uni-leipzig-open-access/json/j.rse.2022.113445

1 line
38 KiB
Plaintext

{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,1,10]],"date-time":"2024-01-10T03:38:04Z","timestamp":1704857884340},"reference-count":107,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,12,30]],"date-time":"2022-12-30T00:00:00Z","timestamp":1672358400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Remote Sensing of Environment"],"published-print":{"date-parts":[[2023,3]]},"DOI":"10.1016\/j.rse.2022.113445","type":"journal-article","created":{"date-parts":[[2023,1,10]],"date-time":"2023-01-10T17:11:03Z","timestamp":1673370663000},"page":"113445","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"title":["Decoupling physiological and non-physiological responses of sugar beet to water stress from sun-induced chlorophyll fluorescence"],"prefix":"10.1016","volume":"286","author":[{"given":"Na","family":"Wang","sequence":"first","affiliation":[]},{"given":"Peiqi","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Jan G.P.W.","family":"Clevers","sequence":"additional","affiliation":[]},{"given":"Sebastian","family":"Wieneke","sequence":"additional","affiliation":[]},{"given":"Lammert","family":"Kooistra","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.rse.2022.113445_bb0005","doi-asserted-by":"crossref","first-page":"420","DOI":"10.1016\/j.rse.2015.07.022","article-title":"Meta-analysis assessing potential of steady-state chlorophyll fluorescence for remote sensing detection of plant water, temperature and nitrogen stress","volume":"168","author":"A\u010d","year":"2015","journal-title":"Remote Sens. Environ."},{"issue":"8","key":"10.1016\/j.rse.2022.113445_bb0010","doi-asserted-by":"crossref","first-page":"770","DOI":"10.3390\/rs9080770","article-title":"Diurnal cycle relationships between passive fluorescence, PRI and NPQ of vegetation in a controlled stress experiment","volume":"9","author":"Alonso","year":"2017","journal-title":"Remote Sens."},{"issue":"3","key":"10.1016\/j.rse.2022.113445_bb0015","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1046\/j.1466-822X.2003.00026.x","article-title":"Global synthesis of leaf area index observations: implications for ecological and remote sensing studies","volume":"12","author":"Asner","year":"2003","journal-title":"Glob. Ecol. Biogeogr."},{"key":"10.1016\/j.rse.2022.113445_bb0020","doi-asserted-by":"crossref","first-page":"300","DOI":"10.2134\/agronj1984.00021962007600020029x","article-title":"Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat1","volume":"76","author":"Asrar","year":"1984","journal-title":"Agron. J."},{"key":"10.1016\/j.rse.2022.113445_bb0025","doi-asserted-by":"crossref","first-page":"949","DOI":"10.3390\/rs5020949","article-title":"Advances in remote sensing of agriculture: context description, existing operational monitoring systems and major information needs","volume":"5","author":"Atzberger","year":"2013","journal-title":"Remote Sens."},{"key":"10.1016\/j.rse.2022.113445_bb0030","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1146\/annurev.arplant.59.032607.092759","article-title":"Chlorophyll fluorescence: a probe of photosynthesis in vivo","volume":"59","author":"Baker","year":"2008","journal-title":"Annu. Rev. Plant Biol."},{"key":"10.1016\/j.rse.2022.113445_bib511","first-page":"1921","article-title":"Measuring solar-induced fluorescence from unmanned aircraft systems for operational use in plant phenotyping and precision farming","author":"Bendig","year":"2021","journal-title":"2021 IEEE Trans. Geosci. Remote Sens. Symp."},{"key":"10.1016\/j.rse.2022.113445_bib510","doi-asserted-by":"crossref","first-page":"113198","DOI":"10.1016\/j.rse.2022.113198","article-title":"Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review","volume":"280","author":"Berger","year":"2022","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0035","doi-asserted-by":"crossref","first-page":"1236","DOI":"10.3390\/rs11101236","article-title":"Characterizing the variability of the structure parameter in the PROSPECT leaf optical properties model","volume":"11","author":"Boren","year":"2019","journal-title":"Remote Sens."