uni-leipzig-open-access/json/s41467-023-36888-0

1 line
34 KiB
Plaintext

{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,1,11]],"date-time":"2024-01-11T06:01:24Z","timestamp":1704952884173},"reference-count":87,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2023,3,13]],"date-time":"2023-03-13T00:00:00Z","timestamp":1678665600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2023,3,13]],"date-time":"2023-03-13T00:00:00Z","timestamp":1678665600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/100005156","name":"Alexander von Humboldt-Stiftung","doi-asserted-by":"publisher"},{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","award":["FZT 118"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Nat Commun"],"abstract":"<jats:title>Abstract<\/jats:title><jats:p>Decades of theory and empirical studies have demonstrated links between biodiversity and ecosystem functioning, yet the putative processes that underlie these patterns remain elusive. This is especially true for forest ecosystems, where the functional traits of plant species are challenging to quantify. We analyzed 74,563 forest inventory plots that span 35 ecoregions in the contiguous USA and found that in ~77% of the ecoregions mixed mycorrhizal plots were more productive than plots where either arbuscular or ectomycorrhizal fungal-associated tree species were dominant. Moreover, the positive effects of mixing mycorrhizal strategies on forest productivity were more pronounced at low than high tree species richness. We conclude that at low richness different mycorrhizal strategies may allow tree species to partition nutrient uptake and thus can increase community productivity, whereas at high richness other dimensions of functional diversity can enhance resource partitioning and community productivity. Our findings highlight the importance of mixed mycorrhizal strategies, in addition to that of taxonomic diversity in general, for maintaining ecosystem functioning in forests.<\/jats:p>","DOI":"10.1038\/s41467-023-36888-0","type":"journal-article","created":{"date-parts":[[2023,3,26]],"date-time":"2023-03-26T19:42:57Z","timestamp":1679859777000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":6,"title":["Higher productivity in forests with mixed mycorrhizal strategies"],"prefix":"10.1038","volume":"14","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5408-847X","authenticated-orcid":false,"given":"Shan","family":"Luo","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1345-4138","authenticated-orcid":false,"given":"Richard P.","family":"Phillips","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1759-2319","authenticated-orcid":false,"given":"Insu","family":"Jo","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2772-0166","authenticated-orcid":false,"given":"Songlin","family":"Fei","sequence":"additional","affiliation":[]},{"given":"Jingjing","family":"Liang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8430-3214","authenticated-orcid":false,"given":"Bernhard","family":"Schmid","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0371-6720","authenticated-orcid":false,"given":"Nico","family":"Eisenhauer","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,3,13]]},"reference":[{"key":"36888_CR1","doi-asserted-by":"publisher","first-page":"aaf8957","DOI":"10.1126\/science.aaf8957","volume":"354","author":"J Liang","year":"2016","unstructured":"Liang, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science\u00a0354, aaf8957 (2016).","journal-title":"Science"},{"key":"36888_CR2","doi-asserted-by":"publisher","first-page":"80","DOI":"10.1126\/science.aat6405","volume":"362","author":"Y Huang","year":"2018","unstructured":"Huang, Y. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science\u00a0362, 80\u201383 (2018).","journal-title":"Science"},{"key":"36888_CR3","doi-asserted-by":"publisher","first-page":"799","DOI":"10.1111\/oik.07273","volume":"129","author":"S Luo","year":"2020","unstructured":"Luo, S. et al. Community\u2010wide trait means and variations affect biomass in a biodiversity experiment with tree seedlings. Oikos 129, 799\u2013810 (2020).","journal-title":"Oikos"},{"key":"36888_CR4","doi-asserted-by":"publisher","first-page":"167","DOI":"10.1071\/BT12225","volume":"61","author":"N P\u00e9rez-Harguindeguy","year":"2013","unstructured":"P\u00e9rez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167\u2013234 (2013).","journal-title":"Aust. J. Bot."},{"key":"36888_CR5","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1126\/sciadv.aba3756","volume":"6","author":"J Bergmann","year":"2020","unstructured":"Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, 1\u201310 (2020).","journal-title":"Sci. Adv."},{"key":"36888_CR6","doi-asserted-by":"publisher","first-page":"1123","DOI":"10.1111\/nph.17072","volume":"232","author":"GT Freschet","year":"2021","unstructured":"Freschet, G. T. et al. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. N. Phytol. 232, 1123\u20131158 (2021).","journal-title":"N. Phytol."},{"key":"36888_CR7","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41467-021-23236-3","volume":"12","author":"Y Zhong","year":"2021","unstructured":"Zhong, Y. et al. Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide. Nat. Commun. 12, 1\u201312 (2021).","journal-title":"Nat. Commun."},{"key":"36888_CR8","doi-asserted-by":"publisher","first-page":"370","DOI":"10.1038\/s41559-021-01634-6","volume":"6","author":"A Carteron","year":"2022","unstructured":"Carteron, A., Vellend, M. & Lalibert\u00e9, E. Mycorrhizal dominance reduces local tree species diversity across US forests. Nat. Ecol. Evol. 6, 370\u2013374 (2022).","journal-title":"Nat. Ecol. Evol."},{"key":"36888_CR9","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1111\/nph.12221","volume":"199","author":"RP Phillips","year":"2013","unstructured":"Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal\u2010associated nutrient economy: a new framework for predicting carbon\u2013nutrient couplings in temperate forests. N. Phytol. 199, 41\u201351 (2013).","journal-title":"N. Phytol."},{"key":"36888_CR10","doi-asserted-by":"publisher","first-page":"543","DOI":"10.1038\/nature12901","volume":"505","author":"C Averill","year":"2014","unstructured":"Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543\u2013545 (2014).","journal-title":"Nature"},{"key":"36888_CR11","doi-asserted-by":"publisher","first-page":"3317","DOI":"10.1111\/gcb.14132","volume":"24","author":"ME Craig","year":"2018","unstructured":"Craig, M. E. et al. Tree mycorrhizal type predicts within\u2010site variability in the storage and distribution of soil organic matter. Glob. Chang. Biol. 24, 3317\u20133330 (2018).","journal-title":"Glob. Chang. Biol."},{"key":"36888_CR12","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1038\/23932","volume":"396","author":"MGA van der Heijden","year":"1998","unstructured":"van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69\u201372 (1998).","journal-title":"Nature"},{"key":"36888_CR13","doi-asserted-by":"publisher","first-page":"137","DOI":"10.1046\/j.1461-0248.2000.00131.x","volume":"3","author":"JN Klironomos","year":"2000","unstructured":"Klironomos, J. N., McCune, J., Hart, M. & Neville, J. The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecol. Lett. 3, 137\u2013141 (2000).","journal-title":"Ecol. Lett."},{"key":"36888_CR14","doi-asserted-by":"publisher","first-page":"1303","DOI":"10.1890\/10-1915.1","volume":"92","author":"C Wagg","year":"2011","unstructured":"Wagg, C., Jansa, J., Stadler, M., Schmid, B. & Van Der Heijden, M. G. A. Mycorrhizal fungal identity and diversity relaxes plant-plant competition. Ecology 92, 1303\u20131313 (2011).","journal-title":"Ecology"},{"key":"36888_CR15","doi-asserted-by":"publisher","first-page":"1879","DOI":"10.1111\/1365-2435.13109","volume":"32","author":"S Luo","year":"2018","unstructured":"Luo, S., Schmid, B., De Deyn, G. B. & Yu, S. Soil microbes promote complementarity effects among co\u2010existing trees through soil nitrogen partitioning. Funct. Ecol. 32, 1879\u20131889 (2018).","journal-title":"Funct. Ecol."