uni-leipzig-open-access/json/elementa.2023.00079

1 line
36 KiB
Plaintext

{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,11,21]],"date-time":"2023-11-21T00:15:06Z","timestamp":1700525706306},"reference-count":71,"publisher":"University of California Press","issue":"1","license":[{"start":{"date-parts":[[2023,11,20]],"date-time":"2023-11-20T00:00:00Z","timestamp":1700438400000},"content-version":"vor","delay-in-days":323,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023,11,20]]},"abstract":"<jats:p>During marine cold air outbreaks (MCAOs), cold and dry Arctic air masses are transported from the central Arctic southward across the closed sea ice and much warmer open oceans. They experience significant transformations including a rapid heating and moistening, often leading to cloud formation. While intense wintertime MCAOs have been analyzed widely, the air mass transformations during other seasons have been studied sparsely. We address this gap by investigating an MCAO case observed in September 2020. To study the transformation processes, we combine the fifth generation of atmospheric reanalyses of the global climate (ERA5), trajectory calculations, as well as shipborne and airborne measurements. In the central Arctic, observations acquired from aboard the research vessel (RV) Polarstern during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition characterized the initial state of the air mass over closed sea ice. Trajectories indicated the pathway the air mass took from RV Polarstern southward to the Fram Strait. For the first 24 h of the southbound drift, the air masses remained quasi-stationary. Then, still 15 h ahead of the marginal sea ice zone, differential advection across the boundary layer flow introduced humidity and clouds at higher altitudes between 1.5 and 2.5 km. ERA5-derived temperature and humidity tendencies indicated complex vertical interactions. Radiative cloud-top cooling, entrainment, and turbulence were significantly reduced in the lower and enhanced in the upper advected cloud layer. Eventually, the lower cloud deck dissipated. After this confluence of 2 different air masses, observations gathered by Polar 5 in Fram Strait as part of the MOSAiC Airborne observations in the Central Arctic campaign revealed cloudy, moist layers throughout the lowest 3.5 km and an increasing boundary layer height. Comparing the initial with the final state 48 h later, the largest net heating of +8 K was found close to the surface, yet the largest net moistening of +2.5 g kg\u22121 at an altitude of 1 km, as the initial profile was exceptionally dry here. We conclude that the observed air mass transformations were driven by the surface changes from sea ice to open ocean but additionally strongly impacted by the differential advection of clouds and moisture across the near-surface MCAO flow.<\/jats:p>","DOI":"10.1525\/elementa.2023.00079","type":"journal-article","created":{"date-parts":[[2023,11,20]],"date-time":"2023-11-20T21:13:46Z","timestamp":1700514826000},"source":"Crossref","is-referenced-by-count":0,"title":["Analysis of an Arctic cold air outbreak during autumn and related air mass transformations forced by surface changes and advection in higher altitudes"],"prefix":"10.1525","volume":"11","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-8824-2244","authenticated-orcid":false,"given":"Benjamin","family":"Kirbus","sequence":"first","affiliation":[{"name":"1Leipzig Institute for Meteorology, Leipzig University, Leipzig, Germany"}]},{"given":"Jan","family":"Chylik","sequence":"additional","affiliation":[{"name":"2Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany"}]},{"given":"Andr\u00e9","family":"Ehrlich","sequence":"additional","affiliation":[{"name":"1Leipzig Institute for Meteorology, Leipzig University, Leipzig, Germany"}]},{"given":"Sebastian","family":"Becker","sequence":"additional","affiliation":[{"name":"1Leipzig Institute for Meteorology, Leipzig University, Leipzig, Germany"}]},{"given":"Michael","family":"Sch\u00e4fer","sequence":"additional","affiliation":[{"name":"1Leipzig Institute for Meteorology, Leipzig University, Leipzig, Germany"}]},{"given":"Roel","family":"Neggers","sequence":"additional","affiliation":[{"name":"2Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany"}]},{"given":"Manfred","family":"Wendisch","sequence":"additional","affiliation":[{"name":"1Leipzig Institute for Meteorology, Leipzig University, Leipzig, Germany"}]}],"member":"408","reference":[{"key":"2023112021132148800_ref1","doi-asserted-by":"crossref","unstructured":"Ali, SM, Pithan, F.2020. Following