014).","journal-title":"Protein Sci."},{"key":"37415_CR9","doi-asserted-by":"publisher","first-page":"4632","DOI":"10.1021\/ma200949p","volume":"44","author":"E Herrero Acero","year":"2011","unstructured":"Herrero Acero, E. et al. Enzymatic surface hydrolysis of PET: effect of structural diversity on kinetic properties of cutinases from thermobifida. Macromolecules 44, 4632\u20134640 (2011).","journal-title":"Macromolecules"},{"key":"37415_CR10","doi-asserted-by":"publisher","first-page":"7815","DOI":"10.1007\/s00253-014-5672-0","volume":"98","author":"C Roth","year":"2014","unstructured":"Roth, C. et al. Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca. Appl. Microbiol. Biotechnol. 98, 7815\u20137823 (2014).","journal-title":"Appl. Microbiol. Biotechnol."},{"key":"37415_CR11","doi-asserted-by":"publisher","first-page":"10053","DOI":"10.1007\/s00253-014-5860-y","volume":"98","author":"F Kawai","year":"2014","unstructured":"Kawai, F. et al. A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190. Appl. Microbiol. Biotechnol. 98, 10053\u201310064 (2014).","journal-title":"Appl. Microbiol. Biotechnol."},{"key":"37415_CR12","doi-asserted-by":"publisher","first-page":"5289","DOI":"10.1021\/acs.biochem.8b00624","volume":"57","author":"N Numoto","year":"2018","unstructured":"Numoto, N. et al. Structural dynamics of the PET-degrading cutinase-like enzyme from Saccharomonospora viridis AHK190 in substrate-bound states elucidates the Ca2+-driven catalytic cycle. Biochemistry 57, 5289\u20135300 (2018).","journal-title":"Biochemistry"},{"key":"37415_CR13","doi-asserted-by":"publisher","first-page":"502","DOI":"10.1002\/prot.26034","volume":"89","author":"M Emori","year":"2021","unstructured":"Emori, M. et al. Structural basis of mutants of PET-degrading enzyme from Saccharomonospora viridis AHK190 with high activity and thermal stability. Proteins 89, 502\u2013511 (2021).","journal-title":"Proteins"},{"key":"37415_CR14","doi-asserted-by":"publisher","first-page":"771","DOI":"10.1007\/s00253-010-2555-x","volume":"87","author":"X Hu","year":"2010","unstructured":"Hu, X., Thumarat, U., Zhang, X., Tang, M. & Kawai, F. Diversity of polyester-degrading bacteria in compost and molecular analysis of a thermoactive esterase from Thermobifida alba AHK119. Appl. Microbiol. Biotechnol. 87, 771\u2013779 (2010).","journal-title":"Appl. Microbiol. Biotechnol."},{"key":"37415_CR15","doi-asserted-by":"publisher","first-page":"419","DOI":"10.1007\/s00253-011-3781-6","volume":"95","author":"U Thumarat","year":"2012","unstructured":"Thumarat, U., Nakamura, R., Kawabata, T., Suzuki, H. & Kawai, F. Biochemical and genetic analysis of a cutinase-type polyesterase from a thermophilic Thermobifida alba AHK119. Appl. Microbiol. Biotechnol. 95, 419\u2013430 (2012).","journal-title":"Appl. Microbiol. Biotechnol."},{"key":"37415_CR16","doi-asserted-by":"publisher","first-page":"771","DOI":"10.1016\/j.polymdegradstab.2012.02.003","volume":"97","author":"K Kitadokoro","year":"2012","unstructured":"Kitadokoro, K. et al. Crystal structure of cutinase Est119 from Thermobifida alba AHK119 that can degrade modified polyethylene terephthalate at 1.76\u2009\u00c5 resolution. Polym. Degrad. Stab. 97, 771\u2013775 (2012).","journal-title":"Polym. Degrad. Stab."},{"key":"37415_CR17","doi-asserted-by":"publisher","first-page":"2087","DOI":"10.1111\/febs.14781","volume":"286","author":"K Kitadokoro","year":"2019","unstructured":"Kitadokoro, K. et al. Structural insights into the unique polylactate-degrading mechanism of Thermobifida alba cutinase. FEBS J. 286, 2087\u20132098 (2019).","journal-title":"FEBS J."},{"key":"37415_CR18","doi-asserted-by":"publisher","first-page":"1556","DOI":"10.1128\/AEM.06725-11","volume":"78","author":"S Sulaiman","year":"2012","unstructured":"Sulaiman, S. et al. Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Appl. Environ. Microbiol. 78, 1556\u20131562 (2012).","journal-title":"Appl. Environ. Microbiol."