},{"key":"10.1016\/j.rse.2022.113445_bb0040","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1016\/S0034-4257(97)00104-1","article-title":"On the relation between NDVI, fractional vegetation cover, and leaf area index","volume":"62","author":"Carlson","year":"1997","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0045","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1016\/j.rse.2018.05.013","article-title":"Exploring the physiological information of sun-induced chlorophyll fluorescence through radiative transfer model inversion","volume":"215","author":"Celesti","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0050","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2021.112672","article-title":"Unpacking the drivers of diurnal dynamics of sun-induced chlorophyll fluorescence (SIF): canopy structure, plant physiology, instrument configuration and retrieval methods","volume":"265","author":"Chang","year":"2021","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0055","doi-asserted-by":"crossref","first-page":"907","DOI":"10.1093\/aob\/mcf105","article-title":"How plants cope with water stress in the field? Photosynthesis and growth","volume":"89","author":"Chaves","year":"2002","journal-title":"Ann. Bot."},{"key":"10.1016\/j.rse.2022.113445_bb0060","doi-asserted-by":"crossref","first-page":"11148","DOI":"10.1109\/JSTARS.2021.3123111","article-title":"Effects of drought on the relationship between photosynthesis and chlorophyll fluorescence for maize","volume":"14","author":"Chen","year":"2021","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"10.1016\/j.rse.2022.113445_bb0065","doi-asserted-by":"crossref","first-page":"574","DOI":"10.1109\/JSTARS.2011.2176468","article-title":"Using hyperspectral remote sensing data for retrieving canopy chlorophyll and nitrogen content","volume":"5","author":"Clevers","year":"2011","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"10.1016\/j.rse.2022.113445_bb0070","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1016\/j.rse.2015.06.004","article-title":"Far-red sun-induced chlorophyll fluorescence shows ecosystem-specific relationships to gross primary production: an assessment based on observational and modeling approaches","volume":"166","author":"Damm","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0075","doi-asserted-by":"crossref","first-page":"3358","DOI":"10.1109\/TGRS.2010.2046420","article-title":"A field platform for continuous measurement of canopy fluorescence","volume":"48","author":"Daumard","year":"2010","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.rse.2022.113445_bb0080","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2021.112722","article-title":"Constraining water limitation of photosynthesis in a crop growth model with sun-induced chlorophyll fluorescence","volume":"267","author":"De Canni\u00e8re","year":"2021","journal-title":"Remote Sens. Environ."},{"issue":"11","key":"10.1016\/j.rse.2022.113445_bb0085","doi-asserted-by":"crossref","first-page":"2642","DOI":"10.3390\/rs14112642","article-title":"Remote sensing of instantaneous drought stress at canopy level using Sun-induced chlorophyll fluorescence and canopy reflectance","volume":"14","author":"De Canniere","year":"2022","journal-title":"Remote Sens."},{"key":"10.1016\/j.rse.2022.113445_bb0090","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2020.111733","article-title":"Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops","volume":"241","author":"Dechant","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0095","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2021.112763","article-title":"NIRVP: a robust structural proxy for sun-induced chlorophyll fluorescence and photosynthesis across scales","volume":"268","author":"Dechant","year":"2022","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0100","doi-asserted-by":"crossref","first-page":"1273","DOI":"10.1109\/TGRS.2016.2621820","article-title":"The fluorescence explorer mission concept-ESA\u2019s earth explorer 8","volume":"55","author":"Drusch","year":"2016","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.rse.2022.113445_bb0105","doi-asserted-by":"crossref","DOI":"10.1007\/978-90-481-2666-8_12","article-title":"Plant drought stress: effects, mechanisms and management","volume":"153-188","author":"Farooq","year":"2009","journal-title":"Sustain. Agric."},{"key":"10.1016\/j.rse.2022.113445_bb0110","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1093\/aob\/mcf027","article-title":"Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited","volume":"89","author":"Flexas","year":"2002","journal-title":"Ann. Bot."