moist intrusions into the Arctic using SHEBA observations in a Lagrangian perspective. Quarterly Journal of the Royal Meteorological Society146(732): 3522\u20133533. DOI: https:\/\/dx.doi.org\/10.1002\/qj.3859.","DOI":"10.1002\/qj.3859"},{"key":"2023112021132148800_ref2","doi-asserted-by":"crossref","unstructured":"Becker, S, Ehrlich, A, J\u00e4kel, E, Carlsen, T, Sch\u00e4fer, M, Wendisch, M.2022. Airborne measurements of directional reflectivity over the marginal sea ice zone. Atmospheric Measurement Techniques15(9): 2939\u20132953. DOI: http:\/\/dx.doi.org\/10.5194\/amt-15-2939-2022.","DOI":"10.5194\/amt-15-2939-2022"},{"key":"2023112021132148800_ref3","unstructured":"Becker, S, Ehrlich, A, Mech, M, L\u00fcpkes, C, Wendisch, M.2021a. Meteorological measurements by dropsondes released from POLAR 5 during MOSAiC-ACA 2020. PANGAEA. DOI: http:\/\/dx.doi.org\/10.1594\/PANGAEA.933581."},{"key":"2023112021132148800_ref4","unstructured":"Becker, S, Stapf, J, Ehrlich, A, Wendisch, M.2021b. Aircraft measurements of broadband irradiance during the MOSAiC-ACA campaign in 2020. PANGAEA. DOI: http:\/\/dx.doi.org\/10.1594\/PANGAEA.936232."},{"issue":"16","key":"2023112021132148800_ref5","doi-asserted-by":"crossref","first-page":"10609","DOI":"10.5194\/acp-16-10609-2016","article-title":"Measuring ice- and liquid-water properties in mixed-phase cloud layers at the Leipzig Cloudnet station","volume":"16","year":"2016","journal-title":"Atmospheric Chemistry and Physics"},{"issue":"8","key":"2023112021132148800_ref6","doi-asserted-by":"crossref","first-page":"4685","DOI":"10.5194\/acp-23-4685-2023","article-title":"Turbulent structure of the Arctic boundary layer in early summer driven by stability, wind shear and cloud-top radiative cooling: ACLOUD airborne observations","volume":"23","year":"2023","journal-title":"Atmospheric Chemistry and Physics"},{"issue":"1","key":"2023112021132148800_ref7","doi-asserted-by":"crossref","first-page":"5290","DOI":"10.1038\/s41467-022-32872-2","article-title":"A central Arctic extreme aerosol event triggered by a warm air-mass intrusion","volume":"13","year":"2022","journal-title":"Nature Communications"},{"key":"2023112021132148800_ref8","doi-asserted-by":"crossref","unstructured":"Dahlke, S, Solb\u00e8s, A, Maturilli, M.2022. Cold air outbreaks in Fram Strait: Climatology, trends, and observations during an extreme season in 2020. Journal of Geophysical Research: Atmospheres127(3): e2021JD035741. DOI: http:\/\/dx.doi.org\/10.1029\/2021JD035741.","DOI":"10.1029\/2021JD035741"},{"key":"2023112021132148800_ref10","doi-asserted-by":"crossref","unstructured":"Emde, C, Buras-Schnell, R, Kylling, A, Mayer, B, Gasteiger, J, Hamann, U, Kylling, J, Richter, B, Pause, C, Dowling, T, Bugliaro, L.2016. The libRadtran software package for radiative transfer calculations (version 2.0.1). Geoscientific Model Development9(5): 1647\u20131672. DOI: http:\/\/dx.doi.org\/10.5194\/gmd-9-1647-2016.","DOI":"10.5194\/gmd-9-1647-2016"},{"key":"2023112021132148800_ref11","unstructured":"Engelmann, R, Althausen, D, Baars, H, Griesche, H, Hofer, J, Radenz, M, Seifert, P.2023. Custom collection of categorize, classification, ice water content, lidar, and liquid water content data from RV Polarstern between 1 and 30 Sep 2020. ACTRIS Cloud Remote Sensing Data Centre Unit (CLU). Available athttps:\/\/hdl.handle.net\/21.12132\/2.9e078b4e14494412. Accessed November 2, 2023."},{"key":"2023112021132148800_ref9","unstructured":"European Centre for Medium-Range Weather Forecasts. 2016. Chapters 2,3,6, in IFS documentation CY41R2\u2014Part IV: Physical processes. ECMWF: 2\u2013112. (IFS Documentation 4). DOI: http:\/\/dx.doi.org\/10.21957\/tr5rv27xu; https:\/\/www.ecmwf.int\/node\/16648."},{"key":"2023112021132148800_ref12","doi-asserted-by":"crossref","unstructured":"Fletcher, J, Mason, S, Jakob, C.2016. The climatology, meteorology, and boundary layer structure of marine cold air outbreaks in both hemispheres. Journal of Climate29(6): 1999\u20132014. DOI: http:\/\/dx.doi.org\/10.1175\/JCLI-D-15-0268.1.","DOI":"10.1175\/JCLI-D-15-0268.1"},{"key":"2023112021132148800_ref13","doi-asserted-by":"crossref","unstructured":"Geerts, B, Giangrande, SE, McFarquhar, GM, Xue, L, Abel, SJ, Comstock, JM, Crewell, S, DeMott, PJ, Ebell, K, Field, P, Hill, TCJ, Hunzinger, A, Jensen, MP, Johnson, KL, Juliano, TW, Kollias, P, Kosovic, B, Lackner, C, Luke, E, L\u00fcpkes, C, Matthews, AA, Neggers, R, Ovchinnikov, M, Powers, H, Shupe, MD, Spengler, T, Swanson, BE, Tjernstr\u00f6m, M, Theisen, AK, Wales, NA, Wang, Y, Wendisch, M, Wu, P.2022. The