},{"key":"37415_CR19","doi-asserted-by":"publisher","first-page":"1858","DOI":"10.1021\/bi401561p","volume":"53","author":"S Sulaiman","year":"2014","unstructured":"Sulaiman, S., You, D.-J., Kanaya, E., Koga, Y. & Kanaya, S. Crystal structure and thermodynamic and kinetic stability of metagenome-derived LC-cutinase. Biochemistry 53, 1858\u20131869 (2014).","journal-title":"Biochemistry"},{"key":"37415_CR20","doi-asserted-by":"publisher","first-page":"1196","DOI":"10.1126\/science.aad6359","volume":"351","author":"S Yoshida","year":"2016","unstructured":"Yoshida, S. et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351, 1196\u20131199 (2016).","journal-title":"Science"},{"key":"37415_CR21","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-017-02255-z","volume":"8","author":"X Han","year":"2017","unstructured":"Han, X. et al. Structural insight into catalytic mechanism of PET hydrolase. Nat. Commun. 8, 2106 (2017).","journal-title":"Nat. Commun."},{"key":"37415_CR22","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-018-02881-1","volume":"9","author":"S Joo","year":"2018","unstructured":"Joo, S. et al. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nat. Commun. 9, 382 (2018).","journal-title":"Nat. Commun."},{"key":"37415_CR23","doi-asserted-by":"publisher","first-page":"1302","DOI":"10.1016\/j.bpj.2018.02.005","volume":"114","author":"T Fecker","year":"2018","unstructured":"Fecker, T. et al. Active site flexibility as a hallmark for efficient PET degradation by I. sakaiensis PETase. Biophys. J. 114, 1302\u20131312 (2018).","journal-title":"Biophys. J."},{"key":"37415_CR24","doi-asserted-by":"publisher","first-page":"E4350","DOI":"10.1073\/pnas.1718804115","volume":"115","author":"HP Austin","year":"2018","unstructured":"Austin, H. P. et al. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc. Natl Acad. Sci. USA 115, E4350\u2013E4357 (2018).","journal-title":"Proc. Natl Acad. Sci. USA"},{"key":"37415_CR25","doi-asserted-by":"publisher","first-page":"3519","DOI":"10.1021\/acscatal.9b00568","volume":"9","author":"HF Son","year":"2019","unstructured":"Son, H. F. et al. Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation. ACS Catal. 9, 3519\u20133526 (2019).","journal-title":"ACS Catal."},{"key":"37415_CR26","doi-asserted-by":"publisher","first-page":"1471","DOI":"10.1002\/cbic.201800097","volume":"19","author":"B Liu","year":"2018","unstructured":"Liu, B. et al. Protein crystallography and site-direct mutagenesis analysis of the poly(ethylene terephthalate) Hydrolase PETase from Ideonella sakaiensis. Chembiochem 19, 1471\u20131475 (2018).","journal-title":"Chembiochem"},{"key":"37415_CR27","doi-asserted-by":"publisher","first-page":"888","DOI":"10.1016\/j.eng.2018.09.007","volume":"4","author":"Y Ma","year":"2018","unstructured":"Ma, Y. et al. Enhanced poly(ethylene terephthalate) hydrolase activity by protein engineering. Engineering 4, 888\u2013893 (2018).","journal-title":"Engineering"},{"key":"37415_CR28","doi-asserted-by":"publisher","first-page":"1340","DOI":"10.1021\/acscatal.0c05126","volume":"11","author":"Y Cui","year":"2021","unstructured":"Cui, Y. et al. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy. ACS Catal. 11, 1340\u20131350 (2021).","journal-title":"ACS Catal."},{"key":"37415_CR29","doi-asserted-by":"publisher","first-page":"114","DOI":"10.3389\/fmicb.2020.00114","volume":"11","author":"A Bollinger","year":"2020","unstructured":"Bollinger, A. et al. A novel polyester hydrolase from the marine bacterium Pseudomonas aestusnigri - structural and functional insights. Front Microbiol. 11, 114 (2020).","journal-title":"Front Microbiol."},{"key":"37415_CR30","doi-asserted-by":"publisher","first-page":"e0184221","DOI":"10.1128\/AEM.01842-21","volume":"88","author":"P Bl\u00e1zquez-S\u00e1nchez","year":"2022","unstructured":"Bl\u00e1zquez-S\u00e1nchez, P. et al. Antarctic polyester hydrolases degrade aliphatic and aromatic polyesters at moderate temperatures. Appl. Environ. Microbiol. 