},{"key":"10.1016\/j.rse.2022.113445_bb0115","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1071\/PP01119","article-title":"Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations","volume":"29","author":"Flexas","year":"2002","journal-title":"Funct. Plant Biol."},{"key":"10.1016\/j.rse.2022.113445_bb0120","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1111\/j.1469-8137.2006.01794.x","article-title":"Decreased rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration","volume":"172","author":"Flexas","year":"2006","journal-title":"New Phytol."},{"issue":"3","key":"10.1016\/j.rse.2022.113445_bb0125","doi-asserted-by":"crossref","first-page":"224","DOI":"10.3390\/rs11030224","article-title":"Feasibility of unmanned aerial vehicle optical imagery for early detection and severity assessment of late blight in potato","volume":"11","author":"Franceschini","year":"2019","journal-title":"Remote Sens."},{"key":"10.1016\/j.rse.2022.113445_bb0130","series-title":"Solar Induced Chlorophyll Fluorescence: Origins, Relation to Photosynthesis and Retrieval Reference Module in Earth Systems and Environmental Sciences","first-page":"143","volume":"3","author":"Frankenberg","year":"2018"},{"key":"10.1016\/j.rse.2022.113445_bb0135","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/0034-4257(92)90059-S","article-title":"A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency","volume":"41","author":"Gamon","year":"1992","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0140","doi-asserted-by":"crossref","first-page":"492","DOI":"10.1007\/s004420050337","article-title":"The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels","volume":"112","author":"Gamon","year":"1997","journal-title":"Oecologia"},{"key":"10.1016\/j.rse.2022.113445_bib509","doi-asserted-by":"crossref","first-page":"2640","DOI":"10.1109\/JSTARS.2017.2685528","article-title":"DART: recent advances in remote sensing data modeling with atmosphere, polarization, and chlorophyll fluorescence","volume":"10","author":"Gastellu-Etchegorry","year":"2017","journal-title":"IEEE J. Sel. Top Appl. Earth Obs Remote Sens."},{"key":"10.1016\/j.rse.2022.113445_bb0145","doi-asserted-by":"crossref","first-page":"1240","DOI":"10.3390\/rs11101240","article-title":"Challenges and future perspectives of multi-\/hyperspectral thermal infrared remote sensing for crop water-stress detection: a review","volume":"11","author":"Gerhards","year":"2019","journal-title":"Remote Sens."},{"key":"10.1016\/j.rse.2022.113445_bb0150","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1029\/2018JG004742","article-title":"Advancing terrestrial ecosystem science with a novel automated measurement system for sun-induced chlorophyll fluorescence for integration with eddy covariance flux networks","volume":"124","author":"Gu","year":"2019","journal-title":"J. Geophys. Res. Biogeosci."},{"key":"10.1016\/j.rse.2022.113445_bb0155","doi-asserted-by":"crossref","first-page":"E1327","DOI":"10.1073\/pnas.1320008111","article-title":"Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence","volume":"111","author":"Guanter","year":"2014","journal-title":"Proc. Natl. Acad. Sci. U. S. A."},{"key":"10.1016\/j.rse.2022.113445_bb0160","doi-asserted-by":"crossref","DOI":"10.1002\/eap.2101","article-title":"Solar-induced chlorophyll fluorescence and short-term photosynthetic response to drought","volume":"30","author":"Helm","year":"2020","journal-title":"Ecol. Appl."},{"key":"10.1016\/j.rse.2022.113445_bib502","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1016\/j.ecolmodel.2008.02.007","article-title":"Multiyear heterotrophic soil respiration: evaluation of a coupled CO2 transport and carbon turnover model","volume":"214","author":"Herbst","year":"2008","journal-title":"Ecol. Model."},{"key":"10.1016\/j.rse.2022.113445_bb0165","series-title":"Paired t test","author":"Hsu","year":"2014"},{"key":"10.1016\/j.rse.2022.113445_bb0170","doi-asserted-by":"crossref","first-page":"1133","DOI":"10.1029\/WR017i004p01133","article-title":"Canopy temperature as a crop water stress indicator","volume":"17","author":"Jackson","year":"1981","journal-title":"Water Resour. Res."