uni-leipzig-open-access/json/s41467-022-35427-7

1 line
25 KiB
Plaintext

{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,1,13]],"date-time":"2024-01-13T09:17:35Z","timestamp":1705137455355},"reference-count":59,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2023,1,4]],"date-time":"2023-01-04T00:00:00Z","timestamp":1672790400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2023,1,4]],"date-time":"2023-01-04T00:00:00Z","timestamp":1672790400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","award":["432421051"]},{"DOI":"10.13039\/501100001824","name":"Grantov\u00e1 Agentura \u010cesk\u00e9 Republiky","doi-asserted-by":"publisher","award":["20-02955J"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Nat Commun"],"abstract":"<jats:title>Abstract<\/jats:title><jats:p>Collective states of inanimate particles self-assemble through physical interactions and thermal motion. Despite some phenomenological resemblance, including signatures of criticality, the autonomous dynamics that binds motile agents into flocks, herds, or swarms allows for much richer behavior. Low-dimensional models have hinted at the crucial role played in this respect by perceived information, decision-making, and feedback, implying that the corresponding interactions are inevitably retarded. Here we present experiments on spherical Brownian microswimmers with delayed self-propulsion toward a spatially fixed target. We observe a spontaneous symmetry breaking to a transiently chiral dynamical state and concomitant critical behavior that do not rely on many-particle cooperativity. By comparison with the stochastic delay differential equation of motion of a single swimmer, we pinpoint the delay-induced effective synchronization of the swimmers with their own past as the key mechanism. Increasing numbers of swimmers self-organize into layers with pro- and retrograde orbital motion, synchronized and stabilized by steric, phoretic, and hydrodynamic interactions. Our results demonstrate how even most simple retarded interactions can foster emergent complex adaptive behavior in small active-particle ensembles.<\/jats:p>","DOI":"10.1038\/s41467-022-35427-7","type":"journal-article","created":{"date-parts":[[2023,1,4]],"date-time":"2023-01-04T13:35:15Z","timestamp":1672839315000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":9,"title":["Spontaneous vortex formation by microswimmers with retarded attractions"],"prefix":"10.1038","volume":"14","author":[{"given":"Xiangzun","family":"Wang","sequence":"first","affiliation":[]},{"given":"Pin-Chuan","family":"Chen","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6927-8647","authenticated-orcid":false,"given":"Klaus","family":"Kroy","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6576-1316","authenticated-orcid":false,"given":"Viktor","family":"Holubec","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9803-4975","authenticated-orcid":false,"given":"Frank","family":"Cichos","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,1,4]]},"reference":[{"key":"35427_CR1","doi-asserted-by":"crossref","unstructured":"Kauffman, S. The Origins of Order: Self-organization and Selection in Evolution (Oxford Univ. Press, 1993).","DOI":"10.1007\/978-94-015-8054-0_8"},{"key":"35427_CR2","doi-asserted-by":"publisher","first-page":"71","DOI":"10.1016\/j.physrep.2012.03.004","volume":"517","author":"T Vicsek","year":"2012","unstructured":"Vicsek, T. & Zafeiris, A. Collective motion. Phys. Rep. 517, 71\u2013140 (2012).","journal-title":"Phys. Rep."