COMBLE campaign: A study of marine boundary layer clouds in arctic cold-air outbreaks. Bulletin of the American Meteorological Society103(5): E1371\u2013E1389. DOI: http:\/\/dx.doi.org\/10.1175\/BAMS-D-21-0044.1.","DOI":"10.1175\/BAMS-D-21-0044.1"},{"key":"2023112021132148800_ref14","doi-asserted-by":"crossref","unstructured":"Graham, RM, Hudson, SR, Maturilli, M.2019a. Improved performance of ERA5 in Arctic gateway relative to four global atmospheric reanalyses. Geophysical Research Letters46(11): 6138\u20136147. DOI: http:\/\/dx.doi.org\/10.1029\/2019GL082781.","DOI":"10.1029\/2019GL082781"},{"key":"2023112021132148800_ref15","doi-asserted-by":"crossref","unstructured":"Graham, RM, Itkin, P, Meyer, A, Sundfjord, A, Spreen, G, Smedsrud, LH, Liston, GE, Cheng, B, Cohen, L, Divine, D, Fer, I, Fransson, A, Gerland, S, Haapala, J, Hudson, SR, Johansson, MA, King, J, Merkouriadi, I, Peterson, AK, Provost, C, Randelhoff, A, Rinke, A, R\u00f6sel, A, Senn\u00e9chael, N, Walden, VP, Duarte, P, Assmy, P, Steen, H, Granskog, MA.2019b. Winter storms accelerate the demise of Arctic sea ice. Scientific Reports9(1): 9222. DOI: http:\/\/dx.doi.org\/10.1038\/s41598-019-45574-5.","DOI":"10.1038\/s41598-019-45574-5"},{"key":"2023112021132148800_ref16","volume-title":"Global physical climatology","year":"2015"},{"key":"2023112021132148800_ref17","unstructured":"Herber, A, Becker, S, Belter, HJ, Brauchle, J, Ehrlich, A, Klingebiel, M, Krumpen, T, L\u00fcpkes, C, Mech, M, Moser, M, Wendisch, M.2021. MOSAiC expedition: Airborne surveys with research aircraft POLAR 5 and POLAR 6 in 2020: Atmospheric airborne observations in the Central Arctic (ACA) and sea ice measurements (IceBird). Reports on Polar and Marine Research754: 1\u201399. DOI: http:\/\/dx.doi.org\/10.48433\/BzPM_0754_2021."},{"key":"2023112021132148800_ref18","doi-asserted-by":"crossref","unstructured":"Hersbach, H, Bell, B, Berrisford, P, Hirahara, S, Hor\u00e1nyi, A, Mu\u00f1oz-Sabater, J, Nicolas, J, Peubey, C, Radu, R, Schepers, D, Simmons, A, Soci, C, Abdalla, S, Abellan, X, Balsamo, G, Bechtold, P, Biavati, G, Bidlot, J, Bonavita, M, De Chiara, G, Dahlgren, P, Dee, D, Diamantakis, M, Dragani, R, Flemming, J, Forbes, R, Fuentes, M, Geer, A, Haimberger, L, Healy, S, Hogan, RJ, H\u00f3lm, E, Janiskov\u00e1, M, Keeley, S, Laloyaux, P, Lopez, P, Lupu, C, Radnoti, G, de Rosnay, P, Rozum, I, Vamborg, F, Villaume, S, Th\u00e9paut, JN.2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society146(730): 1999\u20132049. DOI: http:\/\/dx.doi.org\/10.1002\/qj.3803.","DOI":"10.1002\/qj.3803"},{"key":"2023112021132148800_ref19","doi-asserted-by":"crossref","unstructured":"Johansson, E, Devasthale, A, Tjernstr\u00f6m, M, Ekman, AML, L\u2019Ecuyer, T.2017. Response of the lower troposphere to moisture intrusions into the Arctic. Geophysical Research Letters44(5): 2527\u20132536. DOI: http:\/\/dx.doi.org\/10.1002\/2017GL072687.","DOI":"10.1002\/2017GL072687"},{"key":"2023112021132148800_ref20","doi-asserted-by":"crossref","unstructured":"Kirbus, B, Tiedeck, S, Camplani, A, Chylik, J, Crewell, S, Dahlke, S, Ebell, K, Gorodetskaya, I, Griesche, H, Handorf, D, H\u00f6schel, I, Lauer, M, Neggers, R, R\u00fcckert, J, Shupe, MD, Spreen, G, Walbr\u00f6l, A, Wendisch, M, Rinke, A. 2023. Surface impacts and associated mechanisms of a moisture intrusion into the Arctic observed in mid-April 2020 during MOSAiC. Frontiers in Earth Science: Atmospheric Science11: 1147848. DOI: http:\/\/dx.doi.org\/10.3389\/feart.2023.1147848.","DOI":"10.3389\/feart.2023.1147848"},{"issue":"5\u20136","key":"2023112021132148800_ref21","first-page":"2573","article-title":"Projected future changes in marine cold-air outbreaks associated with polar lows in the Northern North-Atlantic Ocean","volume":"53","year":"2019","journal-title":"Climate Dynamics"},{"key":"2023112021132148800_ref22","doi-asserted-by":"crossref","unstructured":"Li, J, Huang, J, Stamnes, K, Wang, T, Lv, Q, Jin, H.2015. A global survey of cloud overlap based on CALIPSO and CloudSat measurements. Atmospheric Chemistry and Physics15(1): 519\u2013536. DOI: http:\/\/dx.doi.org\/10.5194\/acp-15-519-2015.","DOI":"10.5194\/acp-15-519-2015"},{"key":"2023112021132148800_ref23","doi-asserted-by":"crossref","unstructured":"Li, J, Yi, Y, Minnis, P, Huang, J, Yan, H, Ma, Y, Wang, W, Kirk Ayers, J.2011. Radiative effect differences between multi-layered and single-layer clouds derived from CERES, CALIPSO, and CloudSat data. Journal of Quantitative Spectroscopy and Radiative Transfer112(2): 361\u2013375. DOI: http:\/\/dx.doi.org\/10.1016\/j.jqsrt.2010.10.006.","DOI":"10.1016\/j.jqsrt.2010.10.006"},{"key":"2023112021132148800_ref24","doi-asserted-by":"crossref","unstructured":"Lloyd, G, Choularton, TW, Bower, KN, Gallagher, MW, Crosier, J, O\u2019Shea, S, Abel, SJ, Fox, S, Cotton, R, Boutle, IA.2018. In situ measurements of cloud microphysical and aerosol properties during the break-up of stratocumulus cloud layers in cold air outbreaks over the North Atlantic. Atmospheric Chemistry and Physics18(23): 17191\u201317206. DOI: http:\/\/dx.doi.org\/10.5194\/acp-18-17191-2018.","DOI":"10.5194\/acp-18-17191-2018"},{"issue":"10","key":"2023112021132148800_ref25","article-title":"Marine cold-air outbreak snowfall in the north Atlantic: A CloudSat perspective","volume":"128","year":"2023","journal-title":"Journal of Geophysical Research"},{"key":"2023112021132148800_ref26","unstructured":"Maturilli, M.\n 2020. High resolution radiosonde measurements from station Ny-\u00c5lesund (2017-04 et seq). Alfred Wegener Institute\u2014Research Unit Potsdam. PANGAEA. DOI: http:\/\/dx.doi.org\/10.1594\/PANGAEA.914973."},{"key":"2023112021132148800_ref27","unstructured":"Maturilli, M.\n 2021. High resolution radiosonde measurements from station Ny-\u00c5lesund (2020-09). PANGAEA. DOI: http:\/\/dx.doi.org\/10.1594\/PANGAEA.926804."},{"key":"2023112021132148800_ref28","unstructured":"Maturilli, M, Holdridge, DJ, Dahlke, S, Graeser, J, Sommerfeld, A, Jaiser, R, Deckelmann, H, Schulz, A.2021. Initial radiosonde data from 2019-10 to 2020-09 during project MOSAiC. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven. PANGAEA. DOI: http:\/\/dx.doi.org\/10.1594\/PANGAEA.928656."},{"key":"2023112021132148800_ref29","unstructured":"Maturilli, M, Holdridge, DJ, Dahlke, S, Schulz, A.2021. Radiosonde measurements in 2020-09 during MOSAiC Leg PS122\/5 (level 2 data). PANGAEA. DOI: http:\/\/dx.doi.org\/10.1594\/PANGAEA.928833."},{"key":"2023112021132148800_ref30","doi-asserted-by":"crossref","unstructured":"Mech, M, Ehrlich, A, Herber, A, L\u00fcpkes, C, Wendisch, M, Becker, S, Boose, Y, Chechin, D, Crewell, S, Dupuy, R, Gourbeyre, C, Hartmann, J, J\u00e4kel, E, Jourdan, O, Kliesch, LL, Klingebiel, M, Kulla, BS, Mioche, G, Moser, M, Risse, N, Ruiz-Donoso, E, Sch\u00e4fer, M, Stapf, J, Voigt, C.2022a. MOSAiC-ACA and AFLUX\u2014Arctic airborne campaigns characterizing the exit area of MOSAiC. Scientific Data9(1): 790. DOI: http:\/\/dx.doi.org\/10.1038\/s41597-022-01900-7.","DOI":"10.1038\/s41597-022-01900-7"},{"key":"2023112021132148800_ref31","unstructured":"Mech, M, Risse, N, Crewell, S, Kliesch, LL.2022b. Radar reflectivities at 94 GHz and microwave brightness temperature measurements at 89 GHz during the MOSAiC-ACA Arctic airborne campaign. PANGAEA. DOI: http:\/\/dx.doi.org\/10.1594\/PANGAEA.944507."},{"key":"2023112021132148800_ref32","doi-asserted-by":"crossref","unstructured":"Michaelis, J, Schmitt, AU, L\u00fcpkes, C, Hartmann, J, Birnbaum, G, Vihma, T.2022. Observations of marine cold-air outbreaks: A comprehensive data set of airborne and dropsonde measurements from the Springtime Atmospheric Boundary Layer Experiment (STABLE). Earth System Science Data14(4): 1621\u20131637. DOI: http:\/\/dx.doi.org\/10.5194\/essd-14-1621-2022.","DOI":"10.5194\/essd-14-1621-2022"},{"issue":"12","key":"2023112021132148800_ref33","doi-asserted-by":"crossref","first-page":"6636","DOI":"10.1002\/2016GL069330","article-title":"Melt onset over Arctic sea ice controlled by atmospheric moisture transport","volume":"43","year":"2016","journal-title":"Geophysical Research Letters"},{"key":"2023112021132148800_ref34","unstructured":"Moser, M, Voigt, C, Hahn, V.2022. DLR in-situ cloud measurements during MOSAiC-ACA Arctic airborne campaign. PANGAEA. DOI: http:\/\/dx.doi.org\/10.1594\/PANGAEA.940557."},{"issue":"16","key":"2023112021132148800_ref35","doi-asserted-by":"crossref","first-page":"9365","DOI":"10.5194\/acp-23-9365-2023","article-title":"Investigating the development of clouds within marine cold-air outbreaks","volume":"23","year":"2023","journal-title":"Atmospheric Chemistry and Physics"},{"issue":"1","key":"2023112021132148800_ref36","doi-asserted-by":"crossref","first-page":"21","DOI":"10.5194\/wcd-3-21-2022","article-title":"Interaction between Atlantic cyclones and Eurasian atmospheric blocking drives wintertime warm extremes in the high Arctic","volume":"3","year":"2022","journal-title":"Weather and Climate Dynamics"},{"issue":"1","key":"2023112021132148800_ref37","first-page":"012039","article-title":"Marine cold air outbreaks in the Russian Arctic: Climatology, interannual variability, dependence on sea-ice concentration","volume":"606","year":"2020","journal-title":"IOP Conference Series: Earth and Environmental Science"},{"key":"2023112021132148800_ref38","unstructured":"Nicolaus, M, Arndt, S, Birnbaum, G, Katlein, C.2021. Visual panoramic photographs of the surface conditions during the MOSAiC campaign 2019\/20. PANGAEA. DOI: http:\/\/dx.doi.org\/10.1594\/PANGAEA.938534."