uni-leipzig-open-access/json/essd-15-1675-2023

1 line
97 KiB
Plaintext

{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,1,19]],"date-time":"2024-01-19T21:52:39Z","timestamp":1705701159988},"reference-count":204,"publisher":"Copernicus GmbH","issue":"4","license":[{"start":{"date-parts":[[2023,4,17]],"date-time":"2023-04-17T00:00:00Z","timestamp":1681689600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Earth Syst. Sci. Data"],"abstract":"<jats:p>Abstract. The Earth climate system is out of energy balance, and heat has accumulated continuously over the past decades, warming the ocean, the land, the cryosphere, and the atmosphere. According to the Sixth Assessment Report by Working Group\u00a0I of the Intergovernmental Panel on Climate Change, this planetary warming over multiple decades is human-driven and results in unprecedented and committed changes to the Earth system, with adverse impacts for ecosystems and human systems. The Earth heat inventory provides a measure of the Earth energy imbalance (EEI) and allows for quantifying how much heat has accumulated in the Earth system, as well as where the heat is stored. Here we show that the Earth system has continued to accumulate heat, with 381\u00b161\u2009ZJ accumulated from 1971 to 2020. This is equivalent to a heating rate (i.e., the EEI) of 0.48\u00b10.1\u2009W\u2009m\u22122. The majority, about 89\u2009%, of this heat is stored in the ocean, followed by about 6\u2009% on land, 1\u2009% in the atmosphere, and about 4\u2009% available for melting the cryosphere. Over the most recent period (2006\u20132020), the EEI amounts to 0.76\u00b10.2\u2009W\u2009m\u22122. The Earth energy imbalance is the most fundamental global climate indicator that the scientific community and the public can use as the measure of how well the world is doing in the task of bringing anthropogenic climate change under control. Moreover, this indicator is highly complementary to other established ones like global mean surface temperature as it represents a robust measure of the rate of climate change and its future commitment. We call for an implementation of the Earth energy imbalance into the Paris Agreement's Global Stocktake based on best available science. The Earth heat inventory in this study, updated from von Schuckmann et al.\u00a0(2020), is underpinned by worldwide multidisciplinary collaboration and demonstrates the critical importance of concerted international efforts for climate change monitoring and community-based recommendations and we also call for urgently needed actions for enabling continuity, archiving, rescuing, and calibrating efforts to assure improved and long-term monitoring capacity of the global climate observing system. The data for the Earth heat inventory are publicly available, and more details are provided in Table 4.<\/jats:p>","DOI":"10.5194\/essd-15-1675-2023","type":"journal-article","created":{"date-parts":[[2023,4,17]],"date-time":"2023-04-17T06:59:13Z","timestamp":1681714753000},"page":"1675-1709","source":"Crossref","is-referenced-by-count":20,"title":["Heat stored in the Earth system 1960\u20132020: where does the energy go?"],"prefix":"10.5194","volume":"15","author":[{"given":"Karina","family":"von Schuckmann","sequence":"first","affiliation":[]},{"given":"Audrey","family":"Mini\u00e8re","sequence":"additional","affiliation":[]},{"given":"Flora","family":"Gues","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1577-671X","authenticated-orcid":false,"given":"Francisco Jos\u00e9","family":"Cuesta-Valero","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9187-937X","authenticated-orcid":false,"given":"Gottfried","family":"Kirchengast","sequence":"additional","affiliation":[]},{"given":"Susheel","family":"Adusumilli","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1735-2366","authenticated-orcid":false,"given":"Fiammetta","family":"Straneo","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1398-8498","authenticated-orcid":false,"given":"Micha\u00ebl","family":"Ablain","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0264-9447","authenticated-orcid":false,"given":"Richard P.","family":"Allan","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6447-8538","authenticated-orcid":false,"given":"Paul M.","family":"Barker","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9576-8933","authenticated-orcid":false,"given":"Hugo","family":"Beltrami","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7719-7468","authenticated-orcid":false,"given":"Alejandro","family":"Blazquez","sequence":"additional","affiliation":[]},{"given":"Tim","family":"Boyer","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9854-0392","authenticated-orcid":false,"given":"Lijing","family":"Cheng","sequence":"additional","affiliation":[]},{"given":"John","family":"Church","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0405-421X","authenticated-orcid":false,"given":"Damien","family":"Desbruyeres","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0099-0457","authenticated-orcid":false,"given":"Han","family":"Dolman","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5100-4595","authenticated-orcid":false,"given":"Catia M.","family":"Domingues","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1333-4774","authenticated-orcid":false,"given":"Almudena","family":"Garc\u00eda-Garc\u00eda","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3738-4293","authenticated-orcid":false,"given":"Donata","family":"Giglio","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0805-6570","authenticated-orcid":false,"given":"John E.","family":"Gilson","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3236-2279","authenticated-orcid":false,"given":"Maximilian","family":"Gorfer","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0379-6353","authenticated-orcid":false,"given":"Leopold","family":"Haimberger","sequence":"additional","affiliation":[]},{"given":"Maria Z.","family":"Hakuba","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1412-3146","authenticated-orcid":false,"given":"Stefan","family":"Hendricks","sequence":"additional","affiliation":[]},{"given":"Shigeki","family":"Hosoda","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8023-4020","authenticated-orcid":false,"given":"Gregory C.","family":"Johnson","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5335-4097","authenticated-orcid":false,"given":"Rachel","family":"Killick","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1338-3234","authenticated-orcid":false,"given":"Brian","family":"King","sequence":"additional","affiliation":[]},{"given":"Nicolas","family":"Kolodziejczyk","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3601-1161","authenticated-orcid":false,"given":"Anton","family":"Korosov","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2959-5920","authenticated-orcid":false,"given":"Gerhard","family":"Krinner","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6875-945X","authenticated-orcid":false,"given":"Mikael","family":"Kuusela","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2678-095X","authenticated-orcid":false,"given":"Felix W.","family":"Landerer","sequence":"additional","affiliation":[]},{"given":"Moritz","family":"Langer","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9498-4551","authenticated-orcid":false,"given":"Thomas","family":"Lavergne","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3919-6720","authenticated-orcid":false,"given":"Isobel","family":"Lawrence","sequence":"additional","affiliation":[]},{"given":"Yuehua","family":"Li","sequence":"additional","affiliation":[]},{"given":"John","family":"Lyman","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1656-6124","authenticated-orcid":false,"given":"Florence","family":"Marti","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6185-3539","authenticated-orcid":false,"given":"Ben","family":"Marzeion","sequence":"additional","affiliation":[]},{"given":"Michael","family":"Mayer","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7899-9940","authenticated-orcid":false,"given":"Andrew H.","family":"MacDougall","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4582-7741","authenticated-orcid":false,"given":"Trevor","family":"McDougall","sequence":"additional","affiliation":[]},{"given":"Didier Paolo","family":"Monselesan","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7205-6298","authenticated-orcid":false,"given":"Jan","family":"Nitzbon","sequence":"additional","affiliation":[]},{"given":"In\u00e8s","family":"Otosaka","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4071-0512","authenticated-orcid":false,"given":"Jian","family":"Peng","sequence":"additional","affiliation":[]},{"given":"Sarah","family":"Purkey","sequence":"additional","affiliation":[]},{"given":"Dean","family":"Roemmich","sequence":"additional","affiliation":[]},{"given":"Kanako","family":"Sato","sequence":"additional","affiliation":[]},{"given":"Katsunari","family":"Sato","sequence":"additional","affiliation":[]},{"given":"Abhishek","family":"Savita","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8704-4123","authenticated-orcid":false,"given":"Axel","family":"Schweiger","sequence":"additional","affiliation":[]},{"given":"Andrew","family":"Shepherd","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9528-2917","authenticated-orcid":false,"given":"Sonia I.","family":"Seneviratne","sequence":"additional","affiliation":[]},{"given":"Leon","family":"Simons","sequence":"additional","affiliation":[]},{"given":"Donald A.","family":"Slater","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2541-7788","authenticated-orcid":false,"given":"Thomas","family":"Slater","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1201-3303","authenticated-orcid":false,"given":"Andrea K.","family":"Steiner","sequence":"additional","affiliation":[]},{"given":"Toshio","family":"Suga","sequence":"additional","affiliation":[]},{"given":"Tanguy","family":"Szekely","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5183-6145","authenticated-orcid":false,"given":"Wim","family":"Thiery","sequence":"additional","affiliation":[]},{"given":"Mary-Louise","family":"Timmermans","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8673-1933","authenticated-orcid":false,"given":"Inne","family":"Vanderkelen","sequence":"additional","affiliation":[]},{"given":"Susan E.","family":"Wjiffels","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5084-3570","authenticated-orcid":false,"given":"Tonghua","family":"Wu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2391-7877","authenticated-orcid":false,"given":"Michael","family":"Zemp","sequence":"additional","affiliation":[]}],"member":"3145","published-online":{"date-parts":[[2023,4,17]]},"reference":[{"key":"ref1","doi-asserted-by":"crossref","unstructured":"Abraham, J., Cheng, L., Mann, M. E., Trenberth, K., and von Schuckmann, K.: The ocean response to climate change guides both adaptation and mitigation efforts, Atmos. Ocean. Sci. Lett., 15, 100221, https:\/\/doi.org\/10.1016\/j.aosl.2022.100221, 2022.","DOI":"10.1016\/j.aosl.2022.100221"},{"key":"ref2","doi-asserted-by":"crossref","unstructured":"Abraham, J. P., Baringer, M., Bindoff, N. L., Boyer, T., Cheng, L. J., Church, J. A., Conroy, J. L., Domingues, C. M., Fasullo, J. T., Gilson, J., Goni, G., Good, S. A., Gorman, J. M., Gouretski, V., Ishii, M., Johnson, G. C., Kizu, S., Lyman, J. M., Macdonald, A. M., Minkowycz, W. J., Moffitt, S. E., Palmer, M. D., Piola, A. R., Reseghetti, F., Schuckmann, K., Trenberth, K. E., Velicogna, I., and Willis, J. K.: A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change, Rev. Geophys., 51, 450\u2013483, https:\/\/doi.org\/10.1002\/rog.20022, 2013.","DOI":"10.1002\/rog.20022"},{"key":"ref3","doi-asserted-by":"crossref","unstructured":"Abram, N., Gattuso, J.