uni-leipzig-open-access/json/gmd-16-1359-2023
2024-01-25 14:46:53 +01:00

1 line
No EOL
29 KiB
Text

{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,3,22]],"date-time":"2023-03-22T04:46:20Z","timestamp":1679460380947},"reference-count":54,"publisher":"Copernicus GmbH","issue":"4","license":[{"start":{"date-parts":[[2023,2,27]],"date-time":"2023-02-27T00:00:00Z","timestamp":1677456000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100002830","name":"Centre National d\u2019Etudes Spatiales","doi-asserted-by":"publisher","award":["EECLAT"]},{"DOI":"10.13039\/100006132","name":"Office of Science","doi-asserted-by":"publisher","award":["74358"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Geosci. Model Dev."],"abstract":"<jats:p>Abstract. Atmospheric aerosol has substantial impacts on climate, air\nquality and biogeochemical cycles, and its concentrations are highly\nvariable in space and time. A key variability to evaluate within models that\nsimulate aerosol is the vertical distribution, which influences atmospheric\nheating profiles and aerosol\u2013cloud interactions, to help constrain aerosol\nresidence time and to better represent the magnitude of simulated impacts. To\nensure a consistent comparison between modeled and observed vertical\ndistribution of aerosol, we implemented an aerosol lidar simulator within\nthe Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator\nPackage version\u00a02 (COSPv2). We assessed the attenuated total backscattered\n(ATB) signal and the backscatter ratios (SRs) at 532\u2009nm in the U.S.\nDepartment of Energy's Energy Exascale Earth System Model version 1\n(E3SMv1). The simulator performs the computations at the same vertical\nresolution as the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP),\nmaking use of aerosol optics from the E3SMv1 model as inputs and assuming\nthat aerosol is uniformly distributed horizontally within each model\ngrid box. The simulator applies a cloud masking and an aerosol detection\nthreshold to obtain the ATB and SR profiles that would be observed above\nclouds by CALIOP with its aerosol detection capability. Our analysis shows\nthat the aerosol distribution simulated at a seasonal timescale is generally\nin good agreement with observations. Over the Southern Ocean, however, the\nmodel does not produce the SR maximum as observed in the real world.\nComparison between clear-sky and all-sky SRs shows little differences,\nindicating that the cloud screening by potentially incorrect model clouds\ndoes not affect the mean aerosol signal averaged over a season. This\nindicates that the differences between observed and simulated SR values are\ndue not to sampling errors, but to deficiencies in the representation of\naerosol in models. Finally, we highlight the need for future applications of lidar observations at multiple wavelengths to provide insights into aerosol properties and distribution and their representation in Earth system models.\n <\/jats:p>","DOI":"10.5194\/gmd-16-1359-2023","type":"journal-article","created":{"date-parts":[[2023,2,27]],"date-time":"2023-02-27T09:55:14Z","timestamp":1677491714000},"page":"1359-1377","source":"Crossref","is-referenced-by-count":0,"title":["Incorporation of aerosol into the COSPv2 satellite lidar simulator for climate model evaluation"],"prefix":"10.5194","volume":"16","author":[{"given":"Marine","family":"Bonazzola","sequence":"first","affiliation":[]},{"given":"H\u00e9l\u00e8ne","family":"Chepfer","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3109-5316","authenticated-orcid":false,"given":"Po-Lun","family":"Ma","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7057-194X","authenticated-orcid":false,"given":"Johannes","family":"Quaas","sequence":"additional","affiliation":[]},{"given":"David