},{"key":"2023112021132148800_ref39","doi-asserted-by":"crossref","unstructured":"Nicolaus, M, Perovich, DK, Spreen, G, Granskog, MA, von Albedyll, L, Angelopoulos, M, Anhaus, P, Arndt, S, Belter, HJ, Bessonov, V, Birnbaum, G, Brauchle, J, Calmer, R, Cardellach, E, Cheng, B, Clemens-Sewall, D, Dadic, R, Damm, E, de Boer, G, Demir, O, Dethloff, K, Divine, DV, Fong, AA, Fons, S, Frey, MM, Fuchs, N, Gabarr\u00f3, C, Gerland, S, Goessling, HF, Gradinger, R, Haapala, J, Haas, C, Hamilton, J, Hannula, HR, Hendricks, S, Herber, A, Heuz\u00e9, C, Hoppmann, M, H\u00f8yland, KV, Huntemann, M, Hutchings, JK, Hwang, B, Itkin, P, Jacobi, HW, Jaggi, M, Jutila, A, Kaleschke, L, Katlein, C, Kolabutin, N, Krampe, D, Kristensen, SS, Krumpen, T, Kurtz, N, Lampert, A, Lange, BA, Lei, R, Light, B, Linhardt, F, Liston, GE, Loose, B, Macfarlane, AR, Mahmud, M, Matero, IO, Maus, S, Morgenstern, A, Naderpour, R, Nandan, V, Niubom, A, Oggier, M, Oppelt, N, P\u00e4tzold, F, Perron, C, Petrovsky, T, Pirazzini, R, Polashenski, C, Rabe, B, Raphael, IA, Regnery, J, Rex, M, Ricker, R, Riemann-Campe, K, Rinke, A, Rohde, J, Salganik, E, Scharien, RK, Schiller, M, Schneebeli, M, Semmling, M, Shimanchuk, E, Shupe, MD, Smith, MM, Smolyanitsky, V, Sokolov, V, Stanton, T, Stroeve, J, Thielke, L, Timofeeva, A, Tonboe, RT, Tavri, A, Tsamados, M, Wagner, DN, Watkins, D, Webster, M, Wendisch, M. 2022. Overview of the MOSAiC expedition: Snow and sea ice. Elementa: Science of the Anthropocene10(1): 000046. DOI: http:\/\/dx.doi.org\/10.1525\/elementa.2021.000046.","DOI":"10.1525\/elementa.2021.000046"},{"key":"2023112021132148800_ref40","doi-asserted-by":"crossref","unstructured":"Papritz, L.\n 2020. Arctic lower-tropospheric warm and cold extremes: Horizontal and vertical transport, diabatic processes, and linkage to synoptic circulation features. Journal of Climate33(3): 993\u20131016. DOI: http:\/\/dx.doi.org\/10.1175\/JCLI-D-19-0638.1.","DOI":"10.1175\/JCLI-D-19-0638.1"},{"key":"2023112021132148800_ref41","doi-asserted-by":"crossref","unstructured":"Papritz, L, Rouges, E, Aemisegger, F, Wernli, H.2019. On the thermodynamic preconditioning of arctic air masses and the role of tropopause polar vortices for cold air outbreaks from Fram Strait. Journal of Geophysical Research124(21): 11033\u201311050. DOI: http:\/\/dx.doi.org\/10.1029\/2019JD030570.","DOI":"10.1029\/2019JD030570"},{"key":"2023112021132148800_ref42","doi-asserted-by":"crossref","unstructured":"Papritz, L, Spengler, T.2017. A Lagrangian climatology of wintertime cold air outbreaks in the Irminger and Nordic Seas and their role in shaping air\u2013sea heat fluxes. Journal of Climate30(8): 2717\u20132737. DOI: http:\/\/dx.doi.org\/10.1175\/JCLI-D-16-0605.1.","DOI":"10.1175\/JCLI-D-16-0605.1"},{"issue":"4","key":"2023112021132148800_ref43","doi-asserted-by":"crossref","first-page":"1341","DOI":"10.1007\/s00382-016-3383-1","article-title":"Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: Observations of midwinter SHEBA conditions","volume":"49","year":"2017","journal-title":"Climate Dynamics"},{"issue":"3","key":"2023112021132148800_ref44","doi-asserted-by":"crossref","first-page":"1345","DOI":"10.1002\/2016MS000630","article-title":"Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: The Larcform 1 single column model intercomparison","volume":"8","year":"2016","journal-title":"Journal of Advances in Modeling Earth Systems"},{"key":"2023112021132148800_ref45","doi-asserted-by":"crossref","unstructured":"Pithan, F, Svensson, G, Caballero, R, Chechin, D, Cronin, T, Ekman, A, Neggers, RAJ, Shupe, M, Solomon, A, Tjernstroem, M, Wendisch, M.2018. Role of air-mass transformations in exchange between the Arctic and mid-latitudes. Nature Geoscience11: 805\u2013812. DOI: http:\/\/dx.doi.org\/10.1038\/s41561-018-0234-1.","DOI":"10.1038\/s41561-018-0234-1"},{"key":"2023112021132148800_ref46","doi-asserted-by":"crossref","unstructured":"Rabe, B, Heuz\u00e9, C, Regnery, J, Aksenov, Y, Allerholt, J, Athanase, M, Bai, Y, Basque, C, Bauch, D, Baumann, TM, Chen, D, Cole, ST, Craw, L, Davies, A, Damm, E, Dethloff, K, Divine, DV, Doglioni, F, Ebert, F, Fang, YC, Fer, I, Fong, AA, Gradinger, R, Granskog, MA, Graupner, R, Haas, C, He, H, He, Y, Hoppmann, M, Janout, M, Kadko, D, Kanzow, T, Karam, S, Kawaguchi, Y, Koenig, Z, Kong, B, Krishfield, RA, Krumpen, T, Kuhlmey, D, Kuznetsov, I, Lan, M, Laukert, G, Lei, R, Li, T, Torres-Vald\u00e9s, S, Lin, L, Lin, L, Liu, H, Liu, N, Loose, B, Ma, X, McKay, R, Mallet, M, Mallett, RDC, Maslowski, W, Mertens, C, Mohrholz, V, Muilwijk, M, Nicolaus, M, O\u2019Brien, JK, Perovich, D, Ren, J, Rex, M, Ribeiro, N, Rinke, A, Schaffer, J, Schuffenhauer, I, Schulz, K, Shupe, MD, Shaw, W, Sokolov, V, Sommerfeld, A, Spreen, G, Stanton, T, Stephens, M, Su, J, Sukhikh, N, Sundfjord, A, Thomisch, K, Tippenhauer, S, Toole, JM, Vredenborg, M, Walter, M, Wang, H, Wang, L, Wang, Y, Wendisch, M, Zhao, J, Zhou, M, Zhu, J. 2022. Overview of the MOSAiC expedition: Physical oceanography. Elementa: Science of the Anthropocene10(1): 00062. DOI: http:\/\/dx.doi.org\/10.1525\/elementa.2021.00062.","DOI":"10.1525\/elementa.2021.00062"},{"key":"2023112021132148800_ref47","doi-asserted-by":"crossref","unstructured":"Randall, DA, Cripe, DG.1999. Alternative methods for specification of observed forcing in single-column models and cloud system models. Journal of Geophysical Research: Atmospheres104(D20): 24527\u201324545. DOI: http:\/\/dx.doi.org\/10.1029\/1999JD900765.","DOI":"10.1029\/1999JD900765"},{"key":"2023112021132148800_ref48","unstructured":"Riihimaki, L.\n 2021. Radiation instruments on ice. Atmospheric Radiation Measurement (ARM) User Facility. DOI: http:\/\/dx.doi.org\/10.5439\/1608608."},{"issue":"4","key":"2023112021132148800_ref49","doi-asserted-by":"crossref","first-page":"2795","DOI":"10.5194\/acp-22-2795-2022","article-title":"North Atlantic Ocean SST-gradient-driven variations in aerosol and cloud evolution along Lagrangian cold-air outbreak trajectories","volume":"22","year":"2022","journal-title":"Atmospheric Chemistry and Physics"},{"key":"2023112021132148800_ref50","doi-asserted-by":"crossref","unstructured":"Shupe, MD, Intrieri, JM.2004. Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. Journal of Climate17(3): 616\u2013628. DOI: http:\/\/dx.doi.org\/10.1175\/1520-0442(2004)017&lt;0616:CRFOTA&gt;2.0.CO;2.","DOI":"10.1175\/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2"},{"key":"2023112021132148800_ref51","doi-asserted-by":"crossref","unstructured":"Shupe, MD, Rex, M, Blomquist, B, Persson, POG, Schmale, J, Uttal, T, Althausen, D, Angot, H, Archer, S, Bariteau, L, Beck, I, Bilberry, J, Bucci, S, Buck, C, Boyer, M, Brasseur, Z, Brooks, IM, Calmer, R, Cassano, J, Castro, V, Chu, D, Costa, D, Cox, CJ, Creamean, J, Crewell, S, Dahlke, S, Damm, E, de Boer, G, Deckelmann, H, Dethloff, K, D\u00fctsch, M, Ebell, K, Ehrlich, A, Ellis, J, Engelmann, R, Fong, AA, Frey, MM, Gallagher, MR, Ganzeveld, L, Gradinger, R, Graeser, J, Greenamyer, V, Griesche, H, Griffiths, S, Hamilton, J, Heinemann, G, Helmig, D, Herber, A, Heuz\u00e9, C, Hofer, J, Houchens, T, Howard, D, Inoue, J, Jacobi, HW, Jaiser, R, Jokinen, T, Jourdan, O, Jozef, G, King, W, Kirchgaessner, A, Klingebiel, M, Krassovski, M, Krumpen, T, Lampert, A, Landing, W, Laurila, T, Lawrence, D, Lonardi, M, Loose, B, L\u00fcpkes, C, Maahn, M, Macke, A, Maslowski, W, Marsay, C, Maturilli, M, Mech, M, Morris, S, Moser, M, Nicolaus, M, Ortega, P, Osborn, J, P\u00e4tzold, F, Perovich, DK, Pet\u00e4j\u00e4, T, Pilz, C, Pirazzini, R, Posman, K, Powers, H, Pratt, KA, Preu\u00dfer, A, Qu\u00e9l\u00e9ver, L, Radenz, M, Rabe, B, Rinke, A, Sachs, T, Schulz, A, Siebert, H, Silva, T, Solomon, A, Sommerfeld, A, Spreen, G, Stephens, M, Stohl, A, Svensson, G, Uin, J, Viegas, J, Voigt, C, von der Gathen, P, Wehner, B, Welker, JM, Wendisch, M, Werner, M, Xie, Z, Yue, F. 2022. Overview of the MOSAiC expedition: Atmosphere. Elementa: Science of the Anthropocene10(1): 00060. DOI: http:\/\/dx.doi.org\/10.1525\/elementa.2021.00060.","DOI":"10.1525\/elementa.2021.00060"},{"key":"2023112021132148800_ref52","doi-asserted-by":"crossref","unstructured":"Shupe, MD, Uttal, T, Matrosov, SY.2005. Arctic cloud microphysics retrievals from surface-based remote sensors at SHEBA. Journal of Applied Meteorology44(10): 1544\u20131562. DOI: http:\/\/dx.doi.org\/10.1175\/JAM2297.1.","DOI":"10.1175\/JAM2297.1"},{"key":"2023112021132148800_ref53","doi-asserted-by":"crossref","unstructured":"Sprenger, M, Wernli, H.2015. The Lagrangian analysis tool LAGRANTO\u2014Version 2.0. Geoscientific Model Development Discussions8(2): 1893\u20131943. DOI: http:\/\/dx.doi.org\/10.5194\/gmdd-8-1893-2015.","DOI":"10.5194\/gmdd-8-1893-2015"},{"key":"2023112021132148800_ref54","doi-asserted-by":"crossref","unstructured":"Stapf, J, Ehrlich, A, L\u00fcpkes, C, Wendisch, M.2021a. Radiative