-P., Prakash, A., Cheng, L., Chidichimo, M. P., Crate, S., Enomoto, H., Garschagen, M., Gruber, N., Harper, S., Holland, E., Kudela, R. M., Rice, J., Steffen, K., and von Schuckmann, K.: Framing and Context of the Report. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: P\u00f6rtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegr\u00eda A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 73\u2013129, https:\/\/doi.org\/10.1017\/9781009157964.003, 2019.","DOI":"10.1017\/9781009157964.003"},{"key":"ref4","doi-asserted-by":"crossref","unstructured":"Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., and Siegfried, M. R.: Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves, Nat. Geosci., 13, 616\u2013620, https:\/\/doi.org\/10.1038\/s41561-020-0616-z, 2020.","DOI":"10.1038\/s41561-020-0616-z"},{"key":"ref5","unstructured":"Adusumilli, S., Straneo, F., Hendricks, S., Korosov, A., Lavergne, T., Lawrence, I., Marzeion, B., Otosaka, I., Schweiger, A., Shepherd, A., Slater, D. A., Slater, T., Timmermanns, M.-L., and Zemp, M.: GCOS EHI 1960\u20132020 Cryosphere Heat Content, World Data Center for Climate (WDCC) at DKRZ [data set], https:\/\/doi.org\/10.26050\/WDCC\/GCOS_EHI_1960-2020_CrHC, 2022."},{"key":"ref6","doi-asserted-by":"crossref","unstructured":"Allison, L. C., Roberts, C. D., Palmer, M. D., Hermanson, L., Killick, R. E., Rayner, N. A., Smith, D. M., and Andrews, M. B.: Towards quantifying uncertainty in ocean heat content changes using synthetic profiles, Environ. Res. Lett., 14, 084037, https:\/\/doi.org\/10.1088\/1748-9326\/ab2b0b, 2019.","DOI":"10.1088\/1748-9326\/ab2b0b"},{"key":"ref7","doi-asserted-by":"crossref","unstructured":"Angerer, B., Ladst\u00e4dter, F., Scherllin-Pirscher, B., Schw\u00e4rz, M., Steiner, A. K., Foelsche, U., and Kirchengast, G.: Quality aspects of the Wegener Center multi-satellite GPS radio occultation record OPSv5.6, Atmos. Meas. Tech., 10, 4845\u20134863, https:\/\/doi.org\/10.5194\/amt-10-4845-2017, 2017.","DOI":"10.5194\/amt-10-4845-2017"},{"key":"ref8","doi-asserted-by":"crossref","unstructured":"Barker, P. M. and McDougall, T. J.: Two Interpolation Methods Using Multiply-Rotated Piecewise Cubic Hermite Interpolating Polynomials, J. Atmos. Ocean. Tech., 37, 605\u2013619, https:\/\/doi.org\/10.1175\/JTECH-D-19-0211.1, 2020.","DOI":"10.1175\/JTECH-D-19-0211.1"},{"key":"ref9","doi-asserted-by":"crossref","unstructured":"Barnoud, A., Pfeffer, J., Gu\u00e9rou, A., Frery, M.-L., Sim\u00e9on, M., Cazenave, A., Chen, J., Llovel, W., Thierry, V., Legeais, J.-F., and Ablain, M.: Contributions of Altimetry and Argo to Non-Closure of the Global Mean Sea Level Budget Since 2016, Geophys. Res. Lett., 48, e2021GL092824, https:\/\/doi.org\/10.1029\/2021GL092824, 2021.","DOI":"10.1029\/2021GL092824"},{"key":"ref10","doi-asserted-by":"crossref","unstructured":"Bell, B., Hersbach, H., Simmons, A., Berrisford, P., Dahlgren, P., Hor\u00e1nyi, A., Mu\u00f1oz-Sabater, J., Nicolas, J., Radu, R., Schepers, D., Soci, C., Villaume, S., Bidlot, J.-R., Haimberger, L., Woollen, J., Buontempo, C., and Th\u00e9paut, J.-N.: The ERA5 global reanalysis: Preliminary extension to 1950, Q. J. Roy. Meteor. Soc., 147, 4186\u20134227, https:\/\/doi.org\/10.1002\/qj.4174, 2021.","DOI":"10.1002\/qj.4174"},{"key":"ref11","doi-asserted-by":"crossref","unstructured":"Beltrami, H. and Mareschal, J.-C.: Ground temperature histories for central and eastern Canada from geothermal measurements: Little Ice Age signature, Geophys. Res. Lett., 19, 689\u2013692, https:\/\/doi.org\/10.1029\/92GL00671, 1992.","DOI":"10.1029\/92GL00671"},{"key":"ref12","doi-asserted-by":"crossref","unstructured":"Beltrami, H., Smerdon, J. E., Pollack, H. N., and Huang, S.: Continental heat gain in the global climate system, Geophys. Res. Lett., 29, 8-1\u20138-3, https:\/\/doi.org\/10.1029\/2001GL014310, 2002.","DOI":"10.1029\/2001GL014310"},{"key":"ref13","doi-asserted-by":"crossref","unstructured":"Berrisford, P., K\u00e5llberg, P., Kobayashi, S., Dee, D., Uppala, S., Simmons, A. J., Poli, P., and Sato, H.: Atmospheric conservation properties in ERA-Interim, Q. J. Roy. Meteor. Soc., 137, 1381\u20131399, https:\/\/doi.org\/10.1002\/qj.864, 2011.","DOI":"10.1002\/qj.864"},{"key":"ref14","doi-asserted-by":"crossref","unstructured":"Biskaborn, B. K., Lanckman, J.-P., Lantuit, H., Elger, K., Streletskiy, D. A., Cable, W. L., and Romanovsky, V. E.: The new database of the Global Terrestrial Network for Permafrost (GTN-P), Earth Syst. Sci. Data, 7, 245\u2013259, https:\/\/doi.org\/10.5194\/essd-7-245-2015, 2015.","DOI":"10.5194\/essd-7-245-2015"},{"key":"ref15","doi-asserted-by":"crossref","unstructured":"Boyer, T., Domingues, C. M., Good, S. A., Johnson, G. C., Lyman, J. M., Ishii, M., Gouretski, V., Willis, J. K., Antonov, J., Wijffels, S., Church, J. A., Cowley, R., and Bindoff, N. L.: Sensitivity of Global Upper-Ocean Heat Content Estimates to Mapping Methods, XBT Bias Corrections, and Baseline Climatologies, J. Climate, 29, 4817\u20134842, https:\/\/doi.org\/10.1175\/JCLI-D-15-0801.1, 2016.","DOI":"10.1175\/JCLI-D-15-0801.1"},{"key":"ref16","doi-asserted-by":"crossref","unstructured":"Brown, J., Ferrians Jr., O. J., Heginbottom, J. A., and Melnikov, E. S.: Circum-Arctic map of permafrost and ground-ice conditions, Circum-Pacific Map, https:\/\/doi.org\/10.3133\/cp45, 1997.","DOI":"10.3133\/cp45"},{"key":"ref17","doi-asserted-by":"crossref","unstructured":"Carr, J. R., Stokes, C. R., and Vieli, A.: Threefold increase in marine-terminating outlet glacier retreat rates across the Atlantic Arctic: 1992\u20132010, Ann. Glaciol., 58, 72\u201391, https:\/\/doi.org\/10.1017\/aog.2017.3, 2017.","DOI":"10.1017\/aog.2017.3"},{"key":"ref18","doi-asserted-by":"crossref","unstructured":"Cheng, L., Zhu, J., Cowley, R., Boyer, T., and Wijffels, S.: Time, Probe Type, and Temperature Variable Bias Corrections to Historical Expendable Bathythermograph Observations, J. Atmos. Ocean. Tech., 31, 1793\u20131825, https:\/\/doi.org\/10.1175\/JTECH-D-13-00197.1, 2014.","DOI":"10.1175\/JTECH-D-13-00197.1"},{"key":"ref19","doi-asserted-by":"crossref","unstructured":"Cheng, L., Abraham, J., Goni, G., Boyer, T., Wijffels, S., Cowley, R., Gouretski, V., Reseghetti, F., Kizu, S., Dong, S., Bringas, F., Goes, M., Houpert, L., Sprintall, J., and Zhu, J.: XBT Science: Assessment of Instrumental Biases and Errors, B. Am. Meteorol. Soc., 97, 924\u2013933, https:\/\/doi.org\/10.1175\/BAMS-D-15-00031.1, 2015.","DOI":"10.1175\/BAMS-D-15-00031.1"},{"key":"ref20","doi-asserted-by":"crossref","unstructured":"Cheng, L., Trenberth, K. E., Fasullo, J., Boyer, T., Abraham, J., and Zhu, J.: Improved estimates of ocean heat content from 1960 to 2015, Sci. Adv., 3, e1601545, https:\/\/doi.org\/10.1126\/sciadv.1601545, 2017a.","DOI":"10.1126\/sciadv.1601545"},{"key":"ref21","doi-asserted-by":"crossref","unstructured":"Cheng, L., Trenberth, K., Fasullo, J., Abraham, J., Boyer, T., von Schuckmann, K., and Zhu, J.: Taking the Pulse of the Planet, Eos Washington DC, https:\/\/doi.org\/10.1029\/2017EO081839, 2017b.","DOI":"10.1029\/2017EO081839"},{"key":"ref22","doi-asserted-by":"crossref","unstructured":"Cheng, L., Luo, H., Boyer, T., Cowley, R., Abraham, J.&lt;span id=&quot;page1701&quot;\/&gt;, Gouretski, V., Reseghetti, F., and Zhu, J.: How Well Can We Correct Systematic Errors in Historical XBT Data?, J. Atmos. Ocean. Tech., 35, 1103\u20131125, https:\/\/doi.org\/10.1175\/JTECH-D-17-0122.1, 2018.","DOI":"10.1175\/JTECH-D-17-0122.1"},{"key":"ref23","doi-asserted-by":"crossref","unstructured":"Cheng, L., Abraham, J., Hausfather, Z., and Trenberth, K. E.: How fast are the oceans warming?, Science, 363, 128\u2013129, https:\/\/doi.org\/10.1126\/science.aav7619, 2019.","DOI":"10.1126\/science.aav7619"},{"key":"ref24","doi-asserted-by":"crossref","unstructured":"Cheng, L., Foster, G., Hausfather, Z., Trenberth, K. E., and Abraham, J.: Improved Quantification of the Rate of Ocean Warming, J. Climate, 35, 4827\u20134840, https:\/\/doi.org\/10.1175\/JCLI-D-21-0895.1, 2022a.","DOI":"10.1175\/JCLI-D-21-0895.1"},{"key":"ref25","doi-asserted-by":"crossref","unstructured":"Cheng, L., Schuckmann, K. von, Abraham, J., Trenberth, K., Mann, M., Zanna, L., England, M. H., Zika, J. D., Fasullo, J., Yu1, Y., Pan, Y., Zhu, J., Newsom, E., Bronselaer, B., and Lin, X.: Past and future ocean warming, Nat. Rev. Earth Env., 3, 776\u2013794, https:\/\/doi.org\/10.1038\/s43017-022-00345-1, 2022b.","DOI":"10.1038\/s43017-022-00345-1"},{"key":"ref26","doi-asserted-by":"crossref","unstructured":"Chiodo, G. and Haimberger, L.: Interannual changes in mass consistent energy budgets from ERA-Interim and satellite data, J. Geophys. Res.-Atmos., 115, D02112, https:\/\/doi.org\/10.1029\/2009JD012049, 2010.","DOI":"10.1029\/2009JD012049"},{"key":"ref27","doi-asserted-by":"crossref","unstructured":"Church, J. A., White, N. J., Konikow, L. F., Domingues, C. M., Cogley, J. G., Rignot, E., Gregory, J. M., van den Broeke, M. R., Monaghan, A. J., and Velicogna, I.: Revisiting the Earth's sea-level and energy budgets from 1961 to 2008, Geophys. Res. Lett., 38, L18601, https:\/\/doi.org\/10.1029\/2011GL048794, 2011.","DOI":"10.1029\/2011GL048794"},{"key":"ref28","doi-asserted-by":"crossref","unstructured":"Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Qu\u00e9r\u00e9, C., Myneni, R. B., Piao, S., and Thornton, P.: Carbon and Other Biogeochemical Cycles, in: Climate Change 2013 \u2013 The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge University Press, Cambridge United Kingdom and New York, USA, 465\u2013570, https:\/\/doi.org\/10.1017\/CBO9781107415324.015, 2014.","DOI":"10.1017\/CBO9781107415324.015"},{"key":"ref29","doi-asserted-by":"crossref","unstructured":"Cleveland, W. S.: Robust Locally Weighted Regression and Smoothing Scatterplots, J. Am. Stat. Assoc., 74, 829\u2013836, 1979.","DOI":"10.1080\/01621459.1979.10481038"},{"key":"ref30","doi-asserted-by":"crossref","unstructured":"Clough, W. J. and Hansen, L. B.: The Ross Ice Shelf Project, Science, 203, 433\u2013434, https:\/\/doi.org\/10.1126\/science.203.4379.433, 1979.","DOI":"10.1126\/science.203.4379.433"},{"key":"ref31","unstructured":"Copernicus Marine Ocean Monitoring Indicator: Global ocean heat content: https:\/\/marine.copernicus.eu\/access-data\/ocean-monitoring-indicators\/global-ocean-heat-content-0-2000\\\\,m-time-series-and-trend, last access: 29\u00a0March 2023."