},{"key":"35427_CR3","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1086\/685301","volume":"91","author":"J Delcourt","year":"2016","unstructured":"Delcourt, J., Bode, N. W. F. & Deno\u00ebl, M. Collective vortex behaviors: diversity, proximate, and ultimate causes of circular animal group movements. Q. Rev. Biol. 91, 1\u201324 (2016).","journal-title":"Q. Rev. Biol."},{"key":"35427_CR4","doi-asserted-by":"publisher","first-page":"R709","DOI":"10.1016\/j.cub.2013.07.059","volume":"23","author":"A Strandburg-Peshkin","year":"2013","unstructured":"Strandburg-Peshkin, A. et al. Visual sensory networks and effective information transfer in animal groups. Curr. Biol. 23, R709\u2013R711 (2013).","journal-title":"Curr. Biol."},{"key":"35427_CR5","doi-asserted-by":"publisher","first-page":"10422","DOI":"10.1073\/pnas.1402202111","volume":"111","author":"DJG Pearce","year":"2014","unstructured":"Pearce, D. J. G., Miller, A. M., Rowlands, G. & Turner, M. S. Role of projection in the control of bird flocks. Proc. Natl. Acad. Sci. USA 111, 10422\u201310426 (2014).","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"35427_CR6","doi-asserted-by":"publisher","first-page":"658","DOI":"10.1038\/s41586-019-1733-y","volume":"575","author":"J Cremer","year":"2019","unstructured":"Cremer, J. et al. Chemotaxis as a navigation strategy to boost range expansion. Nature 575, 658\u2013663 (2019).","journal-title":"Nature"},{"key":"35427_CR7","doi-asserted-by":"crossref","unstructured":"Couzin, I. D. & Krause, J. Self-organization and collective behavior in vertebrates. Adv. Study Behav. 32, 1\u201375 (2003).","DOI":"10.1016\/S0065-3454(03)01001-5"},{"key":"35427_CR8","doi-asserted-by":"publisher","first-page":"1212","DOI":"10.1126\/science.1218919","volume":"337","author":"CC Ioannou","year":"2012","unstructured":"Ioannou, C. C., Guttal, V. & Couzin, I. D. Predatory fish select for coordinated collective motion in virtual Prey. Science 337, 1212\u20131215 (2012).","journal-title":"Science"},{"key":"35427_CR9","doi-asserted-by":"publisher","first-page":"20170009","DOI":"10.1098\/rstb.2017.0009","volume":"373","author":"AM Berdahl","year":"2018","unstructured":"Berdahl, A. M. et al. Collective animal navigation and migratory culture: from theoretical models to empirical evidence. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170009 (2018).","journal-title":"Philos. Trans. R. Soc. B Biol. Sci."},{"key":"35427_CR10","doi-asserted-by":"publisher","first-page":"1226","DOI":"10.1103\/PhysRevLett.75.1226","volume":"75","author":"T Vicsek","year":"1995","unstructured":"Vicsek, T., Czir\u00f3k, A., Ben-Jacob, E., Cohen, I. & Shochet, O. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226\u20131229 (1995).","journal-title":"Phys. Rev. Lett."},{"key":"35427_CR11","doi-asserted-by":"publisher","first-page":"e22479","DOI":"10.1371\/journal.pone.0022479","volume":"6","author":"CK Hemelrijk","year":"2011","unstructured":"Hemelrijk, C. K. & Hildenbrandt, H. Some causes of the variable shape of flocks of birds. PLoS ONE 6, e22479 (2011).","journal-title":"PLoS ONE"},{"key":"35427_CR12","doi-asserted-by":"publisher","first-page":"134004","DOI":"10.1088\/1361-6463\/aab0d4","volume":"51","author":"A Costanzo","year":"2018","unstructured":"Costanzo, A. & Hemelrijk, C. K. Spontaneous emergence of milling (vortex state) in a Vicsek-like model. J. Phys. D Appl. Phys. 51, 134004 (2018).","journal-title":"J. Phys. D Appl. Phys."