energy budget and cloud radiative forcing in the daytime marginal sea ice zone during Arctic spring and summer. Atmospheric Chemistry and Physics Discussions2021: 1\u201343. DOI: http:\/\/dx.doi.org\/10.5194\/acp-2021-279.","DOI":"10.5194\/acp-2021-279"},{"key":"2023112021132148800_ref55","doi-asserted-by":"crossref","unstructured":"Stapf, J, Ehrlich, A, Wendisch, M.2021b. Influence of thermodynamic state changes on surface cloud radiative forcing in the Arctic: A comparison of two approaches using data from AFLUX and SHEBA. Journal of Geophysical Research: Atmospheres126(5): e2020JD033589. DOI: http:\/\/dx.doi.org\/10.1029\/2020JD033589.","DOI":"10.1029\/2020JD033589"},{"key":"2023112021132148800_ref56","doi-asserted-by":"crossref","unstructured":"Svensson, G, Murto, S, Shupe, MD, Pithan, F, Magnusson, L, Day, JJ, Doyle, JD, Renfrew, IA, Spengler, T, Vihma, T.2023. Warm air intrusions reaching the MOSAiC expedition in April 2020\u2014The YOPP targeted observing period (TOP). Elementa: Science of the Anthropocene11(1): 00016. DOI: http:\/\/dx.doi.org\/10.1525\/elementa.2023.00016.","DOI":"10.1525\/elementa.2023.00016"},{"issue":"3","key":"2023112021132148800_ref57","doi-asserted-by":"crossref","first-page":"769","DOI":"10.1175\/JCLI-D-18-0216.1","article-title":"Arctic summer airmass transformation, surface inversions, and the surface energy budget","volume":"32","year":"2019","journal-title":"Journal of Climate"},{"issue":"13","key":"2023112021132148800_ref58","doi-asserted-by":"crossref","first-page":"5594","DOI":"10.1002\/2015GL064373","article-title":"Warm-air advection, air mass transformation and fog causes rapid ice melt","volume":"42","year":"2015","journal-title":"Geophysical Research Letters"},{"key":"2023112021132148800_ref59","doi-asserted-by":"crossref","unstructured":"Tornow, F, Ackerman, AS, Fridlind, AM.2021. Preconditioning of overcast-to-broken cloud transitions by riming in marine cold air outbreaks. Atmospheric Chemistry and Physics21(15): 12049\u201312067. DOI: http:\/\/dx.doi.org\/10.5194\/acp-21-12049-2021.","DOI":"10.5194\/acp-21-12049-2021"},{"key":"2023112021132148800_ref60","doi-asserted-by":"crossref","unstructured":"Truong, SCH, Huang, Y, Siems, ST, Manton, MJ, Lang, F.2022. Biases in the thermodynamic structure over the Southern Ocean in ERA5 and their radiative implications. International Journal of Climatology42(15): 7685\u20137702. DOI: http:\/\/dx.doi.org\/10.1002\/joc.7672.","DOI":"10.1002\/joc.7672"},{"key":"2023112021132148800_ref61","doi-asserted-by":"crossref","unstructured":"Wendisch, M, Br\u00fcckner, M, Burrows, JP, Crewell, S, Dethloff, K, Ebell, K, L\u00fcpkes, C, Macke, A, Notholt, J, Quaas, J, Rinke, A, Tegen, I.2017. Understanding causes and effects of rapid warming in the Arctic. Eos98(8): 22\u201326. DOI: http:\/\/dx.doi.org\/10.1029\/2017EO064803.","DOI":"10.1029\/2017EO064803"},{"key":"2023112021132148800_ref62","doi-asserted-by":"crossref","unstructured":"Wendisch, M, Br\u00fcckner, M, Crewell, S, Ehrlich, A, Notholt, J, L\u00fcpkes, C, Macke, A, Burrows, JP, Rinke, A, Quaas, J, Maturilli, M, Schemann, V, Shupe, MD, Akansu, EF, Barrientos-Velasco, C, B\u00e4rfuss, K, Blechschmidt, AM, Block, K, Bougoudis, I, Bozem, H, B\u00f6ckmann, C, Bracher, A, Bresson, H, Bretschneider, L, Buschmann, M, Chechin, DG, Chylik, J, Dahlke, S, Deneke, H, Dethloff, K, Donth, T, Dorn, W, Dupuy, R, Ebell, K, Egerer, U, Engelmann, R, Eppers, O, Gerdes, R, Gierens, R, Gorodetskaya, IV, Gottschalk, M, Griesche, H, Gryanik, VM, Handorf, D, Harm-Altst\u00e4dter, B, Hartmann, J, Hartmann, M, Heinold, B, Herber, A, Herrmann, H, Heygster, G, H\u00f6schel, I, Hofmann, Z, H\u00f6lemann, J, H\u00fcnerbein, A, Jafariserajehlou, S, J\u00e4kel, E, Jacobi, C, Janout, M, Jansen, F, Jourdan, O, Jur\u00e1nyi, Z, Kalesse-Los, H, Kanzow, T, K\u00e4thner, R, Kliesch, LL, Klingebiel, M, Knudsen, EM, Kov\u00e1cs, T, K\u00f6rtke, W, Krampe, D, Kretzschmar, J, Kreyling, D, Kulla, B, Kunkel, D, Lampert, A, Lauer, M, Lelli, L, von Lerber, A, Linke, O, L\u00f6hnert, U, Lonardi, M, Losa, SN, Losch, M, Maahn, M, Mech, M, Mei, L, Mertes, S, Metzner, E, Mewes, D, Michaelis, J, Mioche, G, Moser, M, Nakoudi, K, Neggers, R, Neuber, R, Nomokonova, T, Oelker, J, Papakonstantinou-Presvelou, I, P\u00e4tzold, F, Pefanis, V, Pohl, C, van Pinxteren, M, Radovan, A, Rhein, M, Rex, M, Richter, A, Risse, N, Ritter, C, Rostosky, P, Rozanov, VV, Donoso, ER, Saavedra