M.","family":"Winker","sequence":"additional","affiliation":[]},{"given":"Artem","family":"Feofilov","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9805-6384","authenticated-orcid":false,"given":"Nick","family":"Schutgens","sequence":"additional","affiliation":[]}],"member":"3145","published-online":{"date-parts":[[2023,2,27]]},"reference":[{"key":"ref1","unstructured":"Bonazzola, M.: ATB CALIOP profiles, Zenodo [data set], https:\/\/doi.org\/10.5281\/zenodo.7107232, 2022a."},{"key":"ref2","unstructured":"Bonazzola, M.: CALIOP SR profiles, Zenodo [data set], https:\/\/doi.org\/10.5281\/zenodo.7107162, 2022b."},{"key":"ref3","unstructured":"Bonazzola, M. and Chepfer, H.: COSPv2.0: Adding lidar aerosol simulator, Zenodo [code], https:\/\/doi.org\/10.5281\/zenodo.7418199, 2022."},{"key":"ref4","doi-asserted-by":"crossref","unstructured":"Cesana, G. and Chepfer, H.: How well do climate models simulate cloud\nvertical structure? a comparison between CALIPSO-GOCCP satellite\nobservations and CMIP5 models, Geophys. Res. Lett., 39, L20803,\nhttps:\/\/doi.org\/10.1029\/2012GL053153, 2012.","DOI":"10.1029\/2012GL053153"},{"key":"ref5","doi-asserted-by":"crossref","unstructured":"Cesana, G. and Chepfer, H.: Evaluation of the cloud water phase in a climate\nmodel using CALIPSO-GOCCP, J. Geophys. Res., 118, 7922\u20137937, https:\/\/doi.org\/10.1002\/jgrd.50376, 2013.","DOI":"10.1002\/jgrd.50376"},{"key":"ref6","doi-asserted-by":"crossref","unstructured":"Chepfer, H., Bony, S., Winker, D., Chiriaco, M., Dufresne, J.-L., and S\u00e8ze, G.: Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a climate model, Geophys. Res. Lett., 35, L15704,\nhttps:\/\/doi.org\/10.1029\/2008GL034207, 2008.","DOI":"10.1029\/2008GL034207"},{"key":"ref7","doi-asserted-by":"crossref","unstructured":"Chepfer, H., Cesana, G., Winker, D., Getzewich, B., Vaughan, M., and Liu, Z.: Comparison of two different cloud climatologies derived from CALIOP-Attenuated Backscattered Measurements (Level 1): The CALIPSO-ST and the CALIPSO_GOCCP, J. Atmos. Ocean. Tech., 30, 725\u2013744,\nhttps:\/\/doi.org\/10.1175\/JTECH-D-12-00057.1, 2013.","DOI":"10.1175\/JTECH-D-12-00057.1"},{"key":"ref8","doi-asserted-by":"crossref","unstructured":"Chepfer, H., Noel, V., Chiriaco, M., Wielicki, B., Winker, D., Loeb, N., and\nWood, R.: The Potential of a Multidecade Spaceborn Lidar Record to\nConstrain Cloud Feedback, J. Geophys. Res.-Atmos., 123, 5433\u20135454, 2018.","DOI":"10.1002\/2017JD027742"},{"key":"ref9","doi-asserted-by":"crossref","unstructured":"Costantino, L. and Br\u00e9on, F.-M.: Aerosol indirect effect on warm clouds over South-East Atlantic, from co-located MODIS and CALIPSO observations, Atmos. Chem. Phys., 13, 69\u201388, https:\/\/doi.org\/10.5194\/acp-13-69-2013, 2013.","DOI":"10.5194\/acp-13-69-2013"},{"key":"ref10","unstructured":"Douville, H., Raghavan, K., Renwick, J., Allan, R. P., Arias, P. A.,\nBarlow, M., Cerezo-Mota, R., Cherchi, A., Gan, T. Y., Gergis,\nJ., Jiang, D., Khan, A., Pokam Mba, W., Rosenfeld, D., Tierney,\nJ., and Zolina, O.: Water Cycle Changes, in: Climate Change:\nThe Physical Science Basis. Contribution of Working Group I\nto the Sixth Assessment Report of the Intergovernmental Panel\non Climate Change, edited by: Masson-Delmotte, V., Zhai, P.,\nPirani, A., Connors, S. L., P\u00e9an, C., Berger, S., Caud, N., Chen,\nY., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy,\nE., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelek\u00e7i,\nO., Yu, R., and Zhou, B., https:\/\/elib.dlr.de\/137584\/, 2021."