},{"key":"35427_CR13","doi-asserted-by":"publisher","first-page":"11865","DOI":"10.1073\/pnas.1005766107","volume":"107","author":"A Cavagna","year":"2010","unstructured":"Cavagna, A. et al. Scale-free correlations in starling flocks. Proc. Natl. Acad. Sci. USA 107, 11865\u201311870 (2010).","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"35427_CR14","doi-asserted-by":"publisher","first-page":"268","DOI":"10.1007\/s10955-011-0229-4","volume":"144","author":"T Mora","year":"2011","unstructured":"Mora, T. & Bialek, W. Are biological systems poised at criticality? J. Stat. Phys. 144, 268\u2013302 (2011).","journal-title":"J. Stat. Phys."},{"key":"35427_CR15","doi-asserted-by":"publisher","first-page":"031001","DOI":"10.1103\/RevModPhys.90.031001","volume":"90","author":"MA Mu\u00f1oz","year":"2018","unstructured":"Mu\u00f1oz, M. A. Colloquium: criticality and dynamical scaling in living systems. Rev. Mod. Phys. 90, 031001 (2018).","journal-title":"Rev. Mod. Phys."},{"key":"35427_CR16","doi-asserted-by":"publisher","first-page":"914","DOI":"10.1038\/nphys4153","volume":"13","author":"A Cavagna","year":"2017","unstructured":"Cavagna, A. et al. Dynamic scaling in natural swarms. Nat. Phys. 13, 914\u2013918 (2017).","journal-title":"Nat. Phys."},{"key":"35427_CR17","doi-asserted-by":"crossref","unstructured":"Kim, D. W., Hong, H. & Kim, J. K. Systematic inference identifies a major source of heterogeneity in cell signaling dynamics: the rate-limiting step number. Sci. Adv. 8, eabl4598 (2022).","DOI":"10.1126\/sciadv.abl4598"},{"key":"35427_CR18","doi-asserted-by":"publisher","first-page":"23542","DOI":"10.1073\/pnas.1913926116","volume":"116","author":"J Zhang","year":"2019","unstructured":"Zhang, J. & Zhou, T. Markovian approaches to modeling intracellular reaction processes with molecular memory. Proc. Natl. Acad. Sci. USA 116, 23542\u201323550 (2019).","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"35427_CR19","doi-asserted-by":"publisher","first-page":"20180613","DOI":"10.1098\/rspb.2018.0613","volume":"285","author":"HL More","year":"2018","unstructured":"More, H. L. & Donelan, J. M. Scaling of sensorimotor delays in terrestrial mammals. Proc. R. Soc. B Biol. 285, 20180613 (2018).","journal-title":"Proc. R. Soc. B Biol."},{"key":"35427_CR20","first-page":"1\u201416","volume":"6","author":"M Mijalkov","year":"2016","unstructured":"Mijalkov, M., McDaniel, A., Wehr, J. & Volpe, G. Engineering sensorial delay to control phototaxis and emergent collective behaviors. Phys. Rev. X 6, 1\u201416 (2016).","journal-title":"Phys. Rev. X"},{"key":"35427_CR21","doi-asserted-by":"publisher","first-page":"035203","DOI":"10.1103\/PhysRevE.77.035203","volume":"77","author":"E Forgoston","year":"2008","unstructured":"Forgoston, E. & Schwartz, I. B. Delay-induced instabilities in self-propelling swarms. Phys. Rev. E 77, 035203 (2008).","journal-title":"Phys. Rev. E"},{"key":"35427_CR22","doi-asserted-by":"publisher","first-page":"012607","DOI":"10.1103\/PhysRevE.100.012607","volume":"100","author":"R Piwowarczyk","year":"2019","unstructured":"Piwowarczyk, R., Selin, M., Ihle, T. & Volpe, G. Influence of sensorial delay on clustering and swarming. Phys. Rev. E 100, 012607 (2019).","journal-title":"Phys. Rev. E"},{"key":"35427_CR23","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-018-06445-1","volume":"9","author":"U Khadka","year":"2018","unstructured":"Khadka, U., Holubec, V., Yang, H. & Cichos, F. Active particles bound by information flows. Nat. Commun. 