Garfias, P, Salzmann, M, Schacht, J, Sch\u00e4fer, M, Schneider, J, Schnierstein, N, Seifert, P, Seo, S, Siebert, H, Soppa, MA, Spreen, G, Stachlewska, IS, Stapf, J, Stratmann, F, Tegen, I, Viceto, C, Voigt, C, Vountas, M, Walbr\u00f6l, A, Walter, M, Wehner, B, Wex, H, Willmes, S, Zanatta, M, Zeppenfeld, S. 2023a. Atmospheric and surface processes, and feedback mechanisms determining Arctic amplification: A review of first results and prospects of the (AC)3 project. Bulletin of the American Meteorological Society104(1): E208\u2013E242. DOI: http:\/\/dx.doi.org\/10.1175\/BAMS-D-21-0218.1.","DOI":"10.1175\/BAMS-D-21-0218.1"},{"key":"2023112021132148800_ref63","doi-asserted-by":"crossref","unstructured":"Wendisch, M, Handorf, D, Tegen, I, Neggers, RAJ, Spreen, G.2021. Glimpsing the ins and outs of the Arctic atmospheric cauldron. Eos102. DOI: http:\/\/dx.doi.org\/10.1029\/2021EO155959.","DOI":"10.1029\/2021EO155959"},{"issue":"17","key":"2023112021132148800_ref64","doi-asserted-by":"crossref","first-page":"9647","DOI":"10.5194\/acp-23-9647-2023","article-title":"Effects of variable ice\u2013ocean surface properties and air mass transformation on the Arctic radiative energy budget","volume":"23","year":"2023","journal-title":"Atmospheric Chemistry and Physics"},{"key":"2023112021132148800_ref65","doi-asserted-by":"crossref","unstructured":"Wesche, C, Steinhage, D, Nixdorf, U.2016. Polar aircraft Polar5 and Polar6 operated by the Alfred Wegener institute. Journal of Large-Scale Research Facilities2(A87): 1\u20137. DOI: http:\/\/dx.doi.org\/10.17815\/jlsrf-2-153.","DOI":"10.17815\/jlsrf-2-153"},{"key":"2023112021132148800_ref66","doi-asserted-by":"crossref","unstructured":"Woods, C, Caballero, R.2016. The role of moist intrusions in winter Arctic warming and sea ice decline. Journal of Climate29(12): 4473\u20134485. DOI: http:\/\/dx.doi.org\/10.1175\/JCLI-D-15-0773.1.","DOI":"10.1175\/JCLI-D-15-0773.1"},{"issue":"10","key":"2023112021132148800_ref67","article-title":"Cloud morphology evolution in Arctic cold-air outbreak: Two cases during COMBLE period","volume":"127","year":"2022","journal-title":"Journal of Geophysical Research"},{"issue":"10","key":"2023112021132148800_ref68","doi-asserted-by":"crossref","first-page":"5316","DOI":"10.1002\/2016JD026324","article-title":"Springtime extreme moisture transport into the Arctic and its impact on sea ice concentration","volume":"122","year":"2017","journal-title":"Journal of Geophysical Research"},{"key":"2023112021132148800_ref69","doi-asserted-by":"crossref","unstructured":"Yao, B, Teng, S, Lai, R, Xu, X, Yin, Y, Shi, C, Liu, C.2020. Can atmospheric reanalyses (CRA and ERA5) represent cloud spatiotemporal characteristics?Atmospheric Research244: 105091. DOI: http:\/\/dx.doi.org\/10.1016\/j.atmosres.2020.105091.","DOI":"10.1016\/j.atmosres.2020.105091"},{"key":"2023112021132148800_ref70","doi-asserted-by":"crossref","unstructured":"You, C, Tjernstr\u00f6m, M, Devasthale, A.2021a. Eulerian and Lagrangian views of warm and moist air intrusions into summer Arctic. Atmospheric Research256: 105586. DOI: http:\/\/dx.doi.org\/10.1016\/j.atmosres.2021.105586.","DOI":"10.1016\/j.atmosres.2021.105586"},{"key":"2023112021132148800_ref71","doi-asserted-by":"crossref","unstructured":"You, C, Tjernstr\u00f6m, M, Devasthale, A.2021b. Warm-air advection over melting sea-ice: A Lagrangian case study. Boundary-Layer Meteorology179: 99\u2013116. DOI: http:\/\/dx.doi.org\/10.1007\/s10546-020-00590-1.","DOI":"10.1007\/s10546-020-00590-1"}],"container-title":["Elem Sci Anth"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/online.ucpress.edu\/elementa\/article-pdf\/doi\/10.1525\/elementa.2023.00079\/795107\/elementa.2023.00079.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"syndication"},{"URL":"https:\/\/online.ucpress.edu\/elementa\/article-pdf\/doi\/10.1525\/elementa.2023.00079\/795107\/elementa.2023.00079.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,20]],"date-time":"2023-11-20T21:14:09Z","timestamp":1700514849000},"score":1,"resource":{"primary":{"URL":"https:\/\/online.ucpress.edu\/elementa\/article\/11\/1\/00079\/197824\/Analysis-of-an-Arctic-cold-air-outbreak-during"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"references-count":71,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2023,11,20]]}},"URL":"http:\/\/dx.doi.org\/10.1525\/elementa.2023.00079","relation":{},"ISSN":["2325-1026"],"issn-type":[{"value":"2325-1026","type":"electronic"}],"subject":["Atmospheric Science","Geology","Geotechnical Engineering and Engineering Geology","Ecology","Environmental Engineering","Oceanography"],"published-other":{"date-parts":[[2023]]},"published":{"date-parts":[[2023]]}}}