},{"key":"ref11","unstructured":"Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J. -L., Frame, D., Lunt, D., Mauritsen, T., Palmer, M., Watanabe, M., Wild, M., and Zhang, H.: Chapter 7: The Earth\u2019s energy budget, climate feedbacks, and climate sensitivity. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P.,\nPirani, A., Connors, S. L., P\u00e9an, C., Berger, S., Caud, N., Chen,\nY., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy,\nE., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelek\u00e7i,\nO., Yu, R., and Zhou, B., 2021."},{"key":"ref12","doi-asserted-by":"crossref","unstructured":"Gelaro, R., McCarty, W., Su\u00e1rez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,\nCoy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da\nSilva, A. M., Gu, W., Kim, G. K., Koster, R., Lucches, R., Merkova, D.,\nNielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert,\nS. D., Sienkiewicz, M., and Zhao, B.: The modern-era retrospective analysis\nfor research and applications, version 2 (MERRA-2), J. Climate, 30,\n5419\u20135454, 2017.","DOI":"10.1175\/JCLI-D-16-0758.1"},{"key":"ref13","doi-asserted-by":"crossref","unstructured":"Ghan, S. and Zaveri, R.: Parameterization of optical properties for hydrated internally mixed aerosol, J. Geophys. Re.-Atmos., 112, https:\/\/doi.org\/10.1029\/2006JD007927, 2007.","DOI":"10.1029\/2006JD007927"},{"key":"ref14","doi-asserted-by":"crossref","unstructured":"Golaz, J. C. , Caldwell, P., Van Roekel, L., Petersen, M., Tang, Q., Wolfe, J., Abeshu, G., Anantharaj, V., Asay-Davis, X., Bader, D., Baldwin, S., Bisht, G., Bogenschutz, P., Branstetter, M., Brunke, M., Brus, S., Burrows, S., Cameron-Smith, P., Donahue, A., Deakin, M., Easter, R., Evans,K., Feng, Y., Flanner, M., Foucar, J., Fyke, J., Griffin, B., Hannay, C., Harrop,B., Hoffman, M., Hunke, E., Jacob, R., Jacobsen, D., Jeffery, N., Jones, P., Keen, N., Klein, S., Larson, V., Leung, L. Li, H-Y., Lin, W., Lipscomb, W., Ma, P.-L., Mahajan, S., Maltrud, M., Mametjanov, A., McClean, J., McCoy, R., Neale, R., Price,S., Qian, Y., Rasch, P., Reeves, J., Eyre, J., Riley, W., Ringler, T., Roberts, A., Roesler, E., Salinger, A., Shaheen, Z., Shi, X., Singh, B., Tang, J., Taylor, M., Thornton, P., Turner, A., Veneziani, M., Wan, H., Wang, H-W.,Wang, S., Williams, D., Wolfram, P., Worley, P., Xie, S., Yang, Y., Yoon, J.-H., Zelinka, M., Zender, C., Zeng, X., Zhang, C., Zhang, K., Zhang, Y., Zheng, X., Zhou,T., and Zhu, Q.: The DOE E3SM Coupled Model Version 1: Overview and Evaluation\nat Standard Resolution, J. Adv. Model. Earth Sy., 11, 2089\u20132129, https:\/\/doi.org\/10.1029\/2018MS001603, 2019.","DOI":"10.1029\/2018MS001603"},{"key":"ref15","doi-asserted-by":"crossref","unstructured":"Guzman, R., Chepfer, H., Noel, V., Vaillant de Guelis, T., Kay, J. E.,\nRaberanto, P., Cesana, G., Vaughan, M. A., and Winker, D. M.: Direct\natmosphere opacity observations from CALIPSO provide new constraints on\ncloud-radiation interactions, J. Geophys. Res.-Atmos., 122, 1066\u20131085, https:\/\/doi.org\/10.1002\/2016JD025946, 2017.","DOI":"10.1002\/2016JD025946"},{"key":"ref16","doi-asserted-by":"crossref","unstructured":"Hodzic, A., Chepfer, H., Vautard, R., Chazette, P., Beekmann, M., Bessagnet,\nB., Drobinski, P., Goloub, P., Haeffelin, M., Morille, Y., Chatenet, B., and\nCuesta, J.: Comparisons of aerosol chemistry-transport model simulations\nwith lidar and sun-photometer observations at a site near Paris, J.