uni-leipzig-open-access/json/coatings13030591

1 line
25 KiB
Plaintext

{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,12,28]],"date-time":"2023-12-28T10:40:53Z","timestamp":1703760053633},"reference-count":60,"publisher":"MDPI AG","issue":"3","license":[{"start":{"date-parts":[[2023,3,9]],"date-time":"2023-03-09T00:00:00Z","timestamp":1678320000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100006595","name":"Unitatea Executiva Pentru Finantarea Invatamantului Superior a Cercetarii Dezvoltarii si Inovarii","doi-asserted-by":"publisher","award":["ERANET-M-ISIDE-1: 171\/2020 (INOE) and ERANET-M-ISIDE-2: 172\/2020 (UPB)"]},{"DOI":"10.13039\/501100007069","name":"University of Calabria","doi-asserted-by":"publisher","award":["J28I17000120005, M-ERA.Net 2 \u2013 Call 2019"]},{"name":"UL","award":["100406843"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Coatings"],"abstract":"<jats:p>Degradable and non-degradable biomaterials are two categories that can be used to classify the existing biomaterials, being a solution for eliminating a second surgical intervention of the implant when the tissue has properly recovered. In the present paper, the effect of deposition temperature on the structure, morphology, hardness, electrochemical evaluation, degradation properties and functional peptides adhesion of Mg and Si-doped hydroxyapatite was investigated. The coatings were obtained by RF magnetron sputtering technique at room temperature (RT) and 200 \u00b0C on AZ31B alloy substrate. Results showed that an increase in deposition temperature led to an improvement in hardness and reduced modulus of about 47%. From an electrochemical point of view, a comparative assessment of corrosion resistance was made as a function of the immersion medium used, highlighting the superior behaviour revealed by the coating deposited at elevated temperature when immersed in DMEM medium (icorr~12 \u00b5A\/cm2, Rcoat = 705 \u03a9 cm2, Rct = 7624 \u03a9 cm2). By increasing the deposition temperature up to 200 \u00b0C, the degradation rate of the coatings was slowed, more visible in the case of DMEM, which had a less aggressive effect after 14 days of immersion. Both deposition temperatures are equally suitable for further bio-inspired coating with a mussel-derived peptide, to facilitate biointegration.<\/jats:p>","DOI":"10.3390\/coatings13030591","type":"journal-article","created":{"date-parts":[[2023,3,10]],"date-time":"2023-03-10T08:02:08Z","timestamp":1678435328000},"page":"591","source":"Crossref","is-referenced-by-count":3,"title":["Effect of Deposition Temperature on the Structure, Mechanical, Electrochemical Evaluation, Degradation Rate and Peptides Adhesion of Mg and Si-Doped Hydroxyapatite Deposited on AZ31B Alloy"],"prefix":"10.3390","volume":"13","author":[{"given":"Anca Constantina","family":"Parau","sequence":"first","affiliation":[{"name":"Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics\u2014INOE 2000, 77125 Magurele, Romania"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3149-6972","authenticated-orcid":false,"given":"Mihaela","family":"Dinu","sequence":"additional","affiliation":[{"name":"Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics\u2014INOE 2000, 77125 Magurele, Romania"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8991-7485","authenticated-orcid":false,"given":"Cosmin Mihai","family":"Cotrut","sequence":"additional","affiliation":[{"name":"Department of Metallic Materials Science, Physical Metallurgy, Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 60042 Bucharest, Romania"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1368-6219","authenticated-orcid":false,"given":"Iulian","family":"Pana","sequence":"additional","affiliation":[{"name":"Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics\u2014INOE 2000, 77125 Magurele, Romania"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6561-7023","authenticated-orcid":false,"given":"Diana Maria","family":"Vranceanu","sequence":"additional","affiliation":[{"name":"Department of Metallic Materials Science, Physical Metallurgy, Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 60042 Bucharest, Romania"}]},{"given":"Lidia Ruxandra","family":"Constantin","sequence":"additional","affiliation":[{"name":"Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics\u2014INOE 2000, 77125 Magurele, Romania"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5215-5790","authenticated-orcid":false,"given":"Giuseppe","family":"Serratore","sequence":"additional","affiliation":[{"name":"Department of Mechanical Energy and Management Engineering, University of Calabria, 87036 Rende, Italy"}]},{"given":"Ioana Maria","family":"Marinescu","sequence":"additional","affiliation":[{"name":"Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics\u2014INOE 2000, 77125 