},{"key":"ref32","doi-asserted-by":"crossref","unstructured":"Cohen, J., Zhang, X., Francis, J., Jung, T., Kwok, R., Overland, J., Ballinger, T., Bhatt, U. S., Chen, H. W., Coumou, D., Feldstein, S., Handorf, D., Henderson, G., Ionita, M., Kretschmer, M., Laliberte, F., Lee, S., Linderholm, H. W., Maslowski, W., Peings, Y., Pfeiffer, K., and Yoon, J.: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather, Nat. Clim. Change, 10, 20\u201329, https:\/\/doi.org\/10.1038\/s41558-019-0662-y, 2020.","DOI":"10.1038\/s41558-019-0662-y"},{"key":"ref33","doi-asserted-by":"crossref","unstructured":"Cook, A. J. and Vaughan, D. G.: Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years, The Cryosphere, 4, 77\u201398, https:\/\/doi.org\/10.5194\/tc-4-77-2010, 2010.","DOI":"10.5194\/tc-4-77-2010"},{"key":"ref34","doi-asserted-by":"crossref","unstructured":"Crisp, D., Dolman, H., Tanhua, T., McKinley, G. A., Hauck, J., Bastos, A., Sitch, S., Eggleston, S., and Aich, V.: How Well Do We Understand the Land-Ocean-Atmosphere Carbon Cycle?, Rev. Geophys., 60, e2021RG000736, https:\/\/doi.org\/10.1029\/2021RG000736, 2022.","DOI":"10.1029\/2021RG000736"},{"key":"ref35","doi-asserted-by":"crossref","unstructured":"Cuesta-Valero, F. J., Garc\u00eda-Garc\u00eda, A., Beltrami, H., and Smerdon, J. E.: First assessment of continental energy storage in CMIP5 simulations, Geophys. Res. Lett., 43, 5326\u20135335, https:\/\/doi.org\/10.1002\/2016GL068496, 2016.","DOI":"10.1002\/2016GL068496"},{"key":"ref36","doi-asserted-by":"crossref","unstructured":"Cuesta-Valero, F. J., Garc\u00eda-Garc\u00eda, A., Beltrami, H., Zorita, E., and Jaume-Santero, F.: Long-term Surface Temperature (LoST) database as a complement for GCM preindustrial simulations, Clim. Past, 15, 1099\u20131111, https:\/\/doi.org\/10.5194\/cp-15-1099-2019, 2019.","DOI":"10.5194\/cp-15-1099-2019"},{"key":"ref37","doi-asserted-by":"crossref","unstructured":"Cuesta-Valero, F. J., Garc\u00eda-Garc\u00eda, A., Beltrami, H., and Finnis, J.: First assessment of the earth heat inventory within CMIP5 historical simulations, Earth Syst. Dynam., 12, 581\u2013600, https:\/\/doi.org\/10.5194\/esd-12-581-2021, 2021a.","DOI":"10.5194\/esd-12-581-2021"},{"key":"ref38","doi-asserted-by":"crossref","unstructured":"Cuesta-Valero, F. J., Garc\u00eda-Garc\u00eda, A., Beltrami, H., Gonz\u00e1lez-Rouco, J. F., and Garc\u00eda-Bustamante, E.: Long-term global ground heat flux and continental heat storage from geothermal data, Clim. Past, 17, 451\u2013468, https:\/\/doi.org\/10.5194\/cp-17-451-2021, 2021b.","DOI":"10.5194\/cp-17-451-2021"},{"key":"ref39","doi-asserted-by":"crossref","unstructured":"Cuesta-Valero, F. J., Beltrami, H., Gruber, S., Garc\u00eda-Garc\u00eda, A., and Gonz\u00e1lez-Rouco, J. F.: A new bootstrap technique to quantify uncertainty in estimates of ground surface temperature and ground heat flux histories from geothermal data, Geosci. Model Dev., 15, 7913\u20137932, https:\/\/doi.org\/10.5194\/gmd-15-7913-2022, 2022.","DOI":"10.5194\/gmd-15-7913-2022"},{"key":"ref40","doi-asserted-by":"crossref","unstructured":"Cuesta-Valero, F. J., Beltrami, H., Garc\u00eda-Garc\u00eda, A., Krinner, G., Langer, M., MacDougall, A. H., Nitzbon, J., Peng, J., von Schuckmann, K., Seneviratne, S. I., Thiery, W., Vanderkelen, I., and Wu, T.: Continental heat storage: Contributions from ground, inland waters, and permafrost thawing, Earth Syst. Dynam. Discuss. [preprint], https:\/\/doi.org\/10.5194\/esd-2022-32, accepted, 2023a.","DOI":"10.5194\/esd-2022-32-supplement"},{"key":"ref41","unstructured":"Cuesta-Valero, F. J., Beltrami, H., Garc\u00eda-Garc\u00eda, A., Krinner, G., Langer, M., MacDougall, A., Nitzbon, J., Peng, J., von Schuckmann, K., Seneviratne, S. I., Thiery, W., Vanderkelen, I., and Wu, T.: GCOS EHI 1960\u20132020 Continental Heat Content (Version 2), World Data Center for Climate [data set], https:\/\/doi.org\/10.26050\/WDCC\/GCOS_EHI_1960-2020_CoHC_v2, 2023b."},{"key":"ref42","doi-asserted-by":"crossref","unstructured":"Demezhko, D. Y. and Gornostaeva, A. A.: Late Pleistocene\u2013Holocene ground surface heat flux changes reconstructed from borehole temperature data (the Urals, Russia), Clim. Past, 11, 647\u2013652, https:\/\/doi.org\/10.5194\/cp-11-647-2015, 2015.","DOI":"10.5194\/cp-11-647-2015"},{"key":"ref43","doi-asserted-by":"crossref","unstructured":"Denning, A. S.: Where Has All the Carbon Gone?, Annu. Rev. Earth Pl. Sc., 50, 55\u201378, https:\/\/doi.org\/10.1146\/annurev-earth-032320-092010, 2022.","DOI":"10.1146\/annurev-earth-032320-092010"},{"key":"ref44","doi-asserted-by":"crossref","unstructured":"Desbruy\u00e8res, D., McDonagh, E. L., King, B. A., and Thierry, V.: Global and Full-Depth Ocean Temperature Trends during the Early Twenty-First Century from Argo and Repeat Hydrography, J. Climate, 30, 1985\u20131997, https:\/\/doi.org\/10.1175\/JCLI-D-16-0396.1, 2017.","DOI":"10.1175\/JCLI-D-16-0396.1"},{"key":"ref45","doi-asserted-by":"crossref","unstructured":"Desbruy\u00e8res, D. G., Purkey, S. G., McDonagh, E. L., Johnson, G. C., and King, B. A.: Deep and abyssal ocean warming from 35\u00a0years of repeat hydrography, Geophys. Res. Lett., 43, 310\u2013356, https:\/\/doi.org\/10.1002\/2016GL070413, 2016.","DOI":"10.1002\/2016GL070413"},{"key":"ref46","doi-asserted-by":"crossref","unstructured":"de Vrese, P., Stacke, T., Caves Rugenstein, J., Goodman, J., and Brovkin, V.: Snowfall-albedo feedbacks could have led to deglaciation of snowball Earth starting from mid-latitudes, Commun. Earth Environ., 2, 91, https:\/\/doi.org\/10.1038\/s43247-021-00160-4, 2021.","DOI":"10.1038\/s43247-021-00160-4"},{"key":"ref47","doi-asserted-by":"crossref","unstructured":"Dieng, H. B., Cazenave, A., Meyssignac, B., and Ablain, M.: New estimate of the current rate of sea level rise from a sea level budget approach, Geophys. Res. Lett., 44, 3744\u20133751, https:\/\/doi.org\/10.1002\/2017GL073308, 2017.","DOI":"10.1002\/2017GL073308"},{"key":"ref48","doi-asserted-by":"crossref","unstructured":"Domingues, C. M., Church, J. A., White, N. J., Gleckler, P. J., Wijffels, S. E., Barker, P. M., and Dunn, J. R.: Improved estimates of upper-ocean warming and multi-decadal sea-level rise, Nature, 453, 1090\u20131093, https:\/\/doi.org\/10.1038\/nature07080, 2008.","DOI":"10.1038\/nature07080"},{"key":"ref49","doi-asserted-by":"crossref","unstructured":"Dorigo, W., Dietrich, S., Aires, F., Brocca, L., Carter, S., Cretaux, J.-F., Dunkerley, D., Enomoto, H., Forsberg, R., G\u00fcntner, A., Hegglin, M. I., Hollmann, R., Hurst, D. F., Johannessen, J. A., Kummerow, C., Lee, T., Luojus, K., Looser, U., Miralles, D. G., Pellet, V., Recknagel, T., Vargas, C. R., Schneider, U., Schoeneich, P., Schr\u00f6der, M., Tapper, N., Vuglinsky, V., Wagner, W., Yu, L., Zappa, L., Zemp, M., and Aich, V.: Closing the Water Cycle from Observations across Scales: Where Do We Stand?, B. Am. Meteorol. Soc., 102, E1897\u2013E1935, https:\/\/doi.org\/10.1175\/BAMS-D-19-0316.1, 2021.","DOI":"10.1175\/BAMS-D-19-0316.1"},{"key":"ref50","unstructured":"ECMWF-IFS: ECMWF-IFS: Part IV: Physical processes, IFS documentation\u2013Cy41r1, 210 pp., https:\/\/doi.org\/10.21957\/p50qmwprw, 2015."},{"key":"ref51","doi-asserted-by":"crossref","unstructured":"Eicken, H., Fischer, H., and Lemke, P.: Effects of the snow cover on Antarctic sea ice and potential modulation of its response to climate change, Ann. Glaciol., 21, 369\u2013376, https:\/\/doi.org\/10.3189\/S0260305500016086, 1995.","DOI":"10.3189\/S0260305500016086"},{"key":"ref52","unstructured":"EOPAC Team: GNSS Radio Occultation Record OPS 5.6 2001\u20132020, Wegener Center, University of Graz, Graz, Austria, EOPAC Team [data set], https:\/\/doi.org\/10.25364\/WEGC\/OPS5.6:2021.1, 2021."},{"key":"ref53","doi-asserted-by":"crossref","unstructured":"Farinotti, D., Huss, M., F\u00fcrst, J. J., Landmann, J., Machguth, H., Maussion, F., and Pandit, A.: A consensus estimate for the ice thickness distribution of all glaciers on Earth, Nat. Geosci., 12, 168\u2013173, https:\/\/doi.org\/10.1038\/s41561-019-0300-3, 2019.","DOI":"10.1038\/s41561-019-0300-3"},{"key":"ref54","doi-asserted-by":"crossref","unstructured":"Faroux, S., Kaptu\u00e9 Tchuent\u00e9, A. T., Roujean, J.-L., Masson, V., Martin, E., and Le Moigne, P.: ECOCLIMAP-II\/Europe: a twofold database of ecosystems and surface parameters at 1 km resolution based on satellite information for use in land surface, meteorological and climate models, Geosci. Model Dev., 6, 563\u2013582, https:\/\/doi.org\/10.5194\/gmd-6-563-2013, 2013.","DOI":"10.5194\/gmd-6-563-2013"},{"key":"ref55","doi-asserted-by":"crossref","unstructured":"Fischer, E. M., Sippel, S., and Knutti, R.: Increasing probability of record-shattering climate extremes, Nat. Clim. Change, 11, 689\u2013695, https:\/\/doi.org\/10.1038\/s41558-021-01092-9, 2021.","DOI":"10.1038\/s41558-021-01092-9"},{"key":"ref56","doi-asserted-by":"crossref","unstructured":"Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.-L., Frame, D., Lunt, D. J., Mauritsen, T., Palmer, M. D., Watanabe, M., Wild, M., and Zhang, H.: The Earth's Energy Budget, Climate Feedbacks, and Climate Sensitivity, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., P\u00e9an, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelek\u00e7i, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, Cambridge, United Kingdom and New York, NY, USA, 923\u20131054, https:\/\/doi.org\/10.1017\/9781009157896.009, 2021.","DOI":"10.1017\/9781009157896.009"},{"key":"ref57","doi-asserted-by":"crossref","unstructured":"Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Bakker, D. C. E., Hauck, J., Le Qu\u00e9r\u00e9, C., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., Bates, N. R., Becker, M., Bellouin, N., Bopp, L., Chau, T. T. T., Chevallier, F., Chini, L. P., Cronin, M., Currie, K. I., Decharme, B., Djeutchouang, L. M., Dou, X., Evans, W., Feely, R. A., Feng, L., Gasser, T., Gilfillan, D., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., G\u00fcrses, \u00d6., Harris, I., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Luijkx, I. T., Jain, A., Jones, S. D., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., K\u00f6rtzinger, A., Landsch\u00fctzer, P., Lauvset, S. K., Lef\u00e8vre, N., Lienert, S., Liu, J., Marland, G., McGuire, P. C., Melton, J. R., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Niwa, Y., Ono, T., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., R\u00f6denbeck, C., Rosan, T. M., Schwinger, J., Schwingshackl, C., S\u00e9f\u00e9rian, R., Sutton, A. J., Sweeney, C., Tanhua, T., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F., van der Werf, G. R., Vuichard, N., Wada, C., Wanninkhof, R., Watson, A. J., Willis, D., Wiltshire, A. J., Yuan, W., Yue, C., Yue, X., Zaehle, S., and Zeng, J.: Global Carbon Budget 2021, Earth Syst. Sci. Data, 14, 1917\u20132005, https:\/\/doi.org\/10.5194\/essd-14-1917-2022, 2022.","DOI":"10.5194\/essd-14-1917-2022"},{"key":"ref58","doi-asserted-by":"crossref","unstructured":"Frieler, K., Lange, S., Piontek, F., Reyer, C. P. O., Schewe, J., Warszawski, L., Zhao, F., Chini, L., Denvil, S., Emanuel, K., Geiger, T., Halladay, K., Hurtt, G., Mengel, M., Murakami, D., Ostberg, S., Popp, A., Riva, R., Stevanovic, M., Suzuki, T., Volkholz, J., Burke, E., Ciais, P., Ebi, K., Eddy, T. D., Elliott, J., Galbraith, E., Gosling, S. N., Hattermann, F., Hickler, T., Hinkel, J., Hof, C., Huber, V., J\u00e4germeyr, J., Krysanova, V., Marc\u00e9, R., M\u00fcller Schmied, H., Mouratiadou, I., Pierson, D., Tittensor, D. P., Vautard, R., van Vliet, M., Biber, M. F., Betts, R. A., Bodirsky, B. L., Deryng, D., Frolking, S., Jones, C. D., Lotze, H. K., Lotze-Campen, H., Sahajpal, R., Thonicke, K., Tian, H., and Yamagata, Y.: Assessing the impacts of 1.5\u2009\u00b0C global warming \u2013 simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b), Geosci. Model Dev., 10, 4321\u20134345, https:\/\/doi.org\/10.5194\/gmd-10-4321-2017, 2017.","DOI":"10.5194\/gmd-10-4321-2017"},{"key":"ref59","doi-asserted-by":"crossref","unstructured":"Fu, Q., Solomon, S., Pahlavan, H. A., and Lin, P.: Observed changes in Brewer\u2013Dobson circulation for 1980\u20132018, Environ. Res. Lett., 14, 114026, https:\/\/doi.org\/10.1088\/1748-9326\/ab4de7, 2019.","DOI":"10.1088\/1748-9326\/ab4de7"},{"key":"ref60","doi-asserted-by":"crossref","unstructured":"G\u00e4deke, A., Langer, M., Boike, J., Burke, E. J., Chang, J., Head, M., Reyer, C. P. O., Schaphoff, S., Thiery, W., and Thonicke, K.: Climate change reduces winter overland travel across the Pan-Arctic even under low-end global warming scenarios, Environ. Res. Lett., 16, 24049, https:\/\/doi.org\/10.1088\/1748-9326\/abdcf2, 2021.","DOI":"10.1088\/1748-9326\/abdcf2"},{"key":"ref61","doi-asserted-by":"crossref","unstructured":"Gaillard, F., Reynaud, T., Thierry, V., Kolodziejczyk, N., and von Schuckmann, K.: In Situ\u2013Based Reanalysis of the Global Ocean Temperature and Salinity with ISAS: Variability of the Heat Content and Steric Height, J. Climate, 29, 1305\u20131323, https:\/\/doi.org\/10.1175\/JCLI-D-15-0028.1, 2016.","DOI":"10.1175\/JCLI-D-15-0028.1"},{"key":"ref62","unstructured":"GCOS: The Status of the Global Climate Observing System 2021: Executive Summary (GCOS-239), Geneva, Switzerland, https:\/\/ane4bf-datap1.s3.eu-west-1.amazonaws.com\/wmod8_gcos\/s3fs-public\/2021-misc-i-gcos-status-report-211187_en_0.pdf?3xI1k6_u9wMSAsmJ5Hzy9nL5kzdLbPMD= (last access: 29\u00a0March 2023), 2021."