},{"key":"36888_CR16","doi-asserted-by":"publisher","first-page":"e02226","DOI":"10.1002\/ecs2.2226","volume":"9","author":"O Ferlian","year":"2018","unstructured":"Ferlian, O. et al. Mycorrhiza in tree diversity\u2013ecosystem function relationships: conceptual framework and experimental implementation. Ecosphere 9, e02226 (2018).","journal-title":"Ecosphere"},{"key":"36888_CR17","doi-asserted-by":"publisher","first-page":"1857","DOI":"10.1111\/brv.12538","volume":"94","author":"L Tedersoo","year":"2019","unstructured":"Tedersoo, L. & Bahram, M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. 94, 1857\u20131880 (2019).","journal-title":"Biol. Rev."},{"key":"36888_CR18","doi-asserted-by":"publisher","first-page":"1477","DOI":"10.1111\/j.1462-2920.2012.02736.x","volume":"14","author":"F Rineau","year":"2012","unstructured":"Rineau, F. et al. The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry. Environ. Microbiol. 14, 1477\u20131487 (2012).","journal-title":"Environ. Microbiol."},{"key":"36888_CR19","doi-asserted-by":"publisher","first-page":"1443","DOI":"10.1111\/nph.13201","volume":"205","author":"BD Lindahl","year":"2015","unstructured":"Lindahl, B. D. & Tunlid, A. Ectomycorrhizal fungi - potential organic matter decomposers, yet not saprotrophs. N. Phytol. 205, 1443\u20131447 (2015).","journal-title":"N. Phytol."},{"key":"36888_CR20","doi-asserted-by":"publisher","first-page":"725","DOI":"10.1046\/j.0028-646x.2001.00200.x","volume":"151","author":"A Hodge","year":"2001","unstructured":"Hodge, A. Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil. N. Phytol. 151, 725\u2013734 (2001).","journal-title":"N. Phytol."},{"key":"36888_CR21","doi-asserted-by":"publisher","first-page":"475","DOI":"10.1046\/j.1469-8137.2003.00704.x","volume":"157","author":"DJ Read","year":"2003","unstructured":"Read, D. J. & Perez-Moreno, J. Mycorrhizas and nutrient cycling in ecosystems - A journey towards relevance? N. Phytol. 157, 475\u2013492 (2003).","journal-title":"N. Phytol."},{"key":"36888_CR22","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1371\/journal.pone.0165987","volume":"11","author":"H Toju","year":"2016","unstructured":"Toju, H., Kishida, O., Katayama, N. & Takagi, K. Networks depicting the fine-scale co-occurrences of fungi in soil horizons. PLoS ONE 11, 1\u201318 (2016).","journal-title":"PLoS ONE"},{"key":"36888_CR23","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1890\/12-1693.1","volume":"84","author":"DL Taylor","year":"2014","unstructured":"Taylor, D. L. et al. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol. Monogr. 84, 3\u201320 (2014).","journal-title":"Ecol. Monogr."},{"key":"36888_CR24","doi-asserted-by":"publisher","first-page":"8741","DOI":"10.1073\/pnas.1601006113","volume":"113","author":"W Chen","year":"2016","unstructured":"Chen, W. et al. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proc. Natl Acad. Sci. USA 113, 8741\u20138746 (2016).","journal-title":"Proc. Natl Acad. Sci. USA"},{"key":"36888_CR25","doi-asserted-by":"publisher","first-page":"713","DOI":"10.1111\/ele.12939","volume":"21","author":"X Liu","year":"2018","unstructured":"Liu, X. et al. Partitioning of soil phosphorus among arbuscular and ectomycorrhizal trees in tropical and subtropical forests. Ecol. Lett. 21, 713\u2013723 (2018).","journal-title":"Ecol. Lett."},{"key":"36888_CR26","doi-asserted-by":"publisher","first-page":"23163","DOI":"10.1073\/pnas.1906655116","volume":"116","author":"C Averill","year":"2019","unstructured":"Averill, C., Bhatnagar, J. M., Dietze, M. C., Pearse, W. D. & Kivlin, S. N. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc. Natl Acad. Sci. USA 116, 23163\u201323168 (2019).","journal-title":"Proc. Natl Acad. Sci. USA"},{"key":"36888_CR27","doi-asserted-by":"publisher","unstructured":"Dietrich, P. et al. Tree diversity effects on productivity depend on mycorrhizae and life strategies in a temperate forest experiment. Ecology 104, e3896 https:\/\/doi.org\/10.1002\/ecy.3896 (2022).","DOI":"10.1002\/ecy.3896"},{"key":"36888_CR28","doi-asserted-by":"publisher","first-page":"4544","DOI":"10.1111\/gcb.14368","volume":"24","author":"C Averill","year":"2018","unstructured":"Averill, C., Dietze, M. C. & Bhatnagar, J. M. Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks. Glob. Chang. Biol. 24, 4544\u20134553 (2018).","journal-title":"Glob. Chang. Biol."},{"key":"36888_CR29","doi-asserted-by":"crossref","unstructured":"Jo, I., Fei, S., Oswalt, C. M., Domke, G. M. & Phillips, R. P. Shifts in dominant tree mycorrhizal associations in response to anthropogenic impacts. Sci. Adv. 5, eaav6358, (2019).","DOI":"10.1126\/sciadv.aav6358"},{"key":"36888_CR30","doi-asserted-by":"publisher","first-page":"5436","DOI":"10.1038\/s41467-018-07880-w","volume":"9","author":"S Fei","year":"2018","unstructured":"Fei, S. et al. Impacts of climate on the biodiversity-productivity relationship in natural forests. Nat. Commun. 9, 5436 (2018).","journal-title":"Nat. Commun."},{"key":"36888_CR31","doi-asserted-by":"publisher","first-page":"1594","DOI":"10.1038\/s41559-021-01564-3","volume":"5","author":"FJ Bongers","year":"2021","unstructured":"Bongers, F. J. et al. Functional diversity effects on productivity increase with age in a forest biodiversity experiment. Nat. Ecol. Evol. 5, 1594\u20131603 (2021).","journal-title":"Nat. Ecol. Evol."},{"key":"36888_CR32","doi-asserted-by":"publisher","first-page":"27","DOI":"10.1126\/science.185.4145.27","volume":"185","author":"TW Schoener","year":"1974","unstructured":"Schoener, T. W. Resource partitioning in ecological communities. Science\u00a0185, 27\u201339 (1974).","journal-title":"Science"},{"key":"36888_CR33","doi-asserted-by":"publisher","first-page":"1857","DOI":"10.1073\/pnas.94.5.1857","volume":"94","author":"D Tilman","year":"1997","unstructured":"Tilman, D., Lehman, C. L. & Thomson, K. T. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl Acad. Sci. USA 94, 1857\u20131861 (1997).","journal-title":"Proc. Natl Acad. Sci. USA"},{"key":"36888_CR34","doi-asserted-by":"publisher","first-page":"272","DOI":"10.1111\/j.1461-0248.2004.00720.x","volume":"8","author":"DW Schwilk","year":"2005","unstructured":"Schwilk, D. W. & Ackerly, D. D. Limiting similarity and functional diversity along environmental gradients. Ecol. Lett. 8, 272\u2013281 (2005).","journal-title":"Ecol. Lett."},{"key":"36888_CR35","doi-asserted-by":"publisher","first-page":"1001","DOI":"10.1111\/j.1461-0248.2011.01666.x","volume":"14","author":"C Wagg","year":"2011","unstructured":"Wagg, C., Jansa, J., Schmid, B. & van der Heijden, M. G. A. Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecol. Lett. 14, 1001\u20131009 (2011).","journal-title":"Ecol. Lett."},{"key":"36888_CR36","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1007\/s005720100108","volume":"11","author":"R Agerer","year":"2001","unstructured":"Agerer, R. Exploration types of ectomycorrhizae: a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11, 107\u2013114 (2001).","journal-title":"Mycorrhiza"},{"key":"36888_CR37","doi-asserted-by":"publisher","first-page":"2815","DOI":"10.1002\/ecy.1514","volume":"97","author":"L Cheng","year":"2016","unstructured":"Cheng, L. et al. Mycorrhizal fungi and roots are complementary in foraging within nutrient patches. Ecology 97, 2815\u20132823 (2016).","journal-title":"Ecology"},{"key":"36888_CR38","doi-asserted-by":"publisher","first-page":"1886","DOI":"10.1111\/1365-2435.13856","volume":"35","author":"J Wambsganss","year":"2021","unstructured":"Wambsganss, J. et al. Tree species mixing causes a shift in fine-root soil exploitation strategies across European forests. Funct. Ecol. 35, 1886\u20131902 (2021).","journal-title":"Funct. Ecol."