\nGeophys. Res., 109, D23201, https:\/\/doi.org\/10.1029\/2004JD004735, 2004.","DOI":"10.1029\/2004JD004735"},{"key":"ref17","doi-asserted-by":"crossref","unstructured":"Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750\u20132014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS), Geosci. Model Dev., 11, 369\u2013408, https:\/\/doi.org\/10.5194\/gmd-11-369-2018, 2018.","DOI":"10.5194\/gmd-11-369-2018"},{"key":"ref18","unstructured":""},{"key":"ref19","doi-asserted-by":"crossref","unstructured":"Kim, M.-H., Lau, W., Kim, K.-M., and Lee, W.-S.: A GCM study of effects of\nradiative forcing of sulfate aerosol on large scale circulation and rainfall\nin East Asia during boreal spring, Geophys. Res. Lett., 34, https:\/\/doi.org\/10.1029\/2007GL031683,\n2007.","DOI":"10.1029\/2007GL031683"},{"key":"ref20","doi-asserted-by":"crossref","unstructured":"Kim, M.-H., Omar, A. H., Tackett, J. L., Vaughan, M. A., Winker, D. M., Trepte, C. R., Hu, Y., Liu, Z., Poole, L. R., Pitts, M. C., Kar, J., and Magill, B. E.: The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm, Atmos. Meas. Tech., 11, 6107\u20136135, https:\/\/doi.org\/10.5194\/amt-11-6107-2018, 2018.","DOI":"10.5194\/amt-11-6107-2018"},{"key":"ref21","doi-asserted-by":"crossref","unstructured":"Klein, S. A. and Jakob, C.: Validation and sensitivities of frontal clouds\nsimulated by the ECMWF model, Mon. Weather Rev., 127, 2514\u20132531, 1999.","DOI":"10.1175\/1520-0493(1999)127<2514:VASOFC>2.0.CO;2"},{"key":"ref22","doi-asserted-by":"crossref","unstructured":"Koch, D. and Del Genio, A. D.: Black carbon semi-direct effects on cloud cover: review and synthesis, Atmos. Chem. Phys., 10, 7685\u20137696, https:\/\/doi.org\/10.5194\/acp-10-7685-2010, 2010.","DOI":"10.5194\/acp-10-7685-2010"},{"key":"ref23","doi-asserted-by":"crossref","unstructured":"Koffi, B., Schulz, M., Br\u00e9on, F. M., Griesfeller, J., Winker, D. M.,\nBalkanski, Y., Bauer, S., Berntsen, T., Chin, M., Collins, W. D., Dentener,\nF., Diehl, T., Easter, R. C., Ghan, S. J., Ginoux, P. A., Gong, S., Horowitz,\nL. W., Iversen, T., Kirkevag, A., Koch, D. M., Krol, M., Myhre, G., Stier, P., and Takemura, T.: Application of the CALIOP layer product to evaluate the\nvertical distribution of aerosols estimated by global models: AeroCom phase\u00a0I results, J. Geophys. Res., 117, D10201, https:\/\/doi.org\/10.1029\/2011JD016858, 2012.","DOI":"10.1029\/2011JD016858"},{"key":"ref24","doi-asserted-by":"crossref","unstructured":"Koffi, B., Schulz, M., Br\u00e9on, F. M., Dentener, F., Steensen, B. M.,\nGriesfeller, J., Winker, D., Balkanski, Y., Bauer, S. E., Bellouin, N.,\nBerntsen, T., Bian, H., Chin, M., Diehl, T., Easter, R., Ghan, S.,\nHauglustaine, D. A., Iversen, T., Kirkev\u00e5g, A., Liu, X., Lohmann, U.,\nMyhre, G., Rasch, P., Seland, O., Skeie, R. B., Steenrod, S. D., Stier, P.,\nTackett, J., Takemura, T., Tsigaridis, K., Vuolo, M. R., Yoon, J., and Zhang,\nK.: Evaluation of the aerosol vertical distribution in global aerosol\nmodels through comparison against CALIOP measurements: AeroCom phase II\nresults, J. Geophys. Res.-Atmos., 121, 7254\u20137283, https:\/\/doi.org\/10.1002\/2015JD024639,\n2016.","DOI":"10.1002\/2015JD024639"},{"key":"ref25","doi-asserted-by":"crossref","unstructured":"Konsta, D., Dufresne, J. L., Chepfer, H., Idelkadi, A., and Cesana, G.: Use\nof A-train satellite observations (CALIPSO-PARASOL) to evaluate tropical\ncloud properties in the LMDZ5 GCM, Clim. Dynam., 47, 1263\u20131284, 2016.","DOI":"10.1007\/s00382-015-2900-y"},{"key":"ref26","doi-asserted-by":"crossref","unstructured":"Ma, P.