},{"key":"ref63","doi-asserted-by":"crossref","unstructured":"Gelaro, R., McCarty, W., Su\u00e1rez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419\u20135454, https:\/\/doi.org\/10.1175\/JCLI-D-16-0758.1, 2017.","DOI":"10.1175\/JCLI-D-16-0758.1"},{"key":"ref64","doi-asserted-by":"crossref","unstructured":"Golub, M., Thiery, W., Marc\u00e9, R., Pierson, D., Vanderkelen, I., Mercado-Bettin, D., Woolway, R. I., Grant, L., Jennings, E., Kraemer, B. M., Schewe, J., Zhao, F., Frieler, K., Mengel, M., Bogomolov, V. Y., Bouffard, D., C\u00f4t\u00e9, M., Couture, R.-M., Debolskiy, A. V., Droppers, B., Gal, G., Guo, M., Janssen, A. B. G., Kirillin, G., Ladwig, R., Magee, M., Moore, T., Perroud, M., Piccolroaz, S., Raaman Vinnaa, L., Schmid, M., Shatwell, T., Stepanenko, V. M., Tan, Z., Woodward, B., Yao, H., Adrian, R., Allan, M., Anneville, O., Arvola, L., Atkins, K., Boegman, L., Carey, C., Christianson, K., de Eyto, E., DeGasperi, C., Grechushnikova, M., Hejzlar, J., Joehnk, K., Jones, I. D., Laas, A., Mackay, E. B., Mammarella, I., Markensten, H., McBride, C., \u00d6zkundakci, D., Potes, M., Rinke, K., Robertson, D., Rusak, J. A., Salgado, R., van der Linden\u200b\u200b\u200b\u200b\u200b\u200b\u200b, L., Verburg, P., Wain, D., Ward, N. K., Wollrab, S., and Zdorovennova, G.: A framework for ensemble modelling of climate change impacts on lakes worldwide: the ISIMIP Lake Sector, Geosci. Model Dev., 15, 4597\u20134623, https:\/\/doi.org\/10.5194\/gmd-15-4597-2022, 2022.","DOI":"10.5194\/gmd-15-4597-2022"},{"key":"ref65","doi-asserted-by":"crossref","unstructured":"Good, S. A.: The impact of observational sampling on time series of global 0\u2013700\u2009m ocean average temperature: a case study, Int. J. Climatol., 37, 2260\u20132268, https:\/\/doi.org\/10.1002\/joc.4654, 2017.","DOI":"10.1002\/joc.4654"},{"key":"ref66","doi-asserted-by":"crossref","unstructured":"Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates, J. Geophys. Res.-Oceans, 118, 6704\u20136716, https:\/\/doi.org\/10.1002\/2013JC009067, 2013.","DOI":"10.1002\/2013JC009067"},{"key":"ref67","unstructured":"Gorfer, M.: Monitoring of climate change and variability in atmospheric heat content based on climate records and reanalyses, Sci. Rep. 94-2022, University of Graz, Austria, https:\/\/wegccloud.uni-graz.at\/s\/ypz6cqk48xrJnSF (last access: 29\u00a0March 2023), 2022."},{"key":"ref68","doi-asserted-by":"crossref","unstructured":"Gould, J., Sloyan, B., and Visbeck, M.: Chapter 3 \u2013 In Situ Ocean Observations: A Brief History, Present Status, and Future Directions, in: Ocean Circulation and Climate, vol. 103, edited by: Siedler, G., Griffies, S. M., Gould, J., and Church, J. A., Academic Press, 59\u201381, doi.org\/10.1016\/B978-0-12-391851-2.00003-9, 2013.","DOI":"10.1016\/B978-0-12-391851-2.00003-9"},{"key":"ref69","doi-asserted-by":"crossref","unstructured":"Gouretski, V. and Cheng, L.: Correction for Systematic Errors in the Global Dataset of Temperature Profiles from Mechanical Bathythermographs, J. Atmos. Ocean. Tech., 37, 841\u2013855, https:\/\/doi.org\/10.1175\/JTECH-D-19-0205.1, 2020.","DOI":"10.1175\/JTECH-D-19-0205.1"},{"key":"ref70","doi-asserted-by":"crossref","unstructured":"Grant, L., Vanderkelen, I., Gudmundsson, L., Tan, Z., Perroud, M., Stepanenko, V. M., Debolskiy, A. V, Droppers, B., Janssen, A. B. G., Woolway, R. I., Choulga, M., Balsamo, G., Kirillin, G., Schewe, J., Zhao, F., del Valle, I. V., Golub, M., Pierson, D., Marc\u00e9, R., Seneviratne, S. I., and Thiery, W.: Attribution of global lake systems change to anthropogenic forcing, Nat. Geosci., 14, 849\u2013854, https:\/\/doi.org\/10.1038\/s41561-021-00833-x, 2021.","DOI":"10.1038\/s41561-021-00833-x"},{"key":"ref71","doi-asserted-by":"crossref","unstructured":"Gregory, J. M. and Andrews, T.: Variation in climate sensitivity and feedback parameters during the historical period, Geophys. Res. Lett., 43, 3911\u20133920, https:\/\/doi.org\/10.1002\/2016GL068406, 2016.","DOI":"10.1002\/2016GL068406"},{"key":"ref72","doi-asserted-by":"crossref","unstructured":"Grise, K. M., Davis, S. M., Simpson, I. R., Waugh, D. W., Fu, Q., Allen, R. J., Rosenlof, K. H., Ummenhofer, C. C., Karnauskas, K. B., Maycock, A. C., Quan, X. W., Birner, T., and Staten, P. W.: Recent tropical expansion: Natural variability or forced response?, J. Climate, 32, 1551\u20131571, https:\/\/doi.org\/10.1175\/JCLI-D-18-0444.1, 2019.","DOI":"10.1175\/JCLI-D-18-0444.1"},{"key":"ref73","doi-asserted-by":"crossref","unstructured":"Gulev, S. K., Thorne, P. W., Ahn, J., Dentener, F. J., Domingues, C. M., Gerland, S., Gong, D., Kaufman, D. S., Nnamchi, H. C., Quaas, J., Rivera, J. A., Sathyendranath, S., Smith, S. L., Trewin, B., Schuckmann, K. von, and Vose, R. S.: Changing State of the Climate System Supplementary Material, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., P\u00e9an, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelek\u00e7i, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 287\u2013422, https:\/\/doi.org\/10.1017\/9781009157896.004, 2021.","DOI":"10.1017\/9781009157896.004"},{"key":"ref74","doi-asserted-by":"crossref","unstructured":"Hakuba, M. Z., Frederikse, T., and Landerer, F. W.: Earth's Energy Imbalance From the Ocean Perspective (2005\u20132019), Geophys. Res. Lett., 48, e2021GL093624, doi.org\/10.1029\/2021GL093624, 2021.","DOI":"10.1029\/2021GL093624"},{"key":"ref75","doi-asserted-by":"crossref","unstructured":"Hansen, J., Nazarenko, L., Ruedy, R., Sato, M., Willis, J., Del Genio, A., Koch, D., Lacis, A., Lo, K., Menon, S., Novakov, T., Perlwitz, J., Russell, G., Gavin A., S., and Tausnev, N.: Earth's Energy Imbalance: Confirmation and Implications, Science, 308, 1431\u20131435, https:\/\/doi.org\/10.1126\/science.1110252, 2005.","DOI":"10.1126\/science.1110252"},{"key":"ref76","doi-asserted-by":"crossref","unstructured":"Hansen, J., Sato, M., Kharecha, P., and von Schuckmann, K.: Earth's energy imbalance and implications, Atmos. Chem. Phys., 11, 13421\u201313449, https:\/\/doi.org\/10.5194\/acp-11-13421-2011, 2011.","DOI":"10.5194\/acp-11-13421-2011"},{"key":"ref77","doi-asserted-by":"crossref","unstructured":"Hansen, J., Sato, M., Kharecha, P., von Schuckmann, K., Beerling, D. J., Cao, J., Marcott, S., Masson-Delmotte, V., Prather, M. J., Rohling, E. J., Shakun, J., Smith, P., Lacis, A., Russell, G., and Ruedy, R.: Young people's burden: requirement of negative CO2 emissions, Earth Syst. Dynam., 8, 577\u2013616, https:\/\/doi.org\/10.5194\/esd-8-577-2017, 2017.","DOI":"10.5194\/esd-8-577-2017"},{"key":"ref78","doi-asserted-by":"crossref","unstructured":"Hartmann, A. and Rath, V.: Uncertainties and shortcomings of ground surface temperature histories derived from inversion of temperature logs, J. Geophys. Eng., 2, 299\u2013311, https:\/\/doi.org\/10.1088\/1742-2132\/2\/4\/S02, 2005.","DOI":"10.1088\/1742-2132\/2\/4\/S02"},{"key":"ref79","unstructured":"Hersbach, H., de Rosnay, P., Bell, B., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Alonso-Balmaseda, M., Balsamo, G., Bechtold, P., Berrisford, P., Bidlot, J.-R., de Boiss\u00e9son, E., Bonavita, M., Browne, P., Buizza, R., Dahlgren, P., Dee, D., Dragani, R., Diamantakis, M., Flemming, J., Forbes, R., Geer, A. J., Haiden, T., H\u00f3lm, E., Haimberger, L., Hogan, R., Hor\u00e1nyi, A., Janiskova, M., Laloyaux, P., Lopez, P., Munoz-Sabater, J., Peubey, C., Radu, R., Richardson, D., Th\u00e9paut, J.-N., Vitart, F., Yang, X., Zs\u00f3t\u00e9r, E., and Zuo, H.: Operational global reanalysis: progress, future directions and synergies with NWP, ECMWF, ERA Report Series, https:\/\/doi.org\/10.21957\/tkic6g3wm, 2018."},{"key":"ref80","doi-asserted-by":"crossref","unstructured":"Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Hor\u00e1nyi, A., Mu\u00f1oz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., H\u00f3lm, E., Janiskov\u00e1, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Th\u00e9paut, J. N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999\u20132049, https:\/\/doi.org\/10.1002\/qj.3803, 2020.","DOI":"10.1002\/qj.3803"},{"key":"ref81","doi-asserted-by":"crossref","unstructured":"Hopcroft, P. O., Gallagher, K., and Pain, C. C.: Inference of past climate from borehole temperature data using Bayesian Reversible Jump Markov chain Monte Carlo, Geophys. J. Int., 171, 1430\u20131439, https:\/\/doi.org\/10.1111\/j.1365-246X.2007.03596.x, 2007.","DOI":"10.1111\/j.1365-246X.2007.03596.x"},{"key":"ref82","doi-asserted-by":"crossref","unstructured":"Hosoda, S., Ohira, T., and Nakamura, T.: A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations, JAMSTEC Report of Research and Development, 8, 47\u201359, https:\/\/doi.org\/10.5918\/jamstecr.8.47, 2008.","DOI":"10.5918\/jamstecr.8.47"},{"key":"ref83","doi-asserted-by":"crossref","unstructured":"Hugelius, G., Bockheim, J. G., Camill, P., Elberling, B., Grosse, G., Harden, J. W., Johnson, K., Jorgenson, T., Koven, C. D., Kuhry, P., Michaelson, G., Mishra, U., Palmtag, J., Ping, C.-L., O'Donnell, J., Schirrmeister, L., Schuur, E. A. G., Sheng, Y., Smith, L. C., Strauss, J., and Yu, Z.: A new data set for estimating organic carbon storage to 3\u2009m depth in soils of the northern circumpolar permafrost region, Earth Syst. Sci. Data, 5, 393\u2013402, https:\/\/doi.org\/10.5194\/essd-5-393-2013, 2013.","DOI":"10.5194\/essd-5-393-2013"},{"key":"ref84","doi-asserted-by":"crossref","unstructured":"IPCC: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: P\u00f6rtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegr\u00eda, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https:\/\/doi.org\/10.1017\/9781009157964, 2019.","DOI":"10.1017\/9781009157964"},{"key":"ref85","doi-asserted-by":"crossref","unstructured":"IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., P\u00e9an, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelek\u00e7i, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https:\/\/doi.org\/10.1017\/9781009157896, 2021a.","DOI":"10.1017\/9781009157896"},{"key":"ref86","doi-asserted-by":"crossref","unstructured":"IPCC: Summary for Policymakers, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., P\u00e9an, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., M.Huang, Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelek\u00e7i, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https:\/\/doi.org\/10.1017\/9781009157896.001, 2021b.","DOI":"10.1017\/9781009157896.001"},{"key":"ref87","doi-asserted-by":"crossref","unstructured":"IPCC: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: P\u00f6rtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegr\u00eda, A., Craig, M., Langsdorf, S., L\u00f6schke, S., M\u00f6ller, V., Okem, A., and Rama, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056 pp., https:\/\/doi.org\/10.1017\/9781009325844, 2022a.","DOI":"10.1017\/9781009325844"},{"key":"ref88","doi-asserted-by":"crossref","unstructured":"IPCC: Summary for Policymakers, edited by: P\u00f6rtner, H.