88, e0184221 (2022).","journal-title":"Appl. Environ. Microbiol."},{"key":"37415_CR31","doi-asserted-by":"publisher","first-page":"8894","DOI":"10.1021\/acssuschemeng.0c01638","volume":"8","author":"F Kawai","year":"2020","unstructured":"Kawai, F., Kawabata, T. & Oda, M. Current state and perspectives related to the polyethylene terephthalate hydrolases available for biorecycling. ACS Sustain. Chem. Eng. 8, 8894\u20138908 (2020).","journal-title":"ACS Sustain. Chem. Eng."},{"key":"37415_CR32","doi-asserted-by":"publisher","first-page":"206","DOI":"10.3390\/catal11020206","volume":"11","author":"F Kawai","year":"2021","unstructured":"Kawai, F. The current state of research on PET hydrolyzing enzymes available for biorecycling. Catalysts 11, 206 (2021).","journal-title":"Catalysts"},{"key":"37415_CR33","first-page":"97","volume":"125","author":"W Zimmermann","year":"2011","unstructured":"Zimmermann, W. & Billig, S. Enzymes for the biofunctionalization of poly(ethylene terephthalate). Adv. Biochem. Eng. Biotechnol. 125, 97\u2013120 (2011).","journal-title":"Adv. Biochem. Eng. Biotechnol."},{"key":"37415_CR34","doi-asserted-by":"publisher","first-page":"4253","DOI":"10.1007\/s00253-019-09717-y","volume":"103","author":"F Kawai","year":"2019","unstructured":"Kawai, F., Kawabata, T. & Oda, M. Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Appl. Microbiol. Biotechnol. 103, 4253\u20134268 (2019).","journal-title":"Appl. Microbiol. Biotechnol."},{"key":"37415_CR35","doi-asserted-by":"publisher","first-page":"4297","DOI":"10.1007\/s00253-014-6272-8","volume":"99","author":"T Miyakawa","year":"2015","unstructured":"Miyakawa, T. et al. Structural basis for the Ca(2+)-enhanced thermostability and activity of PET-degrading cutinase-like enzyme from Saccharomonospora viridis AHK190. Appl. Microbiol. Biotechnol. 99, 4297\u20134307 (2015).","journal-title":"Appl. Microbiol. Biotechnol."},{"key":"37415_CR36","doi-asserted-by":"publisher","first-page":"2481","DOI":"10.1002\/bit.26372","volume":"114","author":"D Ribitsch","year":"2017","unstructured":"Ribitsch, D. et al. Small cause, large effect: structural characterization of cutinases from Thermobifida cellulosilytica. Biotechnol. Bioeng. 114, 2481\u20132488 (2017).","journal-title":"Biotechnol. Bioeng."},{"key":"37415_CR37","doi-asserted-by":"publisher","first-page":"1340","DOI":"10.1002\/prot.26155","volume":"89","author":"CHS da Costa","year":"2021","unstructured":"da Costa, C. H. S. et al. Assessment of the PETase conformational changes induced by poly(ethylene terephthalate) binding. Proteins 89, 1340\u20131352 (2021).","journal-title":"Proteins"},{"key":"37415_CR38","doi-asserted-by":"publisher","first-page":"3033","DOI":"10.1021\/acscatal.1c05800","volume":"12","author":"W Zeng","year":"2022","unstructured":"Zeng, W. et al. Substrate-binding mode of a thermophilic PET hydrolase and engineering the enzyme to enhance the hydrolytic efficacy. ACS Catal. 12, 3033\u20133040 (2022).","journal-title":"ACS Catal."},{"key":"37415_CR39","doi-asserted-by":"publisher","first-page":"592","DOI":"10.1002\/biot.201400620","volume":"10","author":"J Then","year":"2015","unstructured":"Then, J. et al. Ca2+ and Mg2+ binding site engineering increases the degradation of polyethylene terephthalate films by polyester hydrolases from Thermobifida fusca. Biotechnol. J. 10, 592\u2013598 (2015).","journal-title":"Biotechnol. J."},{"key":"37415_CR40","doi-asserted-by":"publisher","first-page":"491","DOI":"10.1016\/j.jbiosc.2015.03.006","volume":"120","author":"U Thumarat","year":"2015","unstructured":"Thumarat, U. et al. Comparison of genetic structures and biochemical properties of tandem cutinase-type polyesterases from Thermobifida alba AHK119. J. Biosci. Bioeng. 120, 491\u2013497 (2015).","journal-title":"J. Biosci. Bioeng."},{"key":"37415_CR41","doi-asserted-by":"publisher","first-page":"2882","DOI":"10.1016\/j.bpj.2022.07.002","volume":"121","author":"C Charlier","year":"2022","unstructured":"Charlier, C. et al. An NMR look at an engineered PET depolymerase. Biophys. J. 121, 2882\u20132894 (2022).","journal-title":"Biophys. J."