},{"key":"36888_CR39","doi-asserted-by":"publisher","first-page":"254","DOI":"10.1111\/1365-2745.12873","volume":"106","author":"M Gerz","year":"2018","unstructured":"Gerz, M., Guillermo Bueno, C., Ozinga, W. A., Zobel, M. & Moora, M. Niche differentiation and expansion of plant species are associated with mycorrhizal symbiosis. J. Ecol. 106, 254\u2013264 (2018).","journal-title":"J. Ecol."},{"key":"36888_CR40","doi-asserted-by":"publisher","first-page":"1104","DOI":"10.1002\/ecy.1748","volume":"98","author":"PA Niklaus","year":"2017","unstructured":"Niklaus, P. A., Baruffol, M., He, J. S., Ma, K. & Schmid, B. Can niche plasticity promote biodiversity\u2013productivity relationships through increased complementarity? Ecology 98, 1104\u20131116 (2017).","journal-title":"Ecology"},{"key":"36888_CR41","doi-asserted-by":"publisher","first-page":"167","DOI":"10.1016\/j.tree.2018.10.013","volume":"34","author":"KE Barry","year":"2019","unstructured":"Barry, K. E. et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167\u2013180 (2019).","journal-title":"Trends Ecol. Evol."},{"key":"36888_CR42","doi-asserted-by":"publisher","first-page":"502","DOI":"10.1111\/1365-2745.12921","volume":"106","author":"LM Jacobs","year":"2018","unstructured":"Jacobs, L. M., Sulman, B. N., Brzostek, E. R., Feighery, J. J. & Phillips, R. P. Interactions among decaying leaf litter, root litter and soil organic matter vary with mycorrhizal type. J. Ecol. 106, 502\u2013513 (2018).","journal-title":"J. Ecol."},{"key":"36888_CR43","doi-asserted-by":"publisher","first-page":"1454","DOI":"10.1111\/1365-2745.12467","volume":"103","author":"MG Midgley","year":"2015","unstructured":"Midgley, M. G., Brzostek, E. & Phillips, R. P. Decay rates of leaf litters from arbuscular mycorrhizal trees are more sensitive to soil effects than litters from ectomycorrhizal trees. J. Ecol. 103, 1454\u20131463 (2015).","journal-title":"J. Ecol."},{"key":"36888_CR44","doi-asserted-by":"publisher","first-page":"107645","DOI":"10.1016\/j.soilbio.2019.107645","volume":"140","author":"A Kumar","year":"2020","unstructured":"Kumar, A., Phillips, R. P., Scheibe, A., Klink, S. & Pausch, J. Organic matter priming by invasive plants depends on dominant mycorrhizal association. Soil Biol. Biochem. 140, 107645 (2020).","journal-title":"Soil Biol. Biochem."},{"key":"36888_CR45","doi-asserted-by":"publisher","first-page":"eaba1223","DOI":"10.1126\/science.aba1223","volume":"367","author":"L Tedersoo","year":"2020","unstructured":"Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science\u00a0367, eaba1223 (2020).","journal-title":"Science"},{"key":"36888_CR46","unstructured":"Kitajima, K. & Poorter, L. Functional basis for resource niche partitioning by tropical trees. Trop. For. community Ecol. 1936, 160\u2013181 (2008)."},{"key":"36888_CR47","doi-asserted-by":"publisher","first-page":"510","DOI":"10.1111\/j.1469-185X.1965.tb00815.x","volume":"40","author":"RH MacArthur","year":"1965","unstructured":"MacArthur, R. H. Patterns of species diverstiy. Biol. Rev. 40, 510\u2013533 (1965).","journal-title":"Biol. Rev."},{"key":"36888_CR48","doi-asserted-by":"publisher","first-page":"604","DOI":"10.1111\/geb.12723","volume":"27","author":"V Pellissier","year":"2018","unstructured":"Pellissier, V., Barnagaud, J. Y., Kissling, W. D., \u015eekercio\u011flu, \u00c7. & Svenning, J. C. Niche packing and expansion account for species richness\u2013productivity relationships in global bird assemblages. Glob. Ecol. Biogeogr. 27, 604\u2013615 (2018).","journal-title":"Glob. Ecol. Biogeogr."