-O., Roberts, D. C., Poloczanska, E. S., Mintenbeck, K., Tignor, M., Alegr\u00eda, A., Craig, M., Langsdorf, S., L\u00f6schke, S., M\u00f6ller, V., and Okem, A., in: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: P\u00f6rtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegr\u00eda, A., Craig, M., Langsdorf, S., L\u00f6schke, S., M\u00f6ller, V., Okem, A., and Rama, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 3\u201333, https:\/\/doi.org\/10.1017\/9781009325844.001, 2022b.","DOI":"10.1017\/9781009325844.001"},{"key":"ref89","unstructured":"IROWG: Report of IROWG activities: Outcome and recommendations from the IROWG-8 Workshop, CGMS-49 IROWG-WP-01 V3, 28 April 2021, International Radio Occultation Working Group, https:\/\/www.cgms-info.org\/Agendas\/WP\/CGMS-49-IROWG-WP-01 (last access: 29\u00a0March 2023), 2021."},{"key":"ref90","doi-asserted-by":"crossref","unstructured":"Ishii, M., Fukuda, Y., Hirahara, S., Yasui, S., Suzuki, T., and Sato, K.: Accuracy of Global Upper Ocean Heat Content Estimation Expected from Present Observational Data Sets, SOLA, 13, 163\u2013167, https:\/\/doi.org\/10.2151\/sola.2017-030, 2017.","DOI":"10.2151\/sola.2017-030"},{"key":"ref91","doi-asserted-by":"crossref","unstructured":"Jan, A. and Painter, S. L.: Permafrost thermal conditions are sensitive to shifts in snow timing, Environ. Res. Lett., 15, 084026, https:\/\/doi.org\/10.1088\/1748-9326\/ab8ec4, 2020.","DOI":"10.1088\/1748-9326\/ab8ec4"},{"key":"ref92","doi-asserted-by":"crossref","unstructured":"Jaume-Santero, F., Pickler, C., Beltrami, H., and Mareschal, J.-C.: North American regional climate reconstruction from ground surface temperature histories, Clim. Past, 12, 2181\u20132194, https:\/\/doi.org\/10.5194\/cp-12-2181-2016, 2016.","DOI":"10.5194\/cp-12-2181-2016"},{"key":"ref93","doi-asserted-by":"crossref","unstructured":"Johnson, G. C., Purkey, S. G., Zilberman, N. V, and Roemmich, D.: Deep Argo Quantifies Bottom Water Warming Rates in the Southwest Pacific Basin, Geophys. Res. Lett., 46, 2662\u20132669, https:\/\/doi.org\/10.1029\/2018GL081685, 2019.","DOI":"10.1029\/2018GL081685"},{"key":"ref94","doi-asserted-by":"crossref","unstructured":"Johnson, G. C., Lumpkin, R., Boyer, T., Bringas, F., Cetini\u0107, I., Chambers, D. P., Cheng, L., Dong, S., Feely, R. A., Fox-Kemper, B., Frajka-Williams, E., Franz, B. A., Fu, Y., Gao, M., Garg, J., Gilson, J., Goni, G., Hamlington, B. D., Hewitt, H. T., Hobbs, W. R., Hu, Z.-Z., Huang, B., Jevrejeva, S., Johns, W. E., Katsunari, S., Kennedy, J. J., Kersal\u00e9, M., Killick, R. E., Leuliette, E., Locarnini, R., Lozier, M. S., Lyman, J. M., Merrifield, M. A., Mishonov, A., Mitchum, G. T., Moat, B. I., Nerem, R. S., Notz, D., Perez, R. C., Purkey, S. G., Rayner, D., Reagan, J., Schmid, C., Siegel, D. A., Smeed, D. A., Stackhouse, P. W., Sweet, W., Thompson, P. R., Volkov, D. L., Wanninkhof, R., Weller, R. A., Wen, C., Westberry, T. K., Widlansky, M. J., Willis, J. K., Yu, L., and Zhang, H.-M.: Global Oceans, B. Am. Meteorol. Soc., 103, S143\u2013S192, https:\/\/doi.org\/10.1175\/BAMS-D-22-0072.1, 2022.","DOI":"10.1175\/BAMS-D-22-0072.1"},{"key":"ref95","doi-asserted-by":"crossref","unstructured":"Kashiwase, H., Ohshima, K. I., Nihashi, S., and Eicken, H.: Evidence for ice-ocean albedo feedback in the Arctic Ocean shifting to a seasonal ice zone, Sci. Rep., 7, 8170, https:\/\/doi.org\/10.1038\/s41598-017-08467-z, 2017.","DOI":"10.1038\/s41598-017-08467-z"},{"key":"ref96","doi-asserted-by":"crossref","unstructured":"Kern, S., Lavergne, T., Notz, D., Pedersen, L. T., Tonboe, R. T., Saldo, R., and S\u00f8rensen, A. M.: Satellite passive microwave sea-ice concentration data set intercomparison: closed ice and ship-based observations, The Cryosphere, 13, 3261\u20133307, https:\/\/doi.org\/10.5194\/tc-13-3261-2019, 2019.","DOI":"10.5194\/tc-13-3261-2019"},{"key":"ref97","doi-asserted-by":"crossref","unstructured":"Khazaei, B., Read, L. K., Casali, M., Sampson, K. M., and Yates, D. N.: GLOBathy, the global lakes bathymetry dataset, Sci. Data, 9, 36, https:\/\/doi.org\/10.1038\/s41597-022-01132-9, 2022.","DOI":"10.1038\/s41597-022-01132-9"},{"key":"ref98","unstructured":"Kirchengast, G., Gorfer, M., Mayer, M., Steiner, A. K., and Haimberger, L.: GCOS EHI 1960\u20132020 Atmospheric Heat Content, World Data Center for Climate (WDCC) at DKRZ [data set], https:\/\/doi.org\/10.26050\/WDCC\/GCOS_EHI_1960-2020_AHC, 2022."},{"key":"ref99","doi-asserted-by":"crossref","unstructured":"Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., MiyaokaI, K., and Takahashi, K.: The JRA-55 Reanalysis: General Specifications and Basic Characteristics, J. Meteorol. Soc. Jpn., 93, 5\u201348, https:\/\/doi.org\/10.2151\/jmsj.2015-001, 2015.","DOI":"10.2151\/jmsj.2015-001"},{"key":"ref100","doi-asserted-by":"crossref","unstructured":"Kramer, R. J., He, H., Soden, B. J., Oreopoulos, L., Myhre, G., Forster, P. M., and Smith, C. J.: Observational Evidence of Increasing Global Radiative Forcing, Geophys. Res. Lett., 48, e2020GL091585, https:\/\/doi.org\/10.1029\/2020GL091585, 2021.","DOI":"10.1029\/2020GL091585"},{"key":"ref101","doi-asserted-by":"crossref","unstructured":"Kuhlbrodt, T. and Gregory, J. M.: Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change, Geophys. Res. Lett., 39, L18608, https:\/\/doi.org\/10.1029\/2012GL052952, 2012.","DOI":"10.1029\/2012GL052952"},{"key":"ref102","unstructured":"Kuusela, M. and Giglio, D.: Global Ocean Heat Content Anomalies based on Argo data, Zenodo, https:\/\/doi.org\/10.5281\/zenodo.6131625, 2022."},{"key":"ref103","doi-asserted-by":"crossref","unstructured":"Labe, Z., Magnusdottir, G., and Stern, H.: Variability of Arctic Sea Ice Thickness Using PIOMAS and the CESM Large Ensemble, J. Climate, 31, 3233\u20133247, https:\/\/doi.org\/10.1175\/JCLI-D-17-0436.1, 2018.","DOI":"10.1175\/JCLI-D-17-0436.1"},{"key":"ref104","doi-asserted-by":"crossref","unstructured":"Ladst\u00e4dter, F., Steiner, A. K., Schw\u00e4rz, M., and Kirchengast, G.: Climate intercomparison of GPS radio occultation, RS90\/92 radiosondes and GRUAN from 2002 to 2013, Atmos. Meas. Tech., 8, 1819\u20131834, https:\/\/doi.org\/10.5194\/amt-8-1819-2015, 2015.","DOI":"10.5194\/amt-8-1819-2015"},{"key":"ref105","doi-asserted-by":"crossref","unstructured":"Ladst\u00e4dter, F., Steiner, A. K., and Gleisner, H.: Resolving the 21st century temperature trends of the upper troposphere\u2013lower stratosphere with satellite observations, Sci. Rep., 13, 1306, https:\/\/doi.org\/10.1038\/s41598-023-28222-x, 2023.","DOI":"10.1038\/s41598-023-28222-x"},{"key":"ref106","doi-asserted-by":"crossref","unstructured":"Lane, A. C.: Geotherms of Lake Superior Copper Country, GSA Bull., 34, 703\u2013720, https:\/\/doi.org\/10.1130\/GSAB-34-703, 1923.","DOI":"10.1130\/GSAB-34-703"},{"key":"ref107","doi-asserted-by":"crossref","unstructured":"Lavergne, T., S\u00f8rensen, A. M., Kern, S., Tonboe, R., Notz, D., Aaboe, S., Bell, L., Dybkj\u00e6r, G., Eastwood, S., Gabarro, C., Heygster, G., Killie, M. A., Brandt Kreiner, M., Lavelle, J., Saldo, R., Sandven, S., and Pedersen, L. T.: Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records, The Cryosphere, 13, 49\u201378, https:\/\/doi.org\/10.5194\/tc-13-49-2019, 2019.","DOI":"10.5194\/tc-13-49-2019"},{"key":"ref108","doi-asserted-by":"crossref","unstructured":"Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R., Cullen, R., Kwok, R., Schweiger, A., Zhang, J., Haas, C., Hendricks, S., Krishfield, R., Kurtz, N., Farrell, S., and Davidson, M.: CryoSat-2 estimates of Arctic sea ice thickness and volume, Geophys. Res. Lett., 40, 732\u2013737, https:\/\/doi.org\/10.1002\/grl.50193, 2013.","DOI":"10.1002\/grl.50193"},{"key":"ref109","doi-asserted-by":"crossref","unstructured":"Levitus, S., Antonov, J. I., Boyer, T. P., Baranova, O. K., Garcia, H. E., Locarnini, R. A., Mishonov, A. V, Reagan, J. R., Seidov, D., Yarosh, E. S., and Zweng, M. M.: World ocean heat content and thermosteric sea level change (0\u20132000\u00a0\u2009m), 1955\u20132010, Geophys. Res. Lett., 39, L10603, https:\/\/doi.org\/10.1029\/2012GL051106, 2012.","DOI":"10.1029\/2012GL051106"},{"key":"ref110","doi-asserted-by":"crossref","unstructured":"Li, H., Xu, F., Zhou, W., Wang, D., Wright, J. S., Liu, Z., and Lin, Y.: Development of a global gridded Argo data set with Barnes successive corrections, J. Geophys. Res.-Oceans, 122, 866\u2013889, https:\/\/doi.org\/10.1002\/2016JC012285, 2017.","DOI":"10.1002\/2016JC012285"},{"key":"ref111","doi-asserted-by":"crossref","unstructured":"Li, Y., Church, J. A., McDougall, T. J., and Barker, P. M.: Sensitivity of Observationally Based Estimates of Ocean Heat Content and Thermal Expansion to Vertical Interpolation Schemes, Geophys. Res. Lett., 49, e2022G, https:\/\/doi.org\/10.1029\/2022GL101079, 2022.","DOI":"10.1029\/2022GL101079"},{"key":"ref112","doi-asserted-by":"crossref","unstructured":"Liao, S., Luo, H., Wang, J., Shi, Q., Zhang, J., and Yang, Q.: An evaluation of Antarctic sea-ice thickness from the Global Ice-Ocean Modeling and Assimilation System based on in situ and satellite observations, The Cryosphere, 16, 1807\u20131819, https:\/\/doi.org\/10.5194\/tc-16-1807-2022, 2022.","DOI":"10.5194\/tc-16-1807-2022"},{"key":"ref113","doi-asserted-by":"crossref","unstructured":"Ligtenberg, S. R. M., Kuipers Munneke, P., No\u00ebl, B. P. Y., and van den Broeke, M. R.: Brief communication: Improved simulation of the present-day Greenland firn layer (1960\u20132016), The Cryosphere, 12, 1643\u20131649, https:\/\/doi.org\/10.5194\/tc-12-1643-2018, 2018.","DOI":"10.5194\/tc-12-1643-2018"},{"key":"ref114","doi-asserted-by":"crossref","unstructured":"Liu, C., Allan, R. P., Mayer, M., Hyder, P., Desbruy\u00e8res, D., Cheng, L., Xu, J., Xu, F., and Zhang, Y.: Variability in the global energy budget and transports 1985\u20132017, Clim. Dynam., 55, 3381\u20133396, https:\/\/doi.org\/10.1007\/s00382-020-05451-8, 2020.","DOI":"10.1007\/s00382-020-05451-8"},{"key":"ref115","doi-asserted-by":"crossref","unstructured":"Llovel, W., Willis, J. K., Landerer, F. W., and Fukumori, I.: Deep-ocean contribution to sea level and energy budget not detectable over the past decade, Nat. Clim. Change, 4, 1031\u20131035, https:\/\/doi.org\/10.1038\/nclimate2387, 2014.","DOI":"10.1038\/nclimate2387"},{"key":"ref116","doi-asserted-by":"crossref","unstructured":"Loeb, N. G., Lyman, J. M., Johnson, G. C., Allan, R. P., Doelling, D. R., Wong, T., Soden, B. J., and Stephens, G. L.: Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty, Nat. Geosci., 5, 110\u2013113, https:\/\/doi.org\/10.1038\/ngeo1375, 2012.","DOI":"10.1038\/ngeo1375"},{"key":"ref117","doi-asserted-by":"crossref","unstructured":"Loeb, N. G., Thorsen, T. J., Norris, J. R., Wang, H., and Su, W.: Changes in Earth's energy budget during and after the \u201cPause\u201d in global warming: An observational perspective, Climate, 6, 62, https:\/\/doi.org\/10.3390\/cli6030062, 2018.","DOI":"10.3390\/cli6030062"},{"key":"ref118","doi-asserted-by":"crossref","unstructured":"Loeb, N. G., Johnson, G. C., Thorsen, T. J., Lyman, J. M., Rose, F. G., and Kato, S.: Satellite and Ocean Data Reveal Marked Increase in Earth's Heating Rate, Geophys. Res. Lett., 48, e2021GL093047, https:\/\/doi.org\/10.1029\/2021GL093047, 2021.","DOI":"10.1029\/2021GL093047"},{"key":"ref119","doi-asserted-by":"crossref","unstructured":"Loeb, N. G., Mayer, M., Kato, S., Fasullo, J. T., Zuo, H., Senan, R., Lyman, J. M., Johnson, G. C., and Balmaseda, M.: Evaluating Twenty-Year Trends in Earth's Energy Flows From Observations and Reanalyses, J. Geophys. Res.