-L., Rasch, P. J., Wang, M., Wang, H., Ghan, S., Easter, R. C.,\nGustafson, W., Liu, X., Zhang, Y., and Ma, H. Y.: How does increasing\nhorizontal resolution in a global climate model improve the simulation of\naerosol-cloud inteactions?, Geophys. Res. Lett., 42, 5058\u20135065, https:\/\/doi.org\/10.1002\/2015GL064183, 2015.","DOI":"10.1002\/2015GL064183"},{"key":"ref27","doi-asserted-by":"crossref","unstructured":"Ma, P. L., Rasch, P. J., Chepfer, H., Winker, D., and Ghan, S.: Observational constraint on cloud susceptibility weakened by aerosol retrieval limitations, Nat. Commun., 9, 2640, https:\/\/doi.org\/10.1038\/s41467-018-05028-4, 2018.","DOI":"10.1038\/s41467-018-05028-4"},{"key":"ref28","doi-asserted-by":"crossref","unstructured":"Ma, P.-L., Harrop, B. E., Larson, V. E., Neale, R. B., Gettelman, A., Morrison, H., Wang, H., Zhang, K., Klein, S. A., Zelinka, M. D., Zhang, Y., Qian, Y., Yoon, J.-H., Jones, C. R., Huang, M., Tai, S.-L., Singh, B., Bogenschutz, P. A., Zheng, X., Lin, W., Quaas, J., Chepfer, H., Brunke, M. A., Zeng, X., M\u00fclmenst\u00e4dt, J., Hagos, S., Zhang, Z., Song, H., Liu, X., Pritchard, M. S., Wan, H., Wang, J., Tang, Q., Caldwell, P. M., Fan, J., Berg, L. K., Fast, J. D., Taylor, M. A., Golaz, J.-C., Xie, S., Rasch, P. J., and Leung, L. R.: Better calibration of cloud parameterizations and subgrid effects increases the fidelity of the E3SM Atmosphere Model version 1, Geosci. Model Dev., 15, 2881\u20132916, https:\/\/doi.org\/10.5194\/gmd-15-2881-2022, 2022.","DOI":"10.5194\/gmd-15-2881-2022"},{"key":"ref29","doi-asserted-by":"crossref","unstructured":"Martensson, E. M., Nilsson, E. D., De Leeuw, G., Cohen, L. H., and Hansson,\nH. C.: Laboratory simulations and parameterization of the primary marine\naerosol production, J. Geophys. Res.-Atmos., 108, https:\/\/doi.org\/10.1029\/2002JD002263, 2003.","DOI":"10.1029\/2002JD002263"},{"key":"ref30","doi-asserted-by":"crossref","unstructured":"McCoy, I., Bretherton, C., Wood, R., Twohy, C., Gettelman, A., Bardeen, C., and Toohey, D.: Influences of Recent Particle Formation on Southern Ocean Aerosol Variability and Low Cloud Properties, J. Geophys. Res.-Atmos., 126, https:\/\/doi.org\/10.1029\/2020JD033529, 2021.","DOI":"10.1029\/2020JD033529"},{"key":"ref31","doi-asserted-by":"crossref","unstructured":"Mielonen, T., Arola, A., Komppula, M., Kukkonen, J., Koskinen, J., de\nLeeuw, K. G., and Lehtinen, E. J.: Comparison of CALIOP level 2 aerosol subtypes to aerosol types derived from AERONET inversion data, Geophys. Res. Lett., 36, https:\/\/doi.org\/10.1029\/2009GL039609, 2009.","DOI":"10.1029\/2009GL039609"},{"key":"ref32","unstructured":"NASA\/LARC\/SD\/ASDC: CALIPSO Lidar Level 1.5 Profile, V1-01, NASA\nLangley Atmospheric Science Data Center DAAC [data set], https:\/\/doi.org\/10.5067\/CALIOP\/CALIPSO\/CAL_LID_L15-Standard-V1-01, 2019."},{"key":"ref33","doi-asserted-by":"crossref","unstructured":"Quaas, J., Arola, A., Cairns, B., Christensen, M., Deneke, H., Ekman, A. M. L., Feingold, G., Fridlind, A., Gryspeerdt, E., Hasekamp, O., Li, Z., Lipponen, A., Ma, P.