},{"key":"36888_CR49","doi-asserted-by":"publisher","unstructured":"Huang, Y. et al. Effects of enemy exclusion on biodiversity\u2013productivity relationships in a subtropical forest experiment. J. Ecol. 110, 2167\u20132178. https:\/\/doi.org\/10.1111\/1365-2745.13940 (2022).","DOI":"10.1111\/1365-2745.13940"},{"key":"36888_CR50","doi-asserted-by":"publisher","first-page":"81","DOI":"10.1890\/0012-9658(1997)078[0081:CIRLAG]2.0.CO;2","volume":"78","author":"D Tilman","year":"1997","unstructured":"Tilman, D. Community invasibility, recruitment limitation, and grassland biodiversity. Ecology 78, 81\u201392 (1997).","journal-title":"Ecology"},{"key":"36888_CR51","doi-asserted-by":"publisher","first-page":"865","DOI":"10.1126\/science.abm6363","volume":"376","author":"Y Feng","year":"2022","unstructured":"Feng, Y. et al. Multispecies forest plantations outyield monocultures across a broad range of conditions. Science\u00a0376, 865\u2013868 (2022).","journal-title":"Science"},{"key":"36888_CR52","unstructured":"Harper, J. L. Population biology of plants. (1977)."},{"key":"36888_CR53","doi-asserted-by":"publisher","first-page":"245","DOI":"10.1146\/annurev.es.17.110186.001333","volume":"17","author":"JJ Ewel","year":"1986","unstructured":"Ewel, J. J. Designing agricultural ecosystems for the humid tropics. Annu. Rev. Ecol. Syst. 17, 245\u2013271 (1986).","journal-title":"Annu. Rev. Ecol. Syst."},{"key":"36888_CR54","doi-asserted-by":"publisher","first-page":"42","DOI":"10.1111\/nph.15667","volume":"228","author":"C Grossiord","year":"2020","unstructured":"Grossiord, C. Having the right neighbors: how tree species diversity modulates drought impacts on forests. N. Phytol. 228, 42\u201349 (2020).","journal-title":"N. Phytol."},{"key":"36888_CR55","doi-asserted-by":"publisher","first-page":"291","DOI":"10.2136\/vzj2006.0068","volume":"6","author":"MF Allen","year":"2007","unstructured":"Allen, M. F. Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zo. J. 6, 291\u2013297 (2007).","journal-title":"Vadose Zo. J."},{"key":"36888_CR56","doi-asserted-by":"publisher","first-page":"2531","DOI":"10.1111\/gcb.12528","volume":"20","author":"ER Brzostek","year":"2014","unstructured":"Brzostek, E. R. et al. Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests. Glob. Chang. Biol. 20, 2531\u20132539 (2014).","journal-title":"Glob. Chang. Biol."},{"key":"36888_CR57","doi-asserted-by":"publisher","first-page":"83","DOI":"10.1093\/treephys\/tpx131","volume":"38","author":"R Liese","year":"2018","unstructured":"Liese, R., L\u00fcbbe, T., Albers, N. W. & Meier, I. C. The mycorrhizal type governs root exudation and nitrogen uptake of temperate tree species. Tree Physiol. 38, 83\u201395 (2018).","journal-title":"Tree Physiol."},{"key":"36888_CR58","doi-asserted-by":"publisher","first-page":"404","DOI":"10.1038\/s41586-019-1128-0","volume":"569","author":"BS Steidinger","year":"2019","unstructured":"Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404\u2013408 (2019).","journal-title":"Nature"},{"key":"36888_CR59","doi-asserted-by":"publisher","first-page":"906","DOI":"10.1046\/j.1365-2435.1998.00275.x","volume":"12","author":"MJ Linton","year":"1998","unstructured":"Linton, M. J., Sperry, J. S. & Williams, D. G. Limits to water transport in Juniperus osteosperma and Pinus edulis: Implications for drought tolerance and regulation of transpiration. Funct. Ecol. 12, 906\u2013911 (1998).","journal-title":"Funct. Ecol."},{"key":"36888_CR60","doi-asserted-by":"publisher","first-page":"576","DOI":"10.1111\/pce.13121","volume":"41","author":"DM Johnson","year":"2018","unstructured":"Johnson, D. M. et al. Co-occurring woody species have diverse hydraulic strategies and mortality rates during an extreme drought. Plant. Cell Environ. 41, 576\u2013588 (2018).","journal-title":"Plant. Cell Environ."},{"key":"36888_CR61","doi-asserted-by":"publisher","first-page":"168","DOI":"10.1111\/geb.13418","volume":"31","author":"G Lin","year":"2022","unstructured":"Lin, G. et al. Mycorrhizal associations of tree species influence soil nitrogen dynamics via effects on soil acid\u2013base chemistry. Glob. Ecol. Biogeogr. 31, 168\u2013182 (2022).","journal-title":"Glob. Ecol. Biogeogr."