},{"key":"10.1016\/j.rse.2022.113445_bb0175","doi-asserted-by":"crossref","first-page":"194","DOI":"10.1016\/0034-4257(95)00238-3","article-title":"Estimating leaf biochemistry using the PROSPECT leaf optical properties model","volume":"56","author":"Jacquemoud","year":"1996","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bib507","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/j.rse.2017.06.008","article-title":"Estimating leaf chlorophyll content in sugar beet canopies using millimeter-to centimeter-scale reflectance imagery","volume":"198","author":"Jay","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0180","doi-asserted-by":"crossref","DOI":"10.1016\/j.agrformet.2020.108088","article-title":"Value of sun-induced chlorophyll fluorescence for quantifying hydrological states and fluxes: current status and challenges","volume":"291","author":"Jonard","year":"2020","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.rse.2022.113445_bb0185","doi-asserted-by":"crossref","DOI":"10.1088\/1748-9326\/ac3b16","article-title":"A physiological signal derived from sun-induced chlorophyll fluorescence quantifies crop physiological response to environmental stresses in the US Corn Belt","volume":"16","author":"Kimm","year":"2021","journal-title":"Environ. Res. Lett."},{"key":"10.1016\/j.rse.2022.113445_bb0190","doi-asserted-by":"crossref","first-page":"313","DOI":"10.1146\/annurev.pp.42.060191.001525","article-title":"Chlorophyll fluorescence and photosynthesis: the basics","volume":"42","author":"Krause","year":"1991","journal-title":"Annu. Rev. Plant Biol."},{"key":"10.1016\/j.rse.2022.113445_bb0195","first-page":"20130171","article-title":"Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence","volume":"280","author":"Lee","year":"2013","journal-title":"Proc. R. Soc. Lond. B Biol. Sci."},{"key":"10.1016\/j.rse.2022.113445_bb0200","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1038\/nature16467","article-title":"Influence of extreme weather disasters on global crop production","volume":"529","author":"Lesk","year":"2016","journal-title":"Nature."},{"key":"10.1016\/j.rse.2022.113445_bb0205","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2019.111420","article-title":"Solar-induced chlorophyll fluorescence and its link to canopy photosynthesis in maize from continuous ground measurements","volume":"236","author":"Li","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0210","doi-asserted-by":"crossref","first-page":"S29","DOI":"10.1080\/15476510.1988.10401466","article-title":"The role of chlorophyll fluorescence in the detection of stress conditions in plants","volume":"19","author":"Lichtenthaler","year":"1988","journal-title":"Crit. Rev. Anal. Chem."},{"issue":"6","key":"10.1016\/j.rse.2022.113445_bb0215","doi-asserted-by":"crossref","first-page":"1357","DOI":"10.3390\/rs14061357","article-title":"Assessing the potential of downscaled far red solar-induced chlorophyll fluorescence from the canopy to leaf level for drought monitoring in winter wheat","volume":"14","author":"Lin","year":"2022","journal-title":"Remote Sens."},{"key":"10.1016\/j.rse.2022.113445_bb0220","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2018.05.035","article-title":"Downscaling of solar-induced chlorophyll fluorescence from canopy level to photosystem level using a random forest model","volume":"231","author":"Liu","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0225","doi-asserted-by":"crossref","first-page":"1594","DOI":"10.1111\/nph.14662","article-title":"Connecting active to passive fluorescence with photosynthesis: a method for evaluating remote sensing measurements of Chl fluorescence","volume":"215","author":"Magney","year":"2017","journal-title":"New Phytol."},{"key":"10.1016\/j.rse.2022.113445_bb0230","doi-asserted-by":"crossref","first-page":"263","DOI":"10.5194\/isprsarchives-XL-1-W2-263-2013","article-title":"Hyperspectral frame imager camera data in photogrammetric mosaicking","author":"M\u00e4kel\u00e4inen","year":"2013","journal-title":"Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch."},{"key":"10.1016\/j.rse.2022.113445_bb0235","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2021.112564","article-title":"Discrete anisotropic radiative transfer modelling of solar-induced chlorophyll fluorescence: structural impacts in geometrically explicit vegetation canopies","volume":"263","author":"Malenovsk\u00fd","year":"2021","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0240","doi-asserted-by":"crossref","DOI":"10.1029\/2020GL087956","article-title":"Solar-induced fluorescence does not track photosynthetic carbon assimilation following induced stomatal closure","volume":"47","author":"Marrs","year":"2020","journal-title":"Geophys. Res. Lett."