-L., M\u00fclmenst\u00e4dt, J., Nenes, A., Penner, J. E., Rosenfeld, D., Schr\u00f6dner, R., Sinclair, K., Sourdeval, O., Stier, P., Tesche, M., van Diedenhoven, B., and Wendisch, M.: Constraining the Twomey effect from satellite observations: issues and perspectives, Atmos. Chem. Phys., 20, 15079\u201315099, https:\/\/doi.org\/10.5194\/acp-20-15079-2020, 2020.","DOI":"10.5194\/acp-20-15079-2020"},{"key":"ref34","doi-asserted-by":"crossref","unstructured":"Rasch, P., Xie, J. S., Ma, P. L., Lin, W., Wang, H., Tang, Q., Burrows, S. M., Caldwell, P., Zhang, K., Easter, R. C., Cameron-Smith, P., Singh, B., Wan, H., Golaz, J. C., Harrop, B. E., Roesler, E., Bacmeister, J., Larson, V. E., Evans, K. J., Qian, Y., Taylor, M., Leung, L. R., Zhang, Y., Brent, L., Branstetter, M., Hannay, C., Mahajan, S., Mametjanov, A., Neale, R., Richter,\nJ. H., Yoon, J. H., Zender, C. S., Bader, D., Flanner, M., Foucar, J. G., Jacob, R., Keen, N., Klein, S. A., Liu, X. Salinger, A. G., Shrivastava, M., and Yang, Y.: An Overview of the Atmospheric Component of the\nEnergy Exascale Earth System Model, J. Adv. Model. Earth Sy., 11, 2377\u20132411, 2019.","DOI":"10.1029\/2019MS001629"},{"key":"ref35","doi-asserted-by":"crossref","unstructured":"Ratnam, M. V., Prasad, P., Raj, S. T., Raman, M. R., and Basha, G.: Changing\npatterns in aerosol vertical distribution over South and East Asia, Sci. Rep.\u200b\u200b\u200b\u200b\u200b\u200b\u200b, 11, 308, https:\/\/doi.org\/10.1038\/s41598-020-79361-4, 2021.","DOI":"10.1038\/s41598-020-79361-4"},{"key":"ref36","doi-asserted-by":"crossref","unstructured":"Reverdy, M., Chepfer, H., Donovan, D., Noel, V., Cesana, G., Hoareau, C.,\nChiriaco, M., and Bastin, S.: An EarthCARE\/ATLID simulator to evaluate\ncloud description in climate models, J. Geophys. Res.-Atmos., 120,\n11090\u201311113, https:\/\/doi.org\/10.1002\/2015JD023919, 2015.","DOI":"10.1002\/2015JD023919"},{"key":"ref37","doi-asserted-by":"crossref","unstructured":"Salzmann, M., Ferrachat,\u00a0S., Tully,\u00a0C., M\u00fcnch, S., Watson-Parris, D.,\nNeubauer, D., Siegenthaler-Le Drian, C., Rast, S., Heinold,\u00a0B., Crueger, T.,\nBrokopf, R., M\u00fclmenst\u00e4dt, J., Quaas, J., Wan, H., and Zhang, K.: The\nglobal atmosphere-aerosol model ICON-A-HAM2.3 \u2013 Initial model evaluation\nand effects of radiation balance tuning on aerosol optical thickness. J.\nAdv. Model. Earth Syst., 14, https:\/\/doi.org\/10.1029\/2021MS002699, 2022.","DOI":"10.1029\/2021MS002699"},{"key":"ref38","doi-asserted-by":"crossref","unstructured":"Stier, P.: Limitations of passive remote sensing to constrain global cloud condensation nuclei, Atmos. Chem. Phys., 16, 6595\u20136607, https:\/\/doi.org\/10.5194\/acp-16-6595-2016, 2016.","DOI":"10.5194\/acp-16-6595-2016"},{"key":"ref39","doi-asserted-by":"crossref","unstructured":"Stromatas, S., Turquety, S., Menut, L., Chepfer, H., P\u00e9r\u00e9, J. C., Cesana, G., and Bessagnet, B.: Lidar signal simulation for the evaluation of aerosols in chemistry transport models, Geosci. Model Dev., 5, 1543\u20131564, https:\/\/doi.org\/10.5194\/gmd-5-1543-2012, 2012.","DOI":"10.5194\/gmd-5-1543-2012"},{"key":"ref40","doi-asserted-by":"crossref","unstructured":"Swales, D., Pincus, R., and Bodas-Salcedo, A.: The Cloud Feedback Model Intercomparison Project Observational Simulator Package: Version 2 : Geosci. Model Dev., 11, 77-81, 2018","DOI":"10.5194\/gmd-11-77-2018"},{"key":"ref41","unstructured":"Szopa, S., Naik, V., Adhikary, B., Artaxo, P., Berntsen, T., Collins, W. D.,\nFuzzi, S., Gallardo, L., Kiendler Scharr, A., Klimont, Z., Liao, H., Unger,\nN., and Zanis, P.: Short-Lived Climate Forcers, in: Climate Change 2021: The\nPhysical Science Basis. Contribution of Working Group I to the Sixth\nAssessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., P\u00e9an, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelek\u00e7i, O., Yu, R., and Zhou, B., IPCC, 2021."