},{"key":"36888_CR62","doi-asserted-by":"publisher","first-page":"376","DOI":"10.1007\/BF01972080","volume":"47","author":"DJ Read","year":"1991","unstructured":"Read, D. J. Mycorrhizas in ecosystems. Experientia 47, 376\u2013391 (1991).","journal-title":"Experientia"},{"key":"36888_CR63","doi-asserted-by":"publisher","first-page":"357","DOI":"10.1016\/j.tree.2015.03.015","volume":"30","author":"SE Hobbie","year":"2015","unstructured":"Hobbie, S. E. Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol. Evol. 30, 357\u2013363 (2015).","journal-title":"Trends Ecol. Evol."},{"key":"36888_CR64","doi-asserted-by":"publisher","first-page":"1127","DOI":"10.1111\/j.1365-2486.2011.02572.x","volume":"18","author":"A De Schrijver","year":"2012","unstructured":"De Schrijver, A. et al. Tree species traits cause divergence in soil acidification during four decades of postagricultural forest development. Glob. Chang. Biol. 18, 1127\u20131140 (2012).","journal-title":"Glob. Chang. Biol."},{"key":"36888_CR65","doi-asserted-by":"publisher","first-page":"72","DOI":"10.1038\/35083573","volume":"412","author":"M Loreau","year":"2001","unstructured":"Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72\u201376 (2001).","journal-title":"Nature"},{"key":"36888_CR66","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1029\/2022MS003204","volume":"14","author":"RK Braghiere","year":"2022","unstructured":"Braghiere, R. K. et al. Modeling global carbon costs of plant nitrogen and phosphorus acquisition. J. Adv. Model. Earth Syst. 14, 1\u201323 (2022).","journal-title":"J. Adv. Model. Earth Syst."},{"key":"36888_CR67","doi-asserted-by":"publisher","first-page":"e85873","DOI":"10.3897\/rio.8.e85873","volume":"8","author":"N Eisenhauer","year":"2022","unstructured":"Eisenhauer, N. et al. Biotic interactions as mediators of context-dependent biodiversity-ecosystem functioning relationships. Res. Ideas Outcomes 8, e85873 (2022).","journal-title":"Res. Ideas Outcomes"},{"key":"36888_CR68","doi-asserted-by":"publisher","first-page":"2596","DOI":"10.1111\/gcb.13264","volume":"22","author":"JB Fisher","year":"2016","unstructured":"Fisher, J. B. et al. Tree-mycorrhizal associations detected remotely from canopy spectral properties. Glob. Chang. Biol. 22, 2596\u20132607 (2016).","journal-title":"Glob. Chang. Biol."},{"key":"36888_CR69","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41467-019-13019-2","volume":"10","author":"NA Soudzilovskaia","year":"2019","unstructured":"Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 1\u201310 (2019).","journal-title":"Nat. Commun."},{"key":"36888_CR70","first-page":"1026","volume":"2","author":"EA Burrill","year":"2015","unstructured":"Burrill, E. A. et al. The forest inventory and analysis database. USDA . Serv. 2, 1026 (2015).","journal-title":"USDA . Serv."},{"key":"36888_CR71","doi-asserted-by":"publisher","first-page":"297","DOI":"10.1146\/annurev-ecolsys-120213-091540","volume":"45","author":"A Chao","year":"2014","unstructured":"Chao, A., Chiu, C.-H. & Jost, L. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through hill numbers. Annu. Rev. Ecol. Evol. Syst. 45, 297\u2013324 (2014).","journal-title":"Annu. Rev. Ecol. Evol. Syst."},{"key":"36888_CR72","doi-asserted-by":"crossref","unstructured":"Cleland, D. T. et al. Ecological subregions: Sections and subsections for the conterminous United States. Gen. Tech. Rep. WO-76D (2007).","DOI":"10.2737\/WO-GTR-76D"},{"key":"36888_CR73","doi-asserted-by":"publisher","first-page":"955","DOI":"10.1111\/nph.16569","volume":"227","author":"NA Soudzilovskaia","year":"2020","unstructured":"Soudzilovskaia, N. A. et al. FungalRoot: global online database of plant mycorrhizal associations. N. Phytol. 227, 955\u2013966 (2020).","journal-title":"N. Phytol."},{"key":"36888_CR74","unstructured":"Gallion, J. et al. Indiana DNR State Forest Properties Report of Continuous Forest Inventory (CFI) Summary of years 2015\u20132019. 1\u201325 (2020)."