},{"key":"37415_CR42","doi-asserted-by":"publisher","first-page":"550","DOI":"10.1016\/S0968-0004(01)01918-1","volume":"26","author":"A Karshikoff","year":"2001","unstructured":"Karshikoff, A. & Ladenstein, R. Ion pairs and the thermotolerance of proteins from hyperthermophiles: a \u2018traffic rule\u2019 for hot roads. Trends Biochem. Sci. 26, 550\u2013556 (2001).","journal-title":"Trends Biochem. Sci."},{"key":"37415_CR43","doi-asserted-by":"publisher","first-page":"128","DOI":"10.1002\/prot.20190","volume":"57","author":"BN Dominy","year":"2004","unstructured":"Dominy, B. N., Minoux, H. & Brooks, C. L. An electrostatic basis for the stability of thermophilic proteins. Proteins 57, 128\u2013141 (2004).","journal-title":"Proteins"},{"key":"37415_CR44","doi-asserted-by":"publisher","first-page":"425","DOI":"10.1002\/2211-5463.12053","volume":"6","author":"J Then","year":"2016","unstructured":"Then, J. et al. A disulfide bridge in the calcium binding site of a polyester hydrolase increases its thermal stability and activity against polyethylene terephthalate. FEBS Open Bio 6, 425\u2013432 (2016).","journal-title":"FEBS Open Bio"},{"key":"37415_CR45","doi-asserted-by":"publisher","first-page":"425","DOI":"10.1038\/s41929-021-00616-y","volume":"4","author":"C-C Chen","year":"2021","unstructured":"Chen, C.-C. et al. General features to enhance enzymatic activity of poly(ethylene terephthalate) hydrolysis. Nat. Catal. 4, 425\u2013430 (2021).","journal-title":"Nat. Catal."},{"key":"37415_CR46","doi-asserted-by":"publisher","first-page":"28","DOI":"10.1016\/j.jbiosc.2017.02.007","volume":"124","author":"T Kawabata","year":"2017","unstructured":"Kawabata, T., Oda, M. & Kawai, F. Mutational analysis of cutinase-like enzyme, Cut190, based on the 3D docking structure with model compounds of polyethylene terephthalate. J. Biosci. Bioeng. 124, 28\u201335 (2017).","journal-title":"J. Biosci. Bioeng."},{"key":"37415_CR47","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-019-13492-9","volume":"10","author":"R Wei","year":"2019","unstructured":"Wei, R. et al. Conformational fitting of a flexible oligomeric substrate does not explain the enzymatic PET degradation. Nat. Commun. 10, 5581 (2019).","journal-title":"Nat. Commun."},{"key":"37415_CR48","doi-asserted-by":"publisher","first-page":"3397","DOI":"10.1021\/acscatal.1c05548","volume":"12","author":"B Guo","year":"2022","unstructured":"Guo, B. et al. Conformational selection in biocatalytic plastic degradation by PETase. ACS Catal. 12, 3397\u20133409 (2022).","journal-title":"ACS Catal."},{"key":"37415_CR49","doi-asserted-by":"publisher","DOI":"10.1038\/s41598-019-52379-z","volume":"9","author":"M Furukawa","year":"2019","unstructured":"Furukawa, M., Kawakami, N., Tomizawa, A. & Miyamoto, K. Efficient degradation of Poly(ethylene terephthalate) with Thermobifida fusca cutinase exhibiting improved catalytic activity generated using mutagenesis and additive-based approaches. Sci. Rep. 9, 16038 (2019).","journal-title":"Sci. Rep."},{"key":"37415_CR50","doi-asserted-by":"publisher","first-page":"714","DOI":"10.1126\/science.280.5364.714","volume":"280","author":"K Schmidt-Rohr","year":"1998","unstructured":"Schmidt-Rohr, K., Hu, W. & Zumbulyadis, N. Elucidation of the chain conformation in a glassy polyester, PET, by two-dimensional NMR. Science 280, 714\u2013717 (1998).","journal-title":"Science"},{"key":"37415_CR51","doi-asserted-by":"publisher","first-page":"1627","DOI":"10.1002\/cbic.202000793","volume":"22","author":"JA B\u00e5\u00e5th","year":"2021","unstructured":"B\u00e5\u00e5th, J. A., Borch, K., Jensen, K., Brask, J. & Westh, P. Comparative biochemistry of four polyester (PET) hydrolases. Chembiochem 22, 1627\u20131637 (2021).","journal-title":"Chembiochem"},{"key":"37415_CR52","doi-asserted-by":"publisher","first-page":"4904","DOI":"10.1021\/acscatal.7b00838","volume":"7","author":"J Kari","year":"2017","unstructured":"Kari, J., Andersen, M., Borch, K. & Westh, P. An inverse Michaelis\u2013Menten approach for interfacial enzyme kinetics. ACS Catal. 