-Atmos., 127, e2022JD036686, https:\/\/doi.org\/10.1029\/2022JD036686, 2022.","DOI":"10.1029\/2022JD036686"},{"key":"ref120","doi-asserted-by":"crossref","unstructured":"Lyman, J. M. and Johnson, G. C.: Estimating Global Ocean Heat Content Changes in the Upper 1800\u2009m since 1950 and the Influence of Climatology Choice, J. Climate, 27, 1945\u20131957, https:\/\/doi.org\/10.1175\/JCLI-D-12-00752.1, 2014.","DOI":"10.1175\/JCLI-D-12-00752.1"},{"key":"ref121","doi-asserted-by":"crossref","unstructured":"MacIntosh, C. R., Merchant, C. J., and von Schuckmann, K.: Uncertainties in Steric Sea Level Change Estimation During the Satellite Altimeter Era: Concepts and Practices, Surv. Geophys., 38, 59\u201387, https:\/\/doi.org\/10.1007\/s10712-016-9387-x, 2017.","DOI":"10.1007\/s10712-016-9387-x"},{"key":"ref122","doi-asserted-by":"crossref","unstructured":"Mankoff, K. D., Colgan, W., Solgaard, A., Karlsson, N. B., Ahlstr\u00f8m, A. P., van As, D., Box, J. E., Khan, S. A., Kjeldsen, K. K., Mouginot, J., and Fausto, R. S.: Greenland Ice Sheet solid ice discharge from 1986 through 2017, Earth Syst. Sci. Data, 11, 769\u2013786, https:\/\/doi.org\/10.5194\/essd-11-769-2019, 2019.","DOI":"10.5194\/essd-11-769-2019"},{"key":"ref123","doi-asserted-by":"crossref","unstructured":"Marti, F., Blazquez, A., Meyssignac, B., Ablain, M., Barnoud, A., Fraudeau, R., Jugier, R., Chenal, J., Larnicol, G., Pfeffer, J., Restano, M., and Benveniste, J.: Monitoring the ocean heat content change and the Earth energy imbalance from space altimetry and space gravimetry, Earth Syst. Sci. Data, 14, 229\u2013249, https:\/\/doi.org\/10.5194\/essd-14-229-2022, 2022.","DOI":"10.5194\/essd-14-229-2022"},{"key":"ref124","doi-asserted-by":"crossref","unstructured":"Masson, V., Champeaux, J.-L., Chauvin, F., Meriguet, C., and Lacaze, R.: A Global Database of Land Surface Parameters at 1-km Resolution in Meteorological and Climate Models, J. Climate, 16, 1261\u20131282, https:\/\/doi.org\/10.1175\/1520-0442(2003)16&amp;lt;1261:AGDOLS&amp;gt;2.0.CO;2, 2003.","DOI":"10.1175\/1520-0442-16.9.1261"},{"key":"ref125","doi-asserted-by":"crossref","unstructured":"Matthews, T., Byrne, M., Horton, R., Murphy, C., Pielke Sr, R., Raymond, C., Thorne, P., and Wilby, R. L.: Latent heat must be visible in climate communications, WIREs Clim. Change, 13, e779, https:\/\/doi.org\/10.1002\/wcc.779, 2022.","DOI":"10.1002\/wcc.779"},{"key":"ref126","doi-asserted-by":"crossref","unstructured":"Mayer, J., Mayer, M., and Haimberger, L.: Consistency and Homogeneity of Atmospheric Energy, Moisture, and Mass Budgets in ERA5, J. Climate, 34, 3955\u20133974, https:\/\/doi.org\/10.1175\/JCLI-D-20-0676.1, 2021.","DOI":"10.1175\/JCLI-D-20-0676.1"},{"key":"ref127","doi-asserted-by":"crossref","unstructured":"Mayer, M., Haimberger, L., Edwards, J. M., and Hyder, P.: Toward Consistent Diagnostics of the Coupled Atmosphere and Ocean Energy Budgets, J. Climate, 30, 9225\u20139246, https:\/\/doi.org\/10.1175\/JCLI-D-17-0137.1, 2017.","DOI":"10.1175\/JCLI-D-17-0137.1"},{"key":"ref128","doi-asserted-by":"crossref","unstructured":"Mayer, M., Lien, V. S., Mork, K. A., von Schuckmann, K., Monier, M., and Greiner, E.: Ocean heat content in the High North, in Copernicus Marine Service Ocean State Report, Issue 5, J. Oper. Oceanogr., 14, 17\u201323, https:\/\/doi.org\/10.1080\/1755876X.2021.1946240, 2021.","DOI":"10.1080\/1755876X.2021.1946240"},{"key":"ref129","doi-asserted-by":"crossref","unstructured":"Meng, L., Liu, J., Tarasick, D. W., Randel, W. J., Steiner, A. K., Wilhelmsen, H., Wang, L., and Haimberger, L.: Continuous rise of the tropopause in the Northern Hemisphere over 1980\u20132020, Sci. Adv., 7, eabi8065, https:\/\/doi.org\/10.1126\/sciadv.abi8065, 2022.","DOI":"10.1126\/sciadv.abi8065"},{"key":"ref130","doi-asserted-by":"crossref","unstructured":"Meyssignac, B., Boyer, T., Zhao, Z., Hakuba, M. Z., Landerer, F. W., Stammer, D., K\u00f6hl, A., Kato, S., L'Ecuyer, T., Ablain, M., Abraham, J. P., Blazquez, A., Cazenave, A., Church, J. A., Cowley, R., Cheng, L., Domingues, C. M., Giglio, D., Gouretski, V., Ishii, M., Johnson, G. C., Killick, R. E., Legler, D., Llovel, W., Lyman, J., Palmer, M. D., Piotrowicz, S., Purkey, S. G., Roemmich, D., Roca, R., Savita, A., Schuckmann, K. von, Speich, S., Stephens, G., Wang, G., Wijffels, S. E., and Zilberman, N.: Measuring Global Ocean Heat Content to Estimate the Earth Energy Imbalance, Front. Mar. Sci., 6, 432, https:\/\/doi.org\/10.3389\/fmars.2019.00432, 2019.","DOI":"10.3389\/fmars.2019.00432"},{"key":"ref131","doi-asserted-by":"crossref","unstructured":"Millan, R., Mouginot, J., Rabatel, A., and Morlighem, M.: Ice velocity and thickness of the world's glaciers, Nat. Geosci., 15, 124\u2013129, https:\/\/doi.org\/10.1038\/s41561-021-00885-z, 2022.","DOI":"10.1038\/s41561-021-00885-z"},{"key":"ref132","doi-asserted-by":"crossref","unstructured":"Moltmann, T., Turton, J., Zhang, H.-M., Nolan, G., Gouldman, C., Griesbauer, L., Willis, Z., Piniella, \u00c1. M., Barrell, S., Andersson, E., Gallage, C., Charpentier, E., Belbeoch, M., Poli, P., Rea, A., Burger, E. F., Legler, D. M., Lumpkin, R., Meinig, C., O'Brien, K., Saha, K., Sutton, A., Zhang, D., and Zhang, Y.: A Global Ocean Observing System (GOOS), Delivered Through Enhanced Collaboration Across Regions, Communities, and New Technologies, Front. Mar. Sci., 6, https:\/\/doi.org\/10.3389\/fmars.2019.00291, 2019.","DOI":"10.3389\/fmars.2019.00291"},{"key":"ref133","doi-asserted-by":"crossref","unstructured":"Moon, T. and Joughin, I.: Changes in ice front position on Greenland's outlet glaciers from 1992 to 2007, J. Geophys. Res.-Earth, 113, F02022, https:\/\/doi.org\/10.1029\/2007JF000927, 2008.","DOI":"10.1029\/2007JF000927"},{"key":"ref134","doi-asserted-by":"crossref","unstructured":"Moore, G. W. K., V\u00e5ge, K., Renfrew, I. A., and Pickart, R. S.: Sea-ice retreat suggests re-organization of water mass transformation in the Nordic and Barents Seas, Nat. Commun., 13, 67, https:\/\/doi.org\/10.1038\/s41467-021-27641-6, 2022.","DOI":"10.1038\/s41467-021-27641-6"},{"key":"ref135","doi-asserted-by":"crossref","unstructured":"Motyka, R. J., Truffer, M., Fahnestock, M., Mortensen, J., Rysgaard, S., and Howat, I.: Submarine melting of the 1985 Jakobshavn Isbr\u00e6 floating tongue and the triggering of the current retreat, J. Geophys. Res.-Earth, 116, F01007, https:\/\/doi.org\/10.1029\/2009JF001632, 2011.","DOI":"10.1029\/2009JF001632"},{"key":"ref136","doi-asserted-by":"crossref","unstructured":"Mouginot, J., Rignot, E., Scheuchl, B., Fenty, I., Khazendar, A., Morlighem, M., Buzzi, A., and Paden, J.: Fast retreat of Zachari\u00e6 Isstr\u00f8\u2009m, northeast Greenland, Science, 350, 1357\u20131361, https:\/\/doi.org\/10.1126\/science.aac7111, 2015.","DOI":"10.1126\/science.aac7111"},{"key":"ref137","doi-asserted-by":"crossref","unstructured":"Mouginot, J., Rignot, E., Bj\u00f8rk, A., van den Broeke, M., Millan, R., Morlighem, M., No\u00ebl, B., Scheuchl, B., and Wood, M.: Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018, P. Natl. Acad. Sci. USA, 116, 9239\u20139244, https:\/\/doi.org\/10.1073\/pnas.1904242116, 2019.","DOI":"10.1073\/pnas.1904242116"},{"key":"ref138","doi-asserted-by":"crossref","unstructured":"M\u00fcnchow, A., Padman, L., and Fricker, H. A.: Interannual changes of the floating ice shelf of Petermann Gletscher, North Greenland, from 2000 to 2012, J. Glaciol., 60, 489\u2013499, https:\/\/doi.org\/10.3189\/2014JoG13J135, 2014.","DOI":"10.3189\/2014JoG13J135"},{"key":"ref139","doi-asserted-by":"crossref","unstructured":"Nauels, A., Meinshausen, M., Mengel, M., Lorbacher, K., and Wigley, T. M. L.: Synthesizing long-term sea level rise projections \u2013 the MAGICC sea level model v2.0, Geosci. Model Dev., 10, 2495\u20132524, https:\/\/doi.org\/10.5194\/gmd-10-2495-2017, 2017.","DOI":"10.5194\/gmd-10-2495-2017"},{"key":"ref140","doi-asserted-by":"crossref","unstructured":"Nicolaus, M., Hoppmann, M., Arndt, S., Hendricks, S., Katlein, C., Nicolaus, A., Rossmann, L., Schiller, M., and Schwegmann, S.: Snow Depth and Air Temperature Seasonality on Sea Ice Derived From Snow Buoy Measurements, Front. Mar. Sci., 8, https:\/\/doi.org\/10.3389\/fmars.2021.655446, 2021.","DOI":"10.3389\/fmars.2021.655446"},{"key":"ref141","doi-asserted-by":"crossref","unstructured":"Nitzbon, J., Krinner, G., Schneider von Deimling, T., Werner, M., and Langer, M.: Quantifying the Permafrost Heat Sink in Earth's Climate System, ESS Open Archive [preprint], https:\/\/doi.org\/10.1002\/essoar.10511600.1, 2022a.","DOI":"10.1002\/essoar.10511600.1"},{"key":"ref142","unstructured":"Nitzbon, J., Krinner, G., and Langer, M.: GCOS EHI 1960\u20132020 Permafrost Heat Content. World Data Center for Climate (WDCC) at DKRZ [data set], https:\/\/doi.org\/10.26050\/WDCC\/GCOS_EHI_1960-2020_PHC, 2022b."},{"key":"ref143","doi-asserted-by":"crossref","unstructured":"Palmer, M. D. and McNeall, D. J.: Internal variability of Earth's energy budget simulated by CMIP5 climate models, Environ. Res. Lett., 9, 034016, https:\/\/doi.org\/10.1088\/1748-9326\/9\/3\/034016, 2014.","DOI":"10.1088\/1748-9326\/9\/3\/034016"},{"key":"ref144","doi-asserted-by":"crossref","unstructured":"Palmer, M. D., Haines, K., Tett, S. F. B., and Ansell, T. J.: Isolating the signal of ocean global warming, Geophys. Res. Lett., 34, L23610, https:\/\/doi.org\/10.1029\/2007GL031712, 2007.","DOI":"10.1029\/2007GL031712"},{"key":"ref145","doi-asserted-by":"crossref","unstructured":"Palmer, M. D., Roberts, C. D., Balmaseda, M., Chang, Y.-S., Chepurin, G., Ferry, N., Fujii, Y., Good, S. A., Guinehut, S., Haines, K., Hernandez, F., K\u00f6hl, A., Lee, T., Martin, M. J., Masina, S., Masuda, S., Peterson, K. A., Storto, A., Toyoda, T., Valdivieso, M., Vernieres, G., Wang, O., and Xue, Y.: Ocean heat content variability and change in an ensemble of ocean reanalyses, Clim. Dynam., 49, 909\u2013930, https:\/\/doi.org\/10.1007\/s00382-015-2801-0, 2017.","DOI":"10.1007\/s00382-015-2801-0"},{"key":"ref146","doi-asserted-by":"crossref","unstructured":"Palmer, M. D., Domingues, C. M., Slangen, A. B. A., and Boeira Dias, F.: An ensemble approach to quantify global mean sea-level rise over the 20th century from tide gauge reconstructions, Environ. Res. Lett., 16, 044043, https:\/\/doi.org\/10.1088\/1748-9326\/abdaec, 2021.","DOI":"10.1088\/1748-9326\/abdaec"},{"key":"ref147","doi-asserted-by":"crossref","unstructured":"Park, H., Fedorov, A. N., Zheleznyak, M. N., Konstantinov, P. Y., and Walsh, J. E.: Effect of snow cover on pan-Arctic permafrost thermal regimes, Clim. Dynam., 44, 2873\u20132895, https:\/\/doi.org\/10.1007\/s00382-014-2356-5, 2015.","DOI":"10.1007\/s00382-014-2356-5"},{"key":"ref148","doi-asserted-by":"crossref","unstructured":"Perovich, D., Polashenski, C., Arntsen, A., and Stwertka, C.: Anatomy of a late spring snowfall on sea ice, Geophys. Res. Lett., 44, 2802\u20132809, https:\/\/doi.org\/10.1002\/2016GL071470, 2017.","DOI":"10.1002\/2016GL071470"},{"key":"ref149","doi-asserted-by":"crossref","unstructured":"Pickler, C., Beltrami, H., and Mareschal, J.-C.: Laurentide Ice Sheet basal temperatures during the last glacial cycle as inferred from borehole data, Clim. Past, 12, 115\u2013127, https:\/\/doi.org\/10.5194\/cp-12-115-2016, 2016.","DOI":"10.5194\/cp-12-115-2016"},{"key":"ref150","doi-asserted-by":"crossref","unstructured":"Pisoft, P., Sacha, P., Polvani, L. M., A\u00f1el, J. A., de la Torre, L., Eichinger, R., Foelsche, U., Huszar, P., Jacobi, C., Karlicky, J., Kuchar, A., Miksovsky, J., Zak, M., and Rieder, H. E.: Stratospheric contraction caused by increasing greenhouse gases, Environ. Res. Lett., 16, 64038, https:\/\/doi.org\/10.1088\/1748-9326\/abfe2b, 2021.","DOI":"10.1088\/1748-9326\/abfe2b"},{"key":"ref151","doi-asserted-by":"crossref","unstructured":"Purkey, S. G. and Johnson, G. C.: Warming of Global Abyssal and Deep Southern Ocean Waters between the 1990s and 2000s: Contributions to Global Heat and Sea Level Rise Budgets, J. Climate, 23, 6336\u20136351, https:\/\/doi.org\/10.1175\/2010JCLI3682.1, 2010.","DOI":"10.1175\/2010JCLI3682.1"},{"key":"ref152","doi-asserted-by":"crossref","unstructured":"Qu, X. and Hall, A.: What Controls the Strength of Snow-Albedo Feedback?, J. Climate, 20, 3971\u20133981, https:\/\/doi.org\/10.1175\/JCLI4186.1, 2007.","DOI":"10.1175\/JCLI4186.1"},{"key":"ref153","doi-asserted-by":"crossref","unstructured":"Raghuraman, S. P., Paynter, D., and Ramaswamy, V.: Anthropogenic forcing and response yield observed positive trend in Earth's energy imbalance, Nat. Commun., 12, 4577, https:\/\/doi.org\/10.1038\/s41467-021-24544-4, 2021.","DOI":"10.1038\/s41467-021-24544-4"},{"key":"ref154","unstructured":"Rhein, M., RintoulS., Aoki, S., Campos, E., Chambers, D., Feely, R., Gulev, S., Johnson, G., Josey, S., Kostianoy, A., Mauritzen, C., Roemmich, D., Talley, L., and Wang, F.: Chapter 3: Observations: Ocean, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change., edited by: Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P., Cambridge University Press, Cambridge University Press, Cambridge United Kingdom and New York, USA, 2013."