},{"key":"10.1016\/j.rse.2022.113445_bb0245","doi-asserted-by":"crossref","first-page":"2037","DOI":"10.1016\/j.rse.2009.05.003","article-title":"Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications","volume":"113","author":"Meroni","year":"2009","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0255","doi-asserted-by":"crossref","first-page":"610","DOI":"10.1002\/2017JG004180","article-title":"Sun-induced chlorophyll fluorescence, photosynthesis, and light use efficiency of a soybean field from seasonally continuous measurements","volume":"123","author":"Miao","year":"2018","journal-title":"J. Geophys. Res. Biogeosci."},{"key":"10.1016\/j.rse.2022.113445_bb0260","doi-asserted-by":"crossref","first-page":"1078","DOI":"10.1111\/nph.14437","article-title":"Plant functional traits and canopy structure control the relationship between photosynthetic CO2 uptake and far-red sun-induced fluorescence in a Mediterranean grassland under different nutrient availability","volume":"214","author":"Migliavacca","year":"2017","journal-title":"New Phytol."},{"key":"10.1016\/j.rse.2022.113445_bb0265","series-title":"Development of a Vegetation Fluorescence Canopy Model","author":"Miller","year":"2005"},{"key":"10.1016\/j.rse.2022.113445_bb0270","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2019.04.030","article-title":"Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress","volume":"231","author":"Mohammed","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0275","doi-asserted-by":"crossref","first-page":"747","DOI":"10.2307\/2401901","article-title":"Solar radiation and productivity in tropical ecosystems","volume":"9","author":"Monteith","year":"1972","journal-title":"J. Appl. Ecol."},{"key":"10.1016\/j.rse.2022.113445_bb0280","series-title":"Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change","author":"Pachauri","year":"2014"},{"key":"10.1016\/j.rse.2022.113445_bb0285","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2019.111362","article-title":"Multiple-constraint inversion of SCOPE. Evaluating the potential of GPP and SIF for the retrieval of plant functional traits","volume":"234","author":"Pacheco-Labrador","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0290","first-page":"167","article-title":"Fluorescence, PRI and canopy temperature for water stress detection in cereal crops","volume":"30","author":"Panigada","year":"2014","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.rse.2022.113445_bb0300","doi-asserted-by":"crossref","first-page":"1637","DOI":"10.1111\/pce.13754","article-title":"Dynamics of sun-induced chlorophyll fluorescence and reflectance to detect stress-induced variations in canopy photosynthesis","volume":"43","author":"Pinto","year":"2020","journal-title":"Plant Cell Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0305","doi-asserted-by":"crossref","first-page":"4065","DOI":"10.1093\/jxb\/eru191","article-title":"Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges","volume":"65","author":"Porcar-Castell","year":"2014","journal-title":"J. Exp. Bot."},{"key":"10.1016\/j.rse.2022.113445_bb0310","doi-asserted-by":"crossref","first-page":"1189","DOI":"10.1016\/j.jplph.2004.01.013","article-title":"Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants","volume":"161","author":"Reddy","year":"2004","journal-title":"J. Plant Physiol."},{"key":"10.1016\/j.rse.2022.113445_bb0315","doi-asserted-by":"crossref","first-page":"122","DOI":"10.3390\/rs8020122","article-title":"Comparison of sun-induced chlorophyll fluorescence estimates obtained from four portable field spectroradiometers","volume":"8","author":"Rossini","year":"2016","journal-title":"Remote Sens."},{"key":"10.1016\/j.rse.2022.113445_bb0320","series-title":"Monitoring Vegetation Systems in the Great Plains with ERTS Third ERTS Symp. NASA SP-351","first-page":"309","volume":"1","author":"Rouse","year":"1974"},{"key":"10.1016\/j.rse.2022.113445_bb0325","series-title":"Crop Yield Response to Water, Ed","author":"Steduto","year":"2012"},{"key":"10.1016\/j.rse.2022.113445_bb0330","doi-asserted-by":"crossref","first-page":"2427","DOI":"10.1002\/2015JG003150","article-title":"Drought onset mechanisms revealed by satellite solar-induced chlorophyll fluorescence: insights from two contrasting extreme events","volume":"120","author":"Sun","year":"2015","journal-title":"J. Geophys. Res. Biogeosci."