7, 4904\u20134914 (2017).","journal-title":"ACS Catal."},{"key":"37415_CR53","doi-asserted-by":"crossref","first-page":"455","DOI":"10.1002\/jcc.21334","volume":"31","author":"O Trott","year":"2010","unstructured":"Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput Chem. 31, 455\u2013461 (2010).","journal-title":"J. Comput Chem."},{"key":"37415_CR54","unstructured":"Case, D. A. et al. Amber 2022 (University of California, San Francisco, 2022)."},{"key":"37415_CR55","doi-asserted-by":"publisher","first-page":"25","DOI":"10.1021\/acscatal.1c03963","volume":"12","author":"R Frank","year":"2022","unstructured":"Frank, R., Krinke, D., Sonnendecker, C., Zimmermann, W. & Jahnke, H.-G. Real-time noninvasive analysis of biocatalytic PET degradation. ACS Catal. 12, 25\u201335 (2022).","journal-title":"ACS Catal."},{"key":"37415_CR56","unstructured":"Rigaku Oxford Diffraction. CrysAlis Pro V. 171.41.112a 64-bit. Available at https:\/\/www.rigaku.com\/de\/products\/smc\/crysalis (2021)."},{"key":"37415_CR57","doi-asserted-by":"publisher","first-page":"1204","DOI":"10.1107\/S0907444913000061","volume":"69","author":"PR Evans","year":"2013","unstructured":"Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D. Biol. Crystallogr. 69, 1204\u20131214 (2013).","journal-title":"Acta Crystallogr. D. Biol. Crystallogr."},{"key":"37415_CR58","doi-asserted-by":"publisher","first-page":"352","DOI":"10.1107\/S0907444912001308","volume":"68","author":"PV Afonine","year":"2012","unstructured":"Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix. refine. Acta Crystallogr D. Biol. Crystallogr 68, 352\u2013367 (2012).","journal-title":"Acta Crystallogr D. Biol. Crystallogr"},{"key":"37415_CR59","doi-asserted-by":"publisher","first-page":"2126","DOI":"10.1107\/S0907444904019158","volume":"60","author":"P Emsley","year":"2004","unstructured":"Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr D. Biol. Crystallogr 60, 2126\u20132132 (2004).","journal-title":"Acta Crystallogr D. Biol. Crystallogr"},{"key":"37415_CR60","unstructured":"Bricogne, G. et al. Grade webserver by Global Phasing. Available at http:\/\/grade.globalphasing.org\/ (2019)."},{"key":"37415_CR61","doi-asserted-by":"publisher","first-page":"1605","DOI":"10.1002\/jcc.20084","volume":"25","author":"EF Pettersen","year":"2004","unstructured":"Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput Chem. 25, 1605\u20131612 (2004).","journal-title":"J. Comput Chem."},{"key":"37415_CR62","doi-asserted-by":"publisher","first-page":"545","DOI":"10.1016\/B978-0-12-381270-4.00019-6","volume":"487","author":"A Leaver-Fay","year":"2011","unstructured":"Leaver-Fay, A. et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 487, 545\u2013574 (2011).","journal-title":"Methods Enzymol."},{"key":"37415_CR63","doi-asserted-by":"publisher","first-page":"e20161","DOI":"10.1371\/journal.pone.0020161","volume":"6","author":"SJ Fleishman","year":"2011","unstructured":"Fleishman, S. J. et al. RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite. PLoS ONE 6, e20161 (2011).","journal-title":"PLoS ONE"},{"key":"37415_CR64","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/1758-2946-3-1","volume":"3","author":"NM O\u2019Boyle","year":"2011","unstructured":"O\u2019Boyle, N. M. et al. Open Babel: an open chemical toolbox. J. Cheminform 3, 1\u201314 (2011).","journal-title":"J. Cheminform"},{"key":"37415_CR65","unstructured":"R core team. R: A Language and Environment for Statistical Computing. Available at https:\/\/www.R-project.org (2021)."},{"key":"37415_CR66","unstructured":"Kassambara, A. & Mundt, F. factoextra: Extract and visualize the results of multivariate data analyses. R package version 1.0.7. Retrieved from https:\/\/CRAN.R-project.org\/package=factoextra (2020)."