},{"key":"ref42","doi-asserted-by":"crossref","unstructured":"Tegen, I., Neubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Bey, I., Schutgens, N., Stier, P., Watson-Parris, D., Stanelle, T., Schmidt, H., Rast, S., Kokkola, H., Schultz, M., Schroeder, S., Daskalakis, N., Barthel, S., Heinold, B., and Lohmann, U.: The global aerosol\u2013climate model ECHAM6.3\u2013HAM2.3 \u2013 Part\u00a01: Aerosol evaluation, Geosci. Model Dev., 12, 1643\u20131677, https:\/\/doi.org\/10.5194\/gmd-12-1643-2019, 2019.","DOI":"10.5194\/gmd-12-1643-2019"},{"key":"ref43","doi-asserted-by":"crossref","unstructured":"Tian, P., Cao, X., Zhang, L., Sun, N., Sun, L., Logan, T., Shi, J., Wang, Y., Ji, Y., Lin, Y., Huang, Z., Zhou, T., Shi, Y., and Zhang, R.: Aerosol vertical distribution and optical properties over China from long-term satellite and ground-based remote sensing, Atmos. Chem. Phys., 17, 2509\u20132523, https:\/\/doi.org\/10.5194\/acp-17-2509-2017, 2017.","DOI":"10.5194\/acp-17-2509-2017"},{"key":"ref44","doi-asserted-by":"crossref","unstructured":"van Marle, M. J. E., Kloster, S., Magi, B. I., Marlon, J. R., Daniau, A.-L., Field, R. D., Arneth, A., Forrest, M., Hantson, S., Kehrwald, N. M., Knorr, W., Lasslop, G., Li, F., Mangeon, S., Yue, C., Kaiser, J. W., and van der Werf, G. R.: Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750\u20132015), Geosci. Model Dev., 10, 3329\u20133357, https:\/\/doi.org\/10.5194\/gmd-10-3329-2017, 2017.","DOI":"10.5194\/gmd-10-3329-2017"},{"key":"ref45","doi-asserted-by":"crossref","unstructured":"Vuolo, M. R., Chepfer, H., Menut, L., and Cesana, G.: Comparison of mineral\ndust layers vertical structures modelled with Chimere-Dust and observed with\nthe Caliop lidar, J. Geophys. Res., 114, https:\/\/doi.org\/10.1029\/2008JD011219, 2009.","DOI":"10.1029\/2008JD011219"},{"key":"ref46","doi-asserted-by":"crossref","unstructured":"Wang, Y., Yuan, Q., Shen, H., Zheng, L., and Zhang, L.: Investigating Multiple Aerosol Optical Depth products from MODIS and VIIRS over Asia: Evaluation, Comparison and Merging, Atmos. Environ., 230, https:\/\/doi.org\/10.1016\/j.atmosenv.2020.117548, 2020.","DOI":"10.1016\/j.atmosenv.2020.117548"},{"key":"ref47","doi-asserted-by":"crossref","unstructured":"Waquet, F., Riedi, J., Labonnote, L. C., Goloub, P., Cairns, B., Deuz\u00e9,\nJ.-L., and Tanr\u00e9, D.: Aeorosol Remote Sensing over Clouds Using A-Train\nObservations, J. Atmos. Sci., 66, 2468\u20132480, 2009.","DOI":"10.1175\/2009JAS3026.1"},{"key":"ref48","doi-asserted-by":"crossref","unstructured":"Watson-Parris, D., Schutgens, N., Winker, D., Burton, S. P., Ferrare, R. A., and Stier, P.: On the limits of CALIOP for constraining modeled, free\ntropospheric aerosol, Geophys. Res. Lett., 45, 9260\u20139266, https:\/\/doi.org\/10.1029\/2018GL078195, 2018.","DOI":"10.1029\/2018GL078195"},{"key":"ref49","doi-asserted-by":"crossref","unstructured":"Winker, D. M., Tackett, J. L., Getzewich, B. J., Liu, Z., Vaughan, M. A., and Rogers, R. R.: The global 3-D distribution of tropospheric aerosols as characterized by CALIOP, Atmos. Chem. Phys., 13, 3345\u20133361, https:\/\/doi.org\/10.5194\/acp-13-3345-2013, 2013.","DOI":"10.5194\/acp-13-3345-2013"},{"key":"ref50","doi-asserted-by":"crossref","unstructured":"Xie, S., Lin, W., Rasch, P., Ma, P.-L., Neale, R., Larson, V., Qian, Y., Bogenschutz, P., Caldwell, P., Smith, P., Golaz, J.-C., Mahajan, S., Singh, B., Tang, Q. I., Wang, H., Yoon, J.