},{"key":"ref155","doi-asserted-by":"crossref","unstructured":"Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M. J., and Morlighem, M.: Four decades of Antarctic Ice Sheet mass balance from 1979\u20132017, P. Natl. Acad. Sci., 116, 1095, https:\/\/doi.org\/10.1073\/pnas.1812883116, 2019.","DOI":"10.1073\/pnas.1812883116"},{"key":"ref156","doi-asserted-by":"crossref","unstructured":"Roemmich, D. and Gilson, J.: The 2004\u20132008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program, Prog. Oceanogr., 82, 81\u2013100, https:\/\/doi.org\/10.1016\/j.pocean.2009.03.004, 2009.","DOI":"10.1016\/j.pocean.2009.03.004"},{"key":"ref157","doi-asserted-by":"crossref","unstructured":"Roemmich, D., Church, J., Gilson, J., Monselesan, D., Sutton, P., and Wijffels, S.: Unabated planetary warming and its ocean structure since 2006, Nat. Clim. Change, 5, 240\u2013245, https:\/\/doi.org\/10.1038\/nclimate2513, 2015.","DOI":"10.1038\/nclimate2513"},{"key":"ref158","doi-asserted-by":"crossref","unstructured":"Santer, B. D., Wigley, T. M. L., Doutriaux, C., Boyle, J. S., Hansen, J. E., Jones, P. D., Meehl, G. A., Roeckner, E., Sengupta, S., and Taylor, K. E.: Accounting for the effects of volcanoes and ENSO in comparisons of modeled and observed temperature trends, J. Geophys. Res.-Atmos., 106, 28033\u201328059, https:\/\/doi.org\/10.1029\/2000JD000189, 2001.","DOI":"10.1029\/2000JD000189"},{"key":"ref159","doi-asserted-by":"crossref","unstructured":"Santer, B. D., Po-Chedley, S., Mears, C., Fyfe, J. C., Gillett, N., Fu, Q., Painter, J. F., Solomon, S., Steiner, A. K., Wentz, F. J., Zelinka, M. D., and Zou, C.-Z.: Using Climate Model Simulations to Constrain Observations, J. Climate, 34, 6281\u20136301, https:\/\/doi.org\/10.1175\/JCLI-D-20-0768.1, 2021.","DOI":"10.1175\/JCLI-D-20-0768.1"},{"key":"ref160","doi-asserted-by":"crossref","unstructured":"Santer, B. D., Po-Chedley, S., Feldl, N., Fyfe, J. C., Fu, Q., Solomon, S., England, M., Rodgers, K. B., Stuecker, M. F., Mears, C., Zou, C.-Z., Bonfils, C. J. W., Pallotta, G., Zelinka, M. D., Rosenbloom, N., and Edwards, J.: Robust anthropogenic signal identified in the seasonal cycle of tropospheric temperature, J. Climate, 35, 6075\u20136100, https:\/\/doi.org\/10.1175\/JCLI-D-21-0766.1, 2022.","DOI":"10.1175\/JCLI-D-21-0766.1"},{"key":"ref161","doi-asserted-by":"crossref","unstructured":"Savita, A., Domingues, C. M., Boyer, T., Gouretski, V., Ishii, M., Johnson, G. C., Lyman, J. M., Willis, J. K., Marsland, S. J., Hobbs, W., Church, J. A., Monselesan, D. P., Dobrohotoff, P., Cowley, R., and Wijffels, S. E.: Quantifying Spread in Spatiotemporal Changes of Upper-Ocean Heat Content Estimates: An Internationally Coordinated Comparison, J. Climate, 35, 851\u2013875, https:\/\/doi.org\/10.1175\/JCLI-D-20-0603.1, 2022.","DOI":"10.1175\/JCLI-D-20-0603.1"},{"key":"ref162","doi-asserted-by":"crossref","unstructured":"Schweiger, A., Lindsay, R., Zhang, J., Steele, M., Stern, H., and Kwok, R.: Uncertainty in modeled Arctic sea ice volume, J. Geophys. Res.-Oceans, 116, C00D06, https:\/\/doi.org\/10.1029\/2011JC007084, 2011.","DOI":"10.1029\/2011JC007084"},{"key":"ref163","doi-asserted-by":"crossref","unstructured":"Schweiger, A. J., Wood, K. R., and Zhang, J.: Arctic Sea Ice Volume Variability over 1901\u20132010: A Model-Based Reconstruction, J. Climate, 32, 4731\u20134752, https:\/\/doi.org\/10.1175\/JCLI-D-19-0008.1, 2019.","DOI":"10.1175\/JCLI-D-19-0008.1"},{"key":"ref164","doi-asserted-by":"crossref","unstructured":"Shen, P. Y., Wang, K., Beltrami, H., and Mareschal, J.-C.: A comparative study of inverse methods for estimating climatic history from borehole temperature data, Palaeogeogr. Palaeoecl., 98, 113\u2013127, https:\/\/doi.org\/10.1016\/0031-0182(92)90192-8, 1992.","DOI":"10.1016\/0031-0182(92)90192-8"},{"key":"ref165","doi-asserted-by":"crossref","unstructured":"Shen, X., Ke, C.-Q., and Li, H.: Snow depth product over Antarctic sea ice from 2002 to 2020 using multisource passive microwave radiometers, Earth Syst. Sci. Data, 14, 619\u2013636, https:\/\/doi.org\/10.5194\/essd-14-619-2022, 2022.","DOI":"10.5194\/essd-14-619-2022"},{"key":"ref166","doi-asserted-by":"crossref","unstructured":"Shepherd, A., Fricker, H. A., and Farrell, S. L.: Trends and connections across the Antarctic cryosphere, Nature, 558, 223\u2013232, https:\/\/doi.org\/10.1038\/s41586-018-0171-6, 2018.","DOI":"10.1038\/s41586-018-0171-6"},{"key":"ref167","doi-asserted-by":"crossref","unstructured":"Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna, I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G., Nowicki, S., Payne, T., Scambos, T., Schlegel, N., Geruo, A., Agosta, C., Ahlstr\u00f8m, A., Babonis, G., Barletta, V. R., Bj\u00f8rk, A. A., Blazquez, A., Bonin, J., Colgan, W., Csatho, B., Cullather, R., Engdahl, M. E., Felikson, D., Fettweis, X., Forsberg, R., Hogg, A. E., Gallee, H., Gardner, A., Gilbert, L., Gourmelen, N., Groh, A., Gunter, B., Hanna, E., Harig, C., Helm, V., Horvath, A., Horwath, M., Khan, S., Kjeldsen, K. K., Konrad, H., Langen, P. L., Lecavalier, B., Loomis, B., Luthcke, S., McMillan, M., Melini, D., Mernild, S., Mohajerani, Y., Moore, P., Mottram, R., Mouginot, J., Moyano, G., Muir, A., Nagler, T., Nield, G., Nilsson, J., No\u00ebl, B., Otosaka, I., Pattle, M. E., Peltier, W. R., Pie, N., Rietbroek, R., Rott, H., S\u00f8rensen, L. S., Sasgen, I., Save, H., Scheuchl, B., Schrama, E., Schr\u00f6der, L., Seo, K.-W., Simonsen, S. B., Slater, T., Spada, G., Sutterley, T., Talpe, M., Tarasov, L., Jan van de Berg, W., van der Wal, W., van Wessem, M., Vishwakarma, B. D., Wiese, D., Wilton, D., Wagner, T., Wouters, B., Wuite, J., and Team, T. I.: Mass balance of the Greenland Ice Sheet from 1992 to 2018, Nature, 579, 233\u2013239, https:\/\/doi.org\/10.1038\/s41586-019-1855-2, 2019.","DOI":"10.1038\/s41586-019-1855-2"},{"key":"ref168","doi-asserted-by":"crossref","unstructured":"Slater, T., Lawrence, I. R., Otosaka, I. N., Shepherd, A., Gourmelen, N., Jakob, L., Tepes, P., Gilbert, L., and Nienow, P.: Review article: Earth's ice imbalance, The Cryosphere, 15, 233\u2013246, https:\/\/doi.org\/10.5194\/tc-15-233-2021, 2021.","DOI":"10.5194\/tc-15-233-2021"},{"key":"ref169","doi-asserted-by":"crossref","unstructured":"Smith, B., Fricker, A. H., Gardner, S. A., Medley, B., Nilsson, J., Paolo, S. F., Holschuh, N., Adusumilli, S., Brunt, K., Csatho, B., Harbeck, K., Markus, T., Neumann, T., Siegfried, M., and Zwally, J. H.: Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes, Science, 368, 1239\u20131242, https:\/\/doi.org\/10.1126\/science.aaz5845, 2020.","DOI":"10.1126\/science.aaz5845"},{"key":"ref170","doi-asserted-by":"crossref","unstructured":"Smith, D. M., Allan, R. P., Coward, A. C., Eade, R., Hyder, P., Liu, C., Loeb, N. G., Palmer, M. D., Roberts, C. D., and Scaife, A. A.: Earth's energy imbalance since 1960 in observations and CMIP5 models, Geophys. Res. Lett., 42, 1205\u20131213, https:\/\/doi.org\/10.1002\/2014GL062669, 2015.","DOI":"10.1002\/2014GL062669"},{"key":"ref171","doi-asserted-by":"crossref","unstructured":"Staten, P. W., Grise, K. M., Davis, S. M., Karnauskas, K. B., Waugh, D. W., Maycock, A. C., Fu, Q., Cook, K., Adam, O., Simpson, I. R., Allen, R. J., Rosenlof, K., Chen, G., Ummenhofer, C. C., Quan, X.-W., Kossin, J. P., Davis, N. A., and Son, S.-W.: Tropical Widening: From Global Variations to Regional Impacts, B. Am. Meteorol. Soc., 101, E897\u2013E904, https:\/\/doi.org\/10.1175\/bams-d-19-0047.1, 2020.","DOI":"10.1175\/BAMS-D-19-0047.1"},{"key":"ref172","doi-asserted-by":"crossref","unstructured":"Steiner, A. K., Ladst\u00e4dter, F., Randel, W. J., Maycock, A. C., Fu, Q., Claud, C., Gleisner, H., Haimberger, L., Ho, S.-P., Keckhut, P., Leblanc, T., Mears, C., Polvani, L. M., Santer, B. D., Schmidt, T., Sofieva, V., Wing, R., and Zou, C.-Z.: Observed Temperature Changes in the Troposphere and Stratosphere from 1979 to 2018, J. Climate, 33, 8165\u20138194, https:\/\/doi.org\/10.1175\/JCLI-D-19-0998.1, 2020a.","DOI":"10.1175\/JCLI-D-19-0998.1"},{"key":"ref173","doi-asserted-by":"crossref","unstructured":"Steiner, A. K., Ladst\u00e4dter, F., Ao, C. O., Gleisner, H., Ho, S.-P., Hunt, D., Schmidt, T., Foelsche, U., Kirchengast, G., Kuo, Y.-H., Lauritsen, K. B., Mannucci, A. J., Nielsen, J. K., Schreiner, W., Schw\u00e4rz, M., Sokolovskiy, S., Syndergaard, S., and Wickert, J.: Consistency and structural uncertainty of multi-mission GPS radio occultation records, Atmos. Meas. Tech., 13, 2547\u20132575, https:\/\/doi.org\/10.5194\/amt-13-2547-2020, 2020b.","DOI":"10.5194\/amt-13-2547-2020"},{"key":"ref174","doi-asserted-by":"crossref","unstructured":"Storto, A., Masina, S., Simoncelli, S., Iovino, D., Cipollone, A., Drevillon, M., Drillet, Y., Schuckman, K., Parent, L., Garric, G., Greiner, E., Desportes, C., Zuo, H., Balmaseda, M., and Peterson, K.: The added value of the multi-system spread information for ocean heat content and steric sea level investigations in the CMEMS GREP ensemble reanalysis product, Clim. Dynam., 53, 287\u2013312, https:\/\/doi.org\/10.1007\/s00382-018-4585-5, 2018.","DOI":"10.1007\/s00382-018-4585-5"},{"key":"ref175","doi-asserted-by":"crossref","unstructured":"Storto, A., Alvera-Azc\u00e1rate, A., Balmaseda, M. A., Barth, A., Chevallier, M., Counillon, F., Domingues, C. M., Drevillon, M., Drillet, Y., Forget, G., Garric, G., Haines, K., Hernandez, F., Iovino, D., Jackson, L. C., Lellouche, J.-M., Masina, S., Mayer, M., Oke, P. R., Penny, S. G., Peterson, K. A., Yang, C., and Zuo, H.: Ocean Reanalyses: Recent Advances and Unsolved Challenges, Front. Mar. Sci., 6, https:\/\/doi.org\/10.3389\/fmars.2019.00418, 2019.","DOI":"10.3389\/fmars.2019.00418"},{"key":"ref176","doi-asserted-by":"crossref","unstructured":"Tilling, R. L., Ridout, A., and Shepherd, A.: Estimating Arctic sea ice thickness and volume using CryoSat-2 radar altimeter data, Adv. Space Res., 62, 1203\u20131225, https:\/\/doi.org\/10.1016\/j.asr.2017.10.051, 2018.","DOI":"10.1016\/j.asr.2017.10.051"},{"key":"ref177","doi-asserted-by":"crossref","unstructured":"Trenberth, K. E., Fasullo, J. T., von Schuckmann, K., and Cheng, L.: Insights into Earth's Energy Imbalance from Multiple Sources, J. Climate, 29, 7495\u20137505, https:\/\/doi.org\/10.1175\/JCLI-D-16-0339.1, 2016.","DOI":"10.1175\/JCLI-D-16-0339.1"},{"key":"ref178","doi-asserted-by":"crossref","unstructured":"Vanderkelen, I., van Lipzig, N. P. M., Lawrence, D. M., Droppers, B., Golub, M., Gosling, S. N., Janssen, A. B. G., Marc\u00e9, R., Schmied, H. M., Perroud, M., Pierson, D., Pokhrel, Y., Satoh, Y., Schewe, J., Seneviratne, S. I., Stepanenko, V. M., Tan, Z., Woolway, R. I., and Thiery, W.: Global Heat Uptake by Inland Waters, Geophys. Res. Lett., 47, e2020GL087867, https:\/\/doi.org\/10.1029\/2020GL087867, 2020.","DOI":"10.1029\/2020GL087867"},{"key":"ref179","unstructured":"Vanderkelen, I. and Thiery, W.: GCOS EHI 1960\u20132020 Inland Water Heat Content, World Data Center for Climate (WDCC) at DKRZ [data set], https:\/\/doi.org\/10.26050\/WDCC\/GCOS_EHI_1960-2020_IWHC, 2022."