},{"key":"10.1016\/j.rse.2022.113445_bb0335","doi-asserted-by":"crossref","first-page":"3109","DOI":"10.5194\/bg-6-3109-2009","article-title":"An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance","volume":"6","author":"Van der Tol","year":"2009","journal-title":"Biogeosciences"},{"key":"10.1016\/j.rse.2022.113445_bb0340","doi-asserted-by":"crossref","first-page":"2312","DOI":"10.1002\/2014JG002713","article-title":"Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence","volume":"119","author":"Van der Tol","year":"2014","journal-title":"J. Geophys. Res. Biogeosci."},{"key":"10.1016\/j.rse.2022.113445_bb0345","doi-asserted-by":"crossref","first-page":"663","DOI":"10.1016\/j.rse.2016.09.021","article-title":"A model and measurement comparison of diurnal cycles of sun-induced chlorophyll fluorescence of crops","volume":"186","author":"Van der Tol","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0350","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2019.111292","article-title":"The scattering and re-absorption of red and near-infrared chlorophyll fluorescence in the models Fluspect and SCOPE","volume":"232","author":"Van der Tol","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0355","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1016\/j.rse.2014.11.012","article-title":"Bidirectional sun-induced chlorophyll fluorescence emission is influenced by leaf structure and light scattering properties-a bottom-up approach","volume":"158","author":"Van Wittenberghe","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0360","doi-asserted-by":"crossref","first-page":"322","DOI":"10.1111\/ppl.12451","article-title":"Alternative oxidase: a respiratory electron transport chain pathway essential for maintaining photosynthetic performance during drought stress","volume":"157","author":"Vanlerberghe","year":"2016","journal-title":"Physiol. Plant."},{"key":"10.1016\/j.rse.2022.113445_bb0365","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1016\/0034-4257(84)90057-9","article-title":"Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model","volume":"16","author":"Verhoef","year":"1984","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0370","doi-asserted-by":"crossref","first-page":"8","DOI":"10.1016\/j.rse.2015.06.002","article-title":"Global sensitivity analysis of the SCOPE model: what drives simulated canopy-leaving sun-induced fluorescence?","volume":"166","author":"Verrelst","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0375","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1016\/j.rse.2016.01.018","article-title":"Evaluating the predictive power of sun-induced chlorophyll fluorescence to estimate net photosynthesis of vegetation canopies: a SCOPE modeling study","volume":"176","author":"Verrelst","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bib508","series-title":"Theory of radiative transfer models applied in optical remote sensing of vegetation canopies","author":"Verhoef","year":"1998"},{"key":"10.1016\/j.rse.2022.113445_bib503","doi-asserted-by":"crossref","first-page":"1808","DOI":"10.1109\/TGRS.2007.895844","article-title":"Unified optical-thermal four-stream radiative transfer theory for homogeneous vegetation canopies","volume":"45","author":"Verhoef","year":"2007","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"3","key":"10.1016\/j.rse.2022.113445_bb0380","doi-asserted-by":"crossref","first-page":"589","DOI":"10.1007\/s10712-018-9478-y","article-title":"Quantifying vegetation biophysical variables from imaging spectroscopy data: a review on retrieval methods","volume":"40","author":"Verrelst","year":"2019","journal-title":"Surv. Geophys."