9, 3864 (2018).","journal-title":"Nat. Commun."},{"key":"35427_CR24","doi-asserted-by":"publisher","first-page":"258001","DOI":"10.1103\/PhysRevLett.127.258001","volume":"127","author":"V Holubec","year":"2021","unstructured":"Holubec, V., Geiss, D., Loos, S. A. M., Kroy, K. & Cichos, F. Finite-size scaling at the edge of disorder in a time-delay vicsek model. Phys. Rev. Lett. 127, 258001 (2021).","journal-title":"Phys. Rev. Lett."},{"key":"35427_CR25","doi-asserted-by":"publisher","first-page":"615","DOI":"10.1038\/nphys3035","volume":"10","author":"A Attanasi","year":"2014","unstructured":"Attanasi, A. et al. Information transfer and behavioural inertia in starling flocks. Nat. Phys. 10, 615\u2013698 (2014).","journal-title":"Nat. Phys."},{"key":"35427_CR26","doi-asserted-by":"publisher","first-page":"1420\u20141429","DOI":"10.1039\/c2sc21263c","volume":"4","author":"B Qian","year":"2013","unstructured":"Qian, B., Montiel, D., Bregulla, A., Cichos, F. & Yang, H. Harnessing thermal fluctuations for purposeful activities: The manipulation of single micro-swimmers by adaptive photon nudging. Chem. Sci. 4, 1420\u20141429 (2013).","journal-title":"Chem. Sci."},{"key":"35427_CR27","doi-asserted-by":"publisher","first-page":"6542","DOI":"10.1021\/nn501568e","volume":"8","author":"AP Bregulla","year":"2014","unstructured":"Bregulla, A. P., Yang, H. & Cichos, F. Stochastic localization of microswimmers by photon nudging. ACS Nano 8, 6542\u20136550 (2014).","journal-title":"ACS Nano"},{"key":"35427_CR28","doi-asserted-by":"publisher","first-page":"228001","DOI":"10.1103\/PhysRevLett.126.228001","volume":"126","author":"NA S\u00f6ker","year":"2021","unstructured":"S\u00f6ker, N. A., Auschra, S., Holubec, V., Kroy, K. & Cichos, F. How activity landscapes polarize microswimmers without alignment forces. Phys. Rev. Lett. 126, 228001 (2021).","journal-title":"Phys. Rev. Lett."},{"key":"35427_CR29","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-020-16161-4","volume":"11","author":"T Baeuerle","year":"2020","unstructured":"Baeuerle, T., Loeffler, R. C. & Bechinger, C. Formation of stable and responsive collective states in suspensions of active colloids. Nat. Commun. 11, 2547 (2020).","journal-title":"Nat. Commun."},{"key":"35427_CR30","doi-asserted-by":"publisher","first-page":"64001","DOI":"10.1209\/0295-5075\/ac0c68","volume":"134","author":"RC Loeffler","year":"2021","unstructured":"Loeffler, R. C., Baeuerle, T., Kardar, M., Rohwer, C. M. & Bechinger, C. Behavior-dependent critical dynamics in collective states of active particles. EPL 134, 64001 (2021).","journal-title":"EPL"},{"key":"35427_CR31","first-page":"061102","volume":"150","author":"B Liebchen","year":"2019","unstructured":"Liebchen, B. & L\u00f6wen, H. Which interactions dominate in active colloids? Chem. Phys. 150, 061102 (2019).","journal-title":"Chem. Phys."},{"key":"35427_CR32","doi-asserted-by":"publisher","first-page":"2681","DOI":"10.1021\/acs.accounts.8b00259","volume":"51","author":"H Stark","year":"2018","unstructured":"Stark, H. Artificial chemotaxis of self-phoretic active colloids: collective behavior. Acc. Chem. Res. 51, 2681\u20132688 (2018).","journal-title":"Acc. Chem. Res."