},{"key":"36888_CR75","doi-asserted-by":"publisher","first-page":"609","DOI":"10.1111\/j.2007.0906-7590.05171.x","volume":"30","author":"CF Dormann","year":"2007","unstructured":"Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography\u00a030, 609\u2013628 (2007).","journal-title":"Ecography"},{"key":"36888_CR76","doi-asserted-by":"publisher","first-page":"1940","DOI":"10.1111\/geb.13165","volume":"29","author":"D Craven","year":"2020","unstructured":"Craven, D. et al. A cross-scale assessment of productivity\u2013diversity relationships. Glob. Ecol. Biogeogr. 29, 1940\u20131955 (2020).","journal-title":"Glob. Ecol. Biogeogr."},{"key":"36888_CR77","doi-asserted-by":"publisher","first-page":"170","DOI":"10.1111\/j.1466-8238.2010.00592.x","volume":"20","author":"A Paquette","year":"2011","unstructured":"Paquette, A. & Messier, C. The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob. Ecol. Biogeogr. 20, 170\u2013180 (2011).","journal-title":"Glob. Ecol. Biogeogr."},{"key":"36888_CR78","unstructured":"R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https:\/\/www.R-project.org\/ (2020)."},{"key":"36888_CR79","unstructured":"Dowle, M. & Srinivasan, A. data.table: Extension of \u2018data.frame\u2018. R package version 1.14.2 (2021)."},{"key":"36888_CR80","doi-asserted-by":"crossref","unstructured":"Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.","DOI":"10.1007\/978-3-319-24277-4"},{"key":"36888_CR81","unstructured":"Kassambara, A. ggpubr: \u2018ggplot2\u2019 Based Publication Ready Plots. R package version 0.4.0 (2020)."},{"key":"36888_CR82","unstructured":"Dunnington, D. ggspatial: Spatial Data Framework for ggplot2. R package version 1.1.5 (2021)."},{"key":"36888_CR83","unstructured":"Robert, J. Hijmans. raster: Geographic Data Analysis and Modeling. R package version 3.5-2 (2021)."},{"key":"36888_CR84","unstructured":"Wickham, H., Fran\u00e7ois, R., Henry, L. & M\u00fcller, K. dplyr: A Grammar of Data Manipulation. R package version 1.0.8 (2022)."},{"key":"36888_CR85","doi-asserted-by":"publisher","first-page":"1","DOI":"10.18637\/jss.v067.i01","volume":"67","author":"D Bates","year":"2015","unstructured":"Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1\u201348 (2015).","journal-title":"J. Stat. Softw."},{"key":"36888_CR86","doi-asserted-by":"publisher","first-page":"573","DOI":"10.1111\/2041-210X.12512","volume":"7","author":"JS Lefcheck","year":"2016","unstructured":"Lefcheck, J. S. piecewiseSEM: piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573\u2013579 (2016).","journal-title":"Methods Ecol. Evol."},{"key":"36888_CR87","doi-asserted-by":"publisher","unstructured":"Luo, S. et al. High productivity in forests with mixed mycorrhizal strategies. Figshare https:\/\/doi.org\/10.6084\/m9.figshare.22060238. (2023).","DOI":"10.6084\/m9.figshare.22060238."}],"container-title":["Nature Communications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.nature.com\/articles\/s41467-023-36888-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s41467-023-36888-0","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s41467-023-36888-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,5,26]],"date-time":"2023-05-26T13:03:30Z","timestamp":1685106210000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.nature.com\/articles\/s41467-023-36888-0"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3,13]]},"references-count":87,"journal-issue":{"issue":"1","published-online":{"date-parts":[[2023,12]]}},"alternative-id":["36888"],"URL":"http:\/\/dx.doi.org\/10.1038\/s41467-023-36888-0","relation":{},"ISSN":["2041-1723"],"issn-type":[{"value":"2041-1723","type":"electronic"}],"subject":["General Physics and Astronomy","General Biochemistry, Genetics and Molecular Biology","General Chemistry","Multidisciplinary"],"published":{"date-parts":[[2023,3,13]]},"assertion":[{"value":"26 August 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"22 February 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"13 March 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"The authors declare no competing interests.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}],"article-number":"1377"}}