-H., Zhang, K., and Zhang, Y.: Understanding cloud and convective characteristics in version 1 of the E3SM atmosphere model, J. Adv. Model. Earth Sy., 10, 2618\u20132644, https:\/\/doi.org\/10.1029\/2018MS001350, 2018.","DOI":"10.1029\/2018MS001350"},{"key":"ref51","doi-asserted-by":"crossref","unstructured":"Yu, H., Chin, M., Winker, D. M., Omar, A. H., Liu, Z., Kittaka, C., and Diehl, T.: Global view of aerosol vertical distributions from CALIPSO lidar\nmeasurements and GOCART simulations: Regional and seasonal variations,\nJ. Geophys. Res.-Atmos., 115, https:\/\/doi.org\/10.1029\/2009JD013364, 2010.","DOI":"10.1029\/2009JD013364"},{"key":"ref52","doi-asserted-by":"crossref","unstructured":"Zarzycki, M. and Bond, T. C.: How much can the vertical distribution of\nblack carbon affect its global direct radiative forcing?, Geophys.\nRes. Lett., 37, L20807, https:\/\/doi.org\/10.1029\/2010GL044555, 2010.","DOI":"10.1029\/2010GL044555"},{"key":"ref53","doi-asserted-by":"crossref","unstructured":"Zhang, K., O'Donnell, D., Kazil, J., Stier, P., Kinne, S., Lohmann, U., Ferrachat, S., Croft, B., Quaas, J., Wan, H., Rast, S., and Feichter, J.: The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations, Atmos. Chem. Phys., 12, 8911\u20138949, https:\/\/doi.org\/10.5194\/acp-12-8911-2012, 2012.","DOI":"10.5194\/acp-12-8911-2012"},{"key":"ref54","doi-asserted-by":"crossref","unstructured":"Zhang, K., Wan, H., Liu, X., Ghan, S. J., Kooperman, G. J., Ma, P.-L., Rasch, P. J., Neubauer, D., and Lohmann, U.: Technical Note: On the use of nudging for aerosol\u2013climate model intercomparison studies, Atmos. Chem. Phys., 14, 8631\u20138645, https:\/\/doi.org\/10.5194\/acp-14-8631-2014, 2014.","DOI":"10.5194\/acp-14-8631-2014"}],"container-title":["Geoscientific Model Development"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/gmd.copernicus.org\/articles\/16\/1359\/2023\/gmd-16-1359-2023.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,21]],"date-time":"2023-03-21T15:03:40Z","timestamp":1679411020000},"score":1,"resource":{"primary":{"URL":"https:\/\/gmd.copernicus.org\/articles\/16\/1359\/2023\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,2,27]]},"references-count":54,"journal-issue":{"issue":"4","published-online":{"date-parts":[[2023]]}},"URL":"http:\/\/dx.doi.org\/10.5194\/gmd-16-1359-2023","relation":{"has-preprint":[{"id-type":"doi","id":"10.5194\/egusphere-2022-438","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/egusphere-2022-438","asserted-by":"object"}],"has-review":[{"id-type":"doi","id":"10.5194\/egusphere-2022-438-CEC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/egusphere-2022-438-AC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/egusphere-2022-438-CEC2","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/egusphere-2022-438-RC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/egusphere-2022-438-RC2","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/egusphere-2022-438-CEC1","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/egusphere-2022-438-RC2","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/egusphere-2022-438-CEC2","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/egusphere-2022-438-AC1","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/egusphere-2022-438-RC1","asserted-by":"object"}],"is-part-of":[{"id-type":"doi","id":"10.5281\/zenodo.7107232","asserted-by":"subject"},{"id-type":"doi","id":"10.5281\/zenodo.7107162","asserted-by":"subject"},{"id-type":"doi","id":"10.5067\/CALIOP\/CALIPSO\/CAL_LID_L15-Standard-V1-01","asserted-by":"subject"},{"id-type":"doi","id":"10.5281\/zenodo.7418199","asserted-by":"subject"}]},"ISSN":["1991-9603"],"issn-type":[{"value":"1991-9603","type":"electronic"}],"subject":["General Medicine"],"published":{"date-parts":[[2023,2,27]]}}}