},{"key":"10.1016\/j.rse.2022.113445_bb0385","doi-asserted-by":"crossref","first-page":"596","DOI":"10.1016\/j.rse.2016.09.017","article-title":"Fluspect-B: a model for leaf fluorescence, reflectance and transmittance spectra","volume":"186","author":"Vilfan","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0390","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2020.111728","article-title":"Satellite footprint data from OCO-2 and TROPOMI reveal significant spatio-temporal and inter-vegetation type variabilities of solar-induced fluorescence yield in the US Midwest","volume":"241","author":"Wang","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0395","article-title":"Diurnal variation of sun-induced chlorophyll fluorescence of agricultural crops observed from a point-based spectrometer on a UAV","volume":"96","author":"Wang","year":"2021","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.rse.2022.113445_bb0400","doi-asserted-by":"crossref","DOI":"10.1016\/j.agrformet.2022.109033","article-title":"Potential of UAV-based Sun-induced chlorophyll fluorescence to detect water stress in sugar beet","volume":"323","author":"Wang","year":"2022","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.rse.2022.113445_bb0405","doi-asserted-by":"crossref","DOI":"10.1016\/j.agrformet.2022.109081","article-title":"Comparison of a UAV-and an airborne-based system to acquire far-red sun-induced chlorophyll fluorescence measurements over structurally different crops","volume":"323","author":"Wang","year":"2022","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.rse.2022.113445_bb0410","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2019.111291","article-title":"Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities","volume":"232","author":"West","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0415","doi-asserted-by":"crossref","first-page":"654","DOI":"10.1016\/j.rse.2016.07.025","article-title":"Airborne based spectroscopy of red and far-red sun-induced chlorophyll fluorescence: implications for improved estimates of gross primary productivity","volume":"184","author":"Wieneke","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0420","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1016\/j.rse.2018.10.019","article-title":"Linking photosynthesis and sun-induced fluorescence at sub-daily to seasonal scales","volume":"219","author":"Wieneke","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0425","doi-asserted-by":"crossref","DOI":"10.1016\/j.agrformet.2022.109019","article-title":"Fluorescence ratio and photochemical reflectance index as a proxy for photosynthetic quantum efficiency of photosystem II along a phosphorus gradient","volume":"322","author":"Wieneke","year":"2022","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.rse.2022.113445_bb0430","doi-asserted-by":"crossref","DOI":"10.3390\/rs10101510","article-title":"Diurnal response of sun-induced fluorescence and PRI to water stress in maize using a near-surface remote sensing platform","volume":"10","author":"Xu","year":"2018","journal-title":"Remote Sens."},{"key":"10.1016\/j.rse.2022.113445_bb0435","series-title":"IGARSS 2020\u20132020 IEEE International Geoscience and Remote Sensing Symposium (2020)","first-page":"4379","article-title":"On the estimation of the leaf angle distribution from drone based photogrammetry","author":"Xu","year":"2020"},{"key":"10.1016\/j.rse.2022.113445_bb0440","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2021.112555","article-title":"Structural and photosynthetic dynamics mediate the response of SIF to water stress in a potato crop","volume":"263","author":"Xu","year":"2021","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0445","doi-asserted-by":"crossref","first-page":"456","DOI":"10.1016\/j.rse.2018.02.029","article-title":"Linking canopy scattering of far-red sun-induced chlorophyll fluorescence with reflectance","volume":"209","author":"Yang","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0450","doi-asserted-by":"crossref","first-page":"658","DOI":"10.1016\/j.rse.2018.07.008","article-title":"Sun-induced chlorophyll fluorescence is more strongly related to absorbed light than to photosynthesis at half-hourly resolution in a rice paddy","volume":"216","author":"Yang","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0455","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2018.11.039","article-title":"Using reflectance to explain vegetation biochemical and structural effects on sun-induced chlorophyll fluorescence","volume":"231","author":"Yang","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0460","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2020.111676","article-title":"Fluorescence correction vegetation index (FCVI): a physically based reflectance index to separate physiological and non-physiological information in far-red sun-induced chlorophyll fluorescence","volume":"240","author":"Yang","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0465","doi-asserted-by":"crossref","first-page":"4697","DOI":"10.5194\/gmd-14-4697-2021","article-title":"SCOPE 2.0: a model to simulate vegetated land surface fluxes and satellite signals","volume":"14","author":"Yang","year":"2021","journal-title":"Geosci. Model Dev."