},{"key":"35427_CR33","doi-asserted-by":"publisher","first-page":"90","DOI":"10.1140\/epje\/s10189-021-00090-1","volume":"44","author":"S Auschra","year":"2021","unstructured":"Auschra, S., Bregulla, A., Kroy, K. & Cichos, F. Thermotaxis of Janus particles. Eur. Phys. J. E 44, 90 (2021).","journal-title":"Eur. Phys. J. E"},{"key":"35427_CR34","doi-asserted-by":"publisher","first-page":"3434","DOI":"10.1021\/acsnano.0c10598","volume":"15","author":"M Fr\u00e4nzl","year":"2021","unstructured":"Fr\u00e4nzl, M., Muinos-Landin, S., Holubec, V. & Cichos, F. Fully steerable symmetric thermoplasmonic microswimmers. ACS Nano 15, 3434\u20133440 (2021).","journal-title":"ACS Nano"},{"key":"35427_CR35","doi-asserted-by":"publisher","first-page":"10502","DOI":"10.1039\/C7CP06559K","volume":"20","author":"M Selmke","year":"2018","unstructured":"Selmke, M., Khadka, U., Bregulla, A. P., Cichos, F. & Yang, H. Theory for controlling individual self-propelled micro-swimmers by photon nudging I: directed transport. Phys. Chem. Chem. Phys. 20, 10502\u201310520 (2018).","journal-title":"Phys. Chem. Chem. Phys."},{"key":"35427_CR36","doi-asserted-by":"publisher","first-page":"10521","DOI":"10.1039\/C7CP06560D","volume":"20","author":"M Selmke","year":"2018","unstructured":"Selmke, M., Khadka, U., Bregulla, A. P., Cichos, F. & Yang, H. Theory for controlling individual self-propelled micro-swimmers by photon nudging II: confinement. Phys. Chem. Chem. Phys. 20, 10521\u201310532 (2018).","journal-title":"Phys. Chem. Chem. Phys."},{"key":"35427_CR37","doi-asserted-by":"publisher","first-page":"e1002915","DOI":"10.1371\/journal.pcbi.1002915","volume":"9","author":"K Tunstr\u00f8m","year":"2013","unstructured":"Tunstr\u00f8m, K. et al. Collective states, multistability and transitional behavior in schooling fish. PLoS Comput. Biol. 9, e1002915 (2013).","journal-title":"PLoS Comput. Biol."},{"key":"35427_CR38","doi-asserted-by":"crossref","unstructured":"Insperger, T. On the approximation of delayed systems by Taylor series expansion. J. Comput. Nonlinear Dyn.10, 024503 (2015).","DOI":"10.1115\/1.4027180"},{"key":"35427_CR39","doi-asserted-by":"publisher","first-page":"eabd9285","DOI":"10.1126\/scirobotics.abd9285","volume":"6","author":"S Muinos-Landin","year":"2021","unstructured":"Muinos-Landin, S., Fischer, A., Holubec, V. & Cichos, F. Reinforcement learning with artificial microswimmers. Sci. Robot. 6, eabd9285 (2021).","journal-title":"Sci. Robot."},{"key":"35427_CR40","doi-asserted-by":"crossref","unstructured":"Strogatz, S. H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering (Perseus Books, 1994).","DOI":"10.1063\/1.4823332"},{"key":"35427_CR41","unstructured":"Goldenfeld, N. Lectures on Phase Transitions and the Renormalization Group 1st edn (CRC Press, 1992)."},{"key":"35427_CR42","doi-asserted-by":"publisher","first-page":"061924","DOI":"10.1103\/PhysRevE.73.061924","volume":"73","author":"J Vollmer","year":"2006","unstructured":"Vollmer, J., Vegh, A. G., Lange, C. & Eckhardt, B. Vortex formation by active agents as a model for Daphnia swarming. Phys. Rev. E 73, 061924 (2006).","journal-title":"Phys. Rev. E"},{"key":"35427_CR43","doi-asserted-by":"publisher","first-page":"188303","DOI":"10.1103\/PhysRevLett.116.188303","volume":"116","author":"AP Bregulla","year":"2016","unstructured":"Bregulla, A. P., W\u00fcrger, A., G\u00fcnther, K., Mertig, M. & Cichos, F. Thermo-osmotic flow in thin films. Phys. Rev. Lett. 116, 188303 (2016).","journal-title":"Phys. Rev. Lett."