},{"key":"ref180","doi-asserted-by":"crossref","unstructured":"Verver, G., Fujiwara, M., Dolmans, P., Becker, C., Fortuin, P., and Miloshevich, L.: Performance of the Vaisala RS80A\/H and RS90 Humicap Sensors and the Meteolabor \u201cSnow White\u201d Chilled-Mirror Hygrometer in Paramaribo, Suriname, J. Atmos. Ocean. Tech., 23, 1506\u20131518, https:\/\/doi.org\/10.1175\/JTECH1941.1, 2006.","DOI":"10.1175\/JTECH1941.1"},{"key":"ref181","doi-asserted-by":"crossref","unstructured":"von Schuckmann, K. and Le Traon, P.-Y.: How well can we derive Global Ocean Indicators from Argo data?, Ocean Sci., 7, 783\u2013791, https:\/\/doi.org\/10.5194\/os-7-783-2011, 2011.","DOI":"10.5194\/os-7-783-2011"},{"key":"ref182","doi-asserted-by":"crossref","unstructured":"von Schuckmann, K., Sall\u00e9e, J.-B., Chambers, D., Le Traon, P.-Y., Cabanes, C., Gaillard, F., Speich, S., and Hamon, M.: Consistency of the current global ocean observing systems from an Argo perspective, Ocean Sci., 10, 547\u2013557, https:\/\/doi.org\/10.5194\/os-10-547-2014, 2014.","DOI":"10.5194\/os-10-547-2014"},{"key":"ref183","doi-asserted-by":"crossref","unstructured":"von Schuckmann, K., Palmer, M. D., Trenberth, K. E., Cazenave, A., Chambers, D., Champollion, N., Hansen, J., Josey, S. A., Loeb, N., Mathieu, P.-P., Meyssignac, B., and Wild, M.: An imperative to monitor Earth's energy imbalance, Nat. Clim. Change, 6, 138\u2013144, https:\/\/doi.org\/10.1038\/nclimate2876, 2016.","DOI":"10.1038\/nclimate2876"},{"key":"ref184","doi-asserted-by":"crossref","unstructured":"von Schuckmann, K., Le Traon, P.-Y., Smith, N., et al.: Copernicus Marine Service Ocean State Report, J. Oper. Oceanogr., 11, S1\u2013S142, https:\/\/doi.org\/10.1080\/1755876X.2018.1489208, 2018.","DOI":"10.1080\/1755876X.2018.1489208"},{"key":"ref185","doi-asserted-by":"crossref","unstructured":"von Schuckmann, K., Cheng, L., Palmer, M. D., Hansen, J., Tassone, C., Aich, V., Adusumilli, S., Beltrami, H., Boyer, T., Cuesta-Valero, F. J., Desbruy\u00e8res, D., Domingues, C., Garc\u00eda-Garc\u00eda, A., Gentine, P., Gilson, J., Gorfer, M., Haimberger, L., Ishii, M., Johnson, G. C., Killick, R., King, B. A., Kirchengast, G., Kolodziejczyk, N., Lyman, J., Marzeion, B., Mayer, M., Monier, M., Monselesan, D. P., Purkey, S., Roemmich, D., Schweiger, A., Seneviratne, S. I., Shepherd, A., Slater, D. A., Steiner, A. K., Straneo, F., Timmermans, M.-L., and Wijffels, S. E.: Heat stored in the Earth system: where does the energy go?, Earth Syst. Sci. Data, 12, 2013\u20132041, https:\/\/doi.org\/10.5194\/essd-12-2013-2020, 2020.","DOI":"10.5194\/essd-12-2013-2020"},{"key":"ref186","unstructured":"von Schuckmann, K., Mini\u00e8re, A., Gues, F., Cuesta-Valero, F. J., Kirchengast, G., Adusumilli, S., Straneo, F., Allan, R., Barker, P. M. ., Beltrami, H., Boyer, T., Cheng, L., Church, J., Desbruyeres, D., Dolman, H., Domingues, C. M. ., Garc\u00eda-Garc\u00eda, A., Gilson, J., Gorfer, M., Haimberger, L., Hendricks, S., Hosoda, S., Johnson, G. C. ., Killick, R., King, B. A. ., Kolodziejczyk, N., Korosov, A., Krinner, G., Kuusela, M., Langer, M., Lavergne, T., Lawrence, I., Li, Y., Lyman, J., Marzeion, B., Mayer, M., MacDougall, A., McDougall, T., Monselesan, D. P., Nitzbon, J., Otosaka, I., Peng, J., Purkey, S., Roemmich, D., Sato, K., Sato, K., Savita, A., Schweiger, A., Shepherd, A., Seneviratne, S. I. ., Slater, D. A. ., Slater, T., Simons, L., Steiner, A. K. ., Szekely, T., Suga, T., Thiery, W., Timmermanns, M.-L., Vanderkelen, I., Wijffels, S. E. ., Wu, T.&lt;span id=&quot;page1709&quot;\/&gt;, and Zemp, M.: GCOS EHI 1960\u20132020 Earth Heat Inventory Ocean Heat Content (Version 2), World Data Center for Climate [data set], https:\/\/doi.org\/10.26050\/WDCC\/GCOS_EHI_1960-2020_OHC_v2, 2023."},{"key":"ref187","doi-asserted-by":"crossref","unstructured":"V\u00f6mel, H., Selkirk, H., Miloshevich, L., Valverde-Canossa, J., Vald\u00e9s, J., Kyr\u00f6, E., Kivi, R., Stolz, W., Peng, G., and Diaz, J. A.: Radiation Dry Bias of the Vaisala RS92 Humidity Sensor, J. Atmos. Ocean. Tech., 24, 953\u2013963, https:\/\/doi.org\/10.1175\/JTECH2019.1, 2007.","DOI":"10.1175\/JTECH2019.1"},{"key":"ref188","doi-asserted-by":"crossref","unstructured":"Wanders, N., Thober, S., Kumar, R., Pan, M., Sheffield, J., Samaniego, L., and Wood, E. F.: Development and Evaluation of a Pan-European Multimodel Seasonal Hydrological Forecasting System, J. Hydrometeorol., 20, 99\u2013115, https:\/\/doi.org\/10.1175\/JHM-D-18-0040.1, 2019.","DOI":"10.1175\/JHM-D-18-0040.1"},{"key":"ref189","doi-asserted-by":"crossref","unstructured":"Wang, J., Cole, H. L., Carlson, D. J., Miller, E. R., Beierle, K., Paukkunen, A., and Laine, T. K.: Corrections of Humidity Measurement Errors from the Vaisala RS80 Radiosonde\u2013Application to TOGA COARE Data, J. Atmos. Ocean. Tech., 19, 981\u20131002, https:\/\/doi.org\/10.1175\/1520-0426(2002)019&amp;lt;0981:COHMEF&amp;gt;2.0.CO;2, 2002.","DOI":"10.1175\/1520-0426(2002)019<0981:COHMEF>2.0.CO;2"},{"key":"ref190","doi-asserted-by":"crossref","unstructured":"Wang, X., Key, J., Kwok, R., and Zhang, J.: Comparison of Arctic Sea Ice Thickness from Satellites, Aircraft, and PIOMAS Data, Remote Sens., 8, 713, https:\/\/doi.org\/10.3390\/rs8090713, 2016.","DOI":"10.3390\/rs8090713"},{"key":"ref191","doi-asserted-by":"crossref","unstructured":"WCRP Global Sea Level Budget Group: Global sea-level budget 1993\u2013present, Earth Syst. Sci. Data, 10, 1551\u20131590, https:\/\/doi.org\/10.5194\/essd-10-1551-2018, 2018.","DOI":"10.5194\/essd-10-1551-2018"},{"key":"ref192","doi-asserted-by":"crossref","unstructured":"Webster, M. A., DuVivier, A. K., Holland, M. M., and Bailey, D. A.: Snow on Arctic Sea Ice in a Warming Climate as Simulated in CESM, J. Geophys. Res.-Oceans, 126, e2020JC016308, https:\/\/doi.org\/10.1029\/2020JC016308, 2021.","DOI":"10.1029\/2020JC016308"},{"key":"ref193","doi-asserted-by":"crossref","unstructured":"Weihs, P., Laimighofer, J., Formayer, H., and Olefs, M.: Influence of snow making on albedo and local radiative forcing in an alpine area, Atmos. Res., 255, 105448, https:\/\/doi.org\/10.1016\/j.atmosres.2020.105448, 2021.","DOI":"10.1016\/j.atmosres.2020.105448"},{"key":"ref194","unstructured":"WGMS: Fluctuations of Glaciers Database, World Glacier Monitoring Service, Zurich, Switzerland, https:\/\/doi.org\/10.5904\/wgms-fog-2021-05, 2021."},{"key":"ref195","doi-asserted-by":"crossref","unstructured":"Wijffels, S., Roemmich, D., Monselesan, D., Church, J., and Gilson, J.: Ocean temperatures chronicle the ongoing warming of Earth, Nat. Clim. Change, 6, 116\u2013118, https:\/\/doi.org\/10.1038\/nclimate2924, 2016.","DOI":"10.1038\/nclimate2924"},{"key":"ref196","doi-asserted-by":"crossref","unstructured":"Wilson, N., Straneo, F., and Heimbach, P.: Satellite-derived submarine melt rates and mass balance (2011\u20132015) for Greenland's largest remaining ice tongues, The Cryosphere, 11, 2773\u20132782, https:\/\/doi.org\/10.5194\/tc-11-2773-2017, 2017.","DOI":"10.5194\/tc-11-2773-2017"},{"key":"ref197","unstructured":"Wong, A. P. S., Wijffels, S. E., Riser, S. C., et al.: Argo Data 1999\u20132019: Two Million Temperature-Salinity Profiles and Subsurface Velocity Observations From a Global Array of Profiling Floats, https:\/\/www.frontiersin.org\/articles\/10.3389\/fmars.2020.00700 (last access: 29 March 2023\u200b\u200b\u200b\u200b\u200b\u200b\u200b), 2020."},{"key":"ref198","doi-asserted-by":"crossref","unstructured":"Wunsch, C.: Is the Ocean Speeding Up? Ocean Surface Energy Trends, J. Phys. Oceanogr., 50, 3205\u20133217, https:\/\/doi.org\/10.1175\/JPO-D-20-0082.1, 2020.","DOI":"10.1175\/JPO-D-20-0082.1"},{"key":"ref199","doi-asserted-by":"crossref","unstructured":"Zanna, L., Khatiwala, S., Gregory, J. M., Ison, J., and Heimbach, P.: Global reconstruction of historical ocean heat storage and transport, P. Natl. Acad. Sci. USA, 116, 1126, https:\/\/doi.org\/10.1073\/pnas.1808838115, 2019.","DOI":"10.1073\/pnas.1808838115"},{"key":"ref200","unstructured":"Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun, M., Machguth, H., Nussbaumer, S. U., G\u00e4rtner-Roer, I., Thomson, L., Paul, F., Maussion, F., Kutuzov, S., and Cogley, J. G.: Global and regional glacier mass changes from 1961 to 2016, Zenodo, https:\/\/doi.org\/10.5281\/zenodo.3557199, 2019."},{"key":"ref201","doi-asserted-by":"crossref","unstructured":"Zemp, M., Huss, M., Eckert, N., Thibert, E., Paul, F., Nussbaumer, S. U., and G\u00e4rtner-Roer, I.: Brief communication: Ad hoc estimation of glacier contributions to sea-level rise from the latest glaciological observations, The Cryosphere, 14, 1043\u20131050, https:\/\/doi.org\/10.5194\/tc-14-1043-2020, 2020.","DOI":"10.5194\/tc-14-1043-2020"},{"key":"ref202","doi-asserted-by":"crossref","unstructured":"Zhang, J. and Rothrock, D. A.: Modeling Global Sea Ice with a Thickness and Enthalpy Distribution Model in Generalized Curvilinear Coordinates, Mon. Weather Rev., 131, 845\u2013861, https:\/\/doi.org\/10.1175\/1520-0493(2003)131&amp;lt;0845:MGSIWA&amp;gt;2.0.CO;2, 2003.","DOI":"10.1175\/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2"},{"key":"ref203","doi-asserted-by":"crossref","unstructured":"Zhang, R., Wang, H., Fu, Q., Rasch, J. P., and Wang, X.: Unraveling driving forces explaining significant reduction in satellite-inferred Arctic surface albedo since the 1980s, P. Natl. Acad. Sci. USA, 116, 23947\u201323953, https:\/\/doi.org\/10.1073\/pnas.1915258116, 2019.","DOI":"10.1073\/pnas.1915258116"},{"key":"ref204","doi-asserted-by":"crossref","unstructured":"Zou, C.-Z., Xu, H., Hao, X., and Fu, Q.: Post-Millennium Atmospheric Temperature Trends Observed From Satellites in Stable Orbits, Geophys. Res. Lett., 48, e2021GL093291, https:\/\/doi.org\/10.1029\/2021GL093291, 2021.","DOI":"10.1029\/2021GL093291"}],"container-title":["Earth System Science Data"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/essd.copernicus.org\/articles\/15\/1675\/2023\/essd-15-1675-2023.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,10]],"date-time":"2023-12-10T19:33:33Z","timestamp":1702236813000},"score":1,"resource":{"primary":{"URL":"https:\/\/essd.copernicus.org\/articles\/15\/1675\/2023\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4,17]]},"references-count":204,"journal-issue":{"issue":"4","published-online":{"date-parts":[[2023]]}},"URL":"http:\/\/dx.doi.org\/10.5194\/essd-15-1675-2023","relation":{"has-preprint":[{"id-type":"doi","id":"10.5194\/essd-2022-239","asserted-by":"subject"}],"has-review":[{"id-type":"doi","id":"10.5194\/essd-2022-239-RC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/essd-2022-239-AC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/essd-2022-239-RC2","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/essd-2022-239-AC2","asserted-by":"subject"}],"is-part-of":[{"id-type":"doi","id":"10.26050\/WDCC\/GCOS_EHI_1960-2020_OHC_v2","asserted-by":"subject"},{"id-type":"doi","id":"10.26050\/WDCC\/GCOS_EHI_1960-2020_CoHC_v2","asserted-by":"subject"},{"id-type":"doi","id":"10.26050\/WDCC\/GCOS_EHI_1960-2020_AHC","asserted-by":"subject"},{"id-type":"doi","id":"10.26050\/WDCC\/GCOS_EHI_1960-2020_IWHC","asserted-by":"subject"},{"id-type":"doi","id":"10.26050\/WDCC\/GCOS_EHI_1960-2020_PHC","asserted-by":"subject"},{"id-type":"doi","id":"10.26050\/WDCC\/GCOS_EHI_1960-2020_CrHC","asserted-by":"subject"}]},"ISSN":["1866-3516"],"issn-type":[{"value":"1866-3516","type":"electronic"}],"subject":["General Earth and Planetary Sciences"],"published":{"date-parts":[[2023,4,17]]}}}