},{"key":"10.1016\/j.rse.2022.113445_bb0470","doi-asserted-by":"crossref","first-page":"441","DOI":"10.5194\/bg-18-441-2021","article-title":"Unraveling the physical and physiological basis for the solar-induced chlorophyll fluorescence and photosynthesis relationship using continuous leaf and canopy measurements of a corn crop","volume":"18","author":"Yang","year":"2021","journal-title":"Biogeosciences"},{"key":"10.1016\/j.rse.2022.113445_bb0475","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/j.rse.2015.06.008","article-title":"The 2010 Russian drought impact on satellite measurements of solar-induced chlorophyll fluorescence: insights from modeling and comparisons with parameters derived from satellite reflectances","volume":"166","author":"Yoshida","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0480","doi-asserted-by":"crossref","first-page":"322","DOI":"10.1016\/j.rse.2011.10.007","article-title":"Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera","volume":"117","author":"Zarco-Tejada","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0485","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1016\/j.rse.2013.07.024","article-title":"A PRI-based water stress index combining structural and chlorophyll effects: assessment using diurnal narrow-band airborne imagery and the CWSI thermal index","volume":"138","author":"Zarco-Tejada","year":"2013","journal-title":"Remote Sens. Environ."},{"issue":"4","key":"10.1016\/j.rse.2022.113445_bib506","doi-asserted-by":"crossref","first-page":"463","DOI":"10.1016\/j.rse.2004.01.017","article-title":"Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops","volume":"90","author":"Zarco-Tejada","year":"2004","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0490","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2019.05.028","article-title":"A practical approach for estimating the escape ratio of near-infrared solar-induced chlorophyll fluorescence","volume":"232","author":"Zeng","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0495","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2021.112723","article-title":"Estimating near-infrared reflectance of vegetation from hyperspectral data","volume":"267","author":"Zeng","year":"2021","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bb0500","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2021.112856","article-title":"Combining near-infrared radiance of vegetation and fluorescence spectroscopy to detect effects of abiotic changes and stresses","volume":"270","author":"Zeng","year":"2022","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rse.2022.113445_bib501","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1016\/j.rse.2016.12.010","article-title":"Studying drought phenomena in the Continental United States in 2011 and 2012 using various drought indices","volume":"190","author":"Zhang","year":"2017","journal-title":"Remote Sens. Environ."}],"container-title":["Remote Sensing of Environment"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S003442572200551X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S003442572200551X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,1,20]],"date-time":"2023-01-20T08:17:25Z","timestamp":1674202645000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S003442572200551X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3]]},"references-count":107,"alternative-id":["S003442572200551X"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.rse.2022.113445","relation":{},"ISSN":["0034-4257"],"issn-type":[{"value":"0034-4257","type":"print"}],"subject":["Computers in Earth Sciences","Geology","Soil Science"],"published":{"date-parts":[[2023,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Decoupling physiological and non-physiological responses of sugar beet to water stress from sun-induced chlorophyll fluorescence","name":"articletitle","label":"Article Title"},{"value":"Remote Sensing of Environment","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.rse.2022.113445","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 The Authors. Published by Elsevier Inc.","name":"copyright","label":"Copyright"}],"article-number":"113445"}}