},{"key":"35427_CR44","doi-asserted-by":"publisher","first-page":"134001","DOI":"10.1088\/1361-648X\/aa5bf1","volume":"29","author":"MN Popescu","year":"2017","unstructured":"Popescu, M. N., Uspal, W. E. & Dietrich, S. Chemically active colloids near osmotic-responsive walls with surface-chemistry gradients. J. Phys. Condens. Matter 29, 134001 (2017).","journal-title":"J. Phys. Condens. Matter"},{"key":"35427_CR45","doi-asserted-by":"publisher","first-page":"105","DOI":"10.1017\/jfm.2012.101","volume":"700","author":"SE Spagnolie","year":"2012","unstructured":"Spagnolie, S. E. & Lauga, E. Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. J. Fluid Mech. 700, 105\u2013147 (2012).","journal-title":"J. Fluid Mech."},{"key":"35427_CR46","doi-asserted-by":"publisher","first-page":"068001","DOI":"10.1103\/PhysRevLett.119.068001","volume":"119","author":"JS Lintuvuori","year":"2017","unstructured":"Lintuvuori, J. S., W\u00fcrger, A. & Stratford, K. Hydrodynamics defines the stable swimming direction of spherical squirmers in a nematic liquid crystal. Phys. Rev. Lett. 119, 068001 (2017).","journal-title":"Phys. Rev. Lett."},{"key":"35427_CR47","doi-asserted-by":"publisher","first-page":"341","DOI":"10.1038\/nphys3607","volume":"12","author":"H Wioland","year":"2016","unstructured":"Wioland, H., Woodhouse, F. G., Dunkel, J. & Goldstein, R. E. Ferromagnetic and antiferromagnetic order in bacterial vortex lattices. Nat. Phys. 12, 341\u2013345 (2016).","journal-title":"Nat. Phys."},{"key":"35427_CR48","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-018-06842-6","volume":"9","author":"D Nishiguchi","year":"2018","unstructured":"Nishiguchi, D., Aranson, I. S., Snezhko, A. & Sokolov, A. Engineering bacterial vortex lattice via direct laser lithography. Nat. Commun. 9, 4486 (2018).","journal-title":"Nat. Commun."},{"key":"35427_CR49","doi-asserted-by":"publisher","first-page":"74","DOI":"10.1119\/1.18522","volume":"65","author":"G Fletcher","year":"1997","unstructured":"Fletcher, G. A mechanical analog of first- and second-order phase transitions. Am. J. Phys. 65, 74\u201381 (1997).","journal-title":"Am. J. Phys."},{"key":"35427_CR50","doi-asserted-by":"publisher","first-page":"420","DOI":"10.1007\/BFb0013365","volume":"30","author":"Y Kuramoto","year":"1975","unstructured":"Kuramoto, Y. International symposium on mathematical problems in theoretical physics. Lect. Notes Phys. 30, 420 (1975).","journal-title":"Lect. Notes Phys."},{"key":"35427_CR51","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-017-01190-3","volume":"8","author":"KP O\u2019Keeffe","year":"2017","unstructured":"O\u2019Keeffe, K. P., Hong, H. & Strogatz, S. H. Oscillators that sync and swarm. Nat. Commun. 8, 1504 (2017).","journal-title":"Nat. Commun."},{"key":"35427_CR52","doi-asserted-by":"publisher","first-page":"363","DOI":"10.1038\/s41586-021-03375-9","volume":"592","author":"M Fruchart","year":"2021","unstructured":"Fruchart, M., Hanai, R., Littlewood, P. B. & Vitelli, V. Non-reciprocal phase transitions. Nature 592, 363\u2013369 (2021).","journal-title":"Nature"},{"key":"35427_CR53","doi-asserted-by":"publisher","first-page":"95","DOI":"10.1007\/s10955-019-02359-4","volume":"177","author":"SAM Loos","year":"2019","unstructured":"Loos, S. A. M. & Klapp, S. H. L. Fokker\u2013planck equations for time-delayed systems via markovian embedding. J. Stat. Phys. 177, 95\u2013118 (2019).","journal-title":"J. Stat. Phys."