},{"key":"37415_CR67","doi-asserted-by":"crossref","unstructured":"Wickham, H. ggplot2. Elegant Graphics for Data Analysis (Springer, 2016).","DOI":"10.1007\/978-3-319-24277-4"},{"key":"37415_CR68","doi-asserted-by":"publisher","first-page":"56","DOI":"10.1038\/nsmb.2705","volume":"21","author":"NS Alexander","year":"2014","unstructured":"Alexander, N. S. et al. Energetic analysis of the rhodopsin-G-protein complex links the \u03b15 helix to GDP release. Nat. Struct. Mol. Biol. 21, 56\u201363 (2014).","journal-title":"Nat. Struct. Mol. Biol."},{"key":"37415_CR69","unstructured":"Frisch, M. J. et al. Gaussian 16, Revision B.01 (2016)."},{"key":"37415_CR70","doi-asserted-by":"publisher","first-page":"3098","DOI":"10.1103\/PhysRevA.38.3098","volume":"38","author":"AD Becke","year":"1988","unstructured":"Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098\u20133100 (1988).","journal-title":"Phys. Rev. A"},{"key":"37415_CR71","doi-asserted-by":"publisher","first-page":"5648","DOI":"10.1063\/1.464913","volume":"98","author":"AD Becke","year":"1993","unstructured":"Becke, A. D. Density\u2010functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648\u20135652 (1993).","journal-title":"J. Chem. Phys."},{"key":"37415_CR72","doi-asserted-by":"publisher","first-page":"785","DOI":"10.1103\/PhysRevB.37.785","volume":"37","author":"C Lee","year":"1988","unstructured":"Lee, C., Yang, W. & Parr Robert, G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785\u2013789 (1988).","journal-title":"Phys. Rev. B"},{"key":"37415_CR73","doi-asserted-by":"publisher","first-page":"154104","DOI":"10.1063\/1.3382344","volume":"132","author":"S Grimme","year":"2010","unstructured":"Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).","journal-title":"J. Chem. Phys."},{"key":"37415_CR74","doi-asserted-by":"publisher","first-page":"1456","DOI":"10.1002\/jcc.21759","volume":"32","author":"S Grimme","year":"2011","unstructured":"Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput Chem. 32, 1456\u20131465 (2011).","journal-title":"J. Comput Chem."},{"key":"37415_CR75","doi-asserted-by":"publisher","first-page":"3297","DOI":"10.1039\/b508541a","volume":"7","author":"F Weigend","year":"2005","unstructured":"Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297\u20133305 (2005).","journal-title":"Phys. Chem. Chem. Phys."},{"key":"37415_CR76","doi-asserted-by":"publisher","first-page":"207","DOI":"10.1016\/j.jbiotec.2009.07.008","volume":"143","author":"A Eberl","year":"2009","unstructured":"Eberl, A. et al. Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules. J. Biotechnol. 143, 207\u2013212 (2009).","journal-title":"J. Biotechnol."}],"container-title":["Nature Communications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.nature.com\/articles\/s41467-023-37415-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s41467-023-37415-x","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s41467-023-37415-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,10]],"date-time":"2023-12-10T07:12:04Z","timestamp":1702192324000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.nature.com\/articles\/s41467-023-37415-x"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4,5]]},"references-count":76,"journal-issue":{"issue":"1","published-online":{"date-parts":[[2023,12]]}},"alternative-id":["37415"],"URL":"http:\/\/dx.doi.org\/10.1038\/s41467-023-37415-x","relation":{},"ISSN":["2041-1723"],"issn-type":[{"value":"2041-1723","type":"electronic"}],"subject":["General Physics and Astronomy","General Biochemistry, Genetics and Molecular Biology","General Chemistry","Multidisciplinary"],"published":{"date-parts":[[2023,4,5]]},"assertion":[{"value":"22 June 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"16 March 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"5 April 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"The authors declare no competing interests.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}],"article-number":"1905"}}