},{"key":"35427_CR54","doi-asserted-by":"publisher","first-page":"093014","DOI":"10.1088\/1367-2630\/ab3d76","volume":"21","author":"D Geiss","year":"2019","unstructured":"Geiss, D., Kroy, K. & Holubec, V. Brownian molecules formed by delayed harmonic interactions. New J. Phys. 21, 093014 (2019).","journal-title":"New J. Phys."},{"key":"35427_CR55","doi-asserted-by":"publisher","first-page":"10940","DOI":"10.1073\/pnas.1019079108","volume":"108","author":"K Drescher","year":"2011","unstructured":"Drescher, K., Dunkel, J., Cisneros, L. H., Ganguly, S. & Goldstein, R. E. Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering. Proc. Natl. Acad. Sci. USA 108, 10940\u201310945 (2011).","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"35427_CR56","doi-asserted-by":"publisher","first-page":"235","DOI":"10.1152\/nips.01398.2002","volume":"17","author":"GV Lauder","year":"2002","unstructured":"Lauder, G. V. & Drucker, E. G. Forces, fishes, and fluids: hydrodynamic mechanisms of aquatic locomotion. Physiology 17, 235\u2013240 (2002).","journal-title":"Physiology"},{"key":"35427_CR57","doi-asserted-by":"publisher","first-page":"5849","DOI":"10.1073\/pnas.1800923115","volume":"115","author":"S Verma","year":"2018","unstructured":"Verma, S., Novati, G. & Koumoutsakos, P. Efficient collective swimming by harnessing vortices through deep reinforcement learning. Proc. Natl. Acad. Sci. USA 115, 5849\u20135854 (2018).","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"35427_CR58","doi-asserted-by":"publisher","first-page":"012134","DOI":"10.1103\/PhysRevE.91.012134","volume":"91","author":"A Morin","year":"2015","unstructured":"Morin, A., Caussin, J.-B., Eloy, C. & Bartolo, D. Collective motion with anticipation: flocking, spinning, and swarming. Phys. Rev. E 91, 012134 (2015).","journal-title":"Phys. Rev. E"},{"key":"35427_CR59","doi-asserted-by":"publisher","first-page":"6908","DOI":"10.1073\/pnas.1506855112","volume":"112","author":"SE Palmer","year":"2015","unstructured":"Palmer, S. E., Marre, O., Berry, M. J. & Bialek, W. Predictive information in a sensory population. Proc. Natl. Acad. Sci. USA 112, 6908\u20136913 (2015).","journal-title":"Proc. Natl. Acad. Sci. USA"}],"container-title":["Nature Communications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.nature.com\/articles\/s41467-022-35427-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s41467-022-35427-7","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s41467-022-35427-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,4]],"date-time":"2023-01-04T15:03:16Z","timestamp":1672844596000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.nature.com\/articles\/s41467-022-35427-7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,1,4]]},"references-count":59,"journal-issue":{"issue":"1","published-online":{"date-parts":[[2023,12]]}},"alternative-id":["35427"],"URL":"http:\/\/dx.doi.org\/10.1038\/s41467-022-35427-7","relation":{},"ISSN":["2041-1723"],"issn-type":[{"value":"2041-1723","type":"electronic"}],"subject":["General Physics and Astronomy","General Biochemistry, Genetics and Molecular Biology","General Chemistry","Multidisciplinary"],"published":{"date-parts":[[2023,1,4]]},"assertion":[{"value":"2 August 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"2 December 2022","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"4 January 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"The authors declare no competing interests.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}],"article-number":"56"}}