Magurele, Romania"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8686-8577","authenticated-orcid":false,"given":"Catalin","family":"Vitelaru","sequence":"additional","affiliation":[{"name":"Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics\u2014INOE 2000, 77125 Magurele, Romania"}]},{"given":"Giuseppina","family":"Ambrogio","sequence":"additional","affiliation":[{"name":"Department of Mechanical Energy and Management Engineering, University of Calabria, 87036 Rende, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5857-8329","authenticated-orcid":false,"given":"Dennis Alexander","family":"B\u00f6hner","sequence":"additional","affiliation":[{"name":"Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, D04316 Leipzig, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4560-8020","authenticated-orcid":false,"given":"Annette G.","family":"Beck-Sickinger","sequence":"additional","affiliation":[{"name":"Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, D04316 Leipzig, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5770-4541","authenticated-orcid":false,"given":"Alina","family":"Vladescu (Dragomir)","sequence":"additional","affiliation":[{"name":"Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics\u2014INOE 2000, 77125 Magurele, Romania"},{"name":"Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia"}]}],"member":"1968","published-online":{"date-parts":[[2023,3,9]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"105306","DOI":"10.1016\/j.jmbbm.2022.105306","article-title":"Nanoindentation and nano-scratching of hydroxyapatite coatings for resorbable magnesium alloy bone implant applications","volume":"133","author":"Lemoine","year":"2022","journal-title":"J. Mech. Behav. Biomed. Mater."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"929","DOI":"10.1016\/j.jma.2020.05.003","article-title":"HA coating on Mg alloys for biomedical applications: A review","volume":"8","author":"Rahman","year":"2020","journal-title":"J. Magnes. Alloy."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"244","DOI":"10.1016\/j.jmrt.2022.01.004","article-title":"Recent progress of novel biodegradable zinc alloys: From the perspective of strengthening and toughening","volume":"17","author":"Zhuo","year":"2022","journal-title":"J. Mater. Res. Technol."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"948","DOI":"10.1016\/j.msec.2016.06.020","article-title":"Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications","volume":"68","author":"Agarwal","year":"2016","journal-title":"Mater. Sci. Eng. C"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1016\/j.biomaterials.2016.10.017","article-title":"Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective","volume":"112","author":"Zhao","year":"2017","journal-title":"Biomaterials"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"161001","DOI":"10.1016\/j.jallcom.2021.161001","article-title":"Research progress on surface protective coatings of biomedical degradable magnesium alloys","volume":"885","author":"Liu","year":"2021","journal-title":"J. Alloy. Compd."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"4561","DOI":"10.1016\/j.actbio.2014.07.005","article-title":"Recent advances on the development of magnesium alloys for biodegradable implants","volume":"10","author":"Chen","year":"2014","journal-title":"Acta Biomater."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1016\/j.irbm.2020.06.003","article-title":"Preparation Strategies for Mg-Alloys for Biodegradable Orthopaedic Implants and Other Biomedical Applications: A Review","volume":"43","author":"Chandra","year":"2020","journal-title":"IRBM J."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"863","DOI":"10.1016\/j.jma.2022.04.001","article-title":"Research advances of magnesium and magnesium alloys worldwide in 2021","volume":"10","author":"Song","year":"2022","journal-title":"J. Magnes. Alloy."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"164600","DOI":"10.1016\/j.jallcom.2022.164600","article-title":"Advances in degradation behavior of biomedical magnesium alloys: A review","volume":"908","author":"Dong","year":"2022","journal-title":"J. Alloy. Compd."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jma.2020.02.003","article-title":"Latest research advances on magnesium and magnesium alloys worldwide","volume":"8","author":"Song","year":"2020","journal-title":"J. Magnes. Alloy."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"717","DOI":"10.1016\/j.bioactmat.2022.05.009","article-title":"Progress in bioactive surface coatings on biodegradable Mg alloys: A critical review towards clinical translation","volume":"19","author":"Singh","year":"2023","journal-title":"Bioact. Mater."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"2094","DOI":"10.1016\/j.jma.2022.08.002","article-title":"A review on recent advancements in biodegradable Mg-Ca alloys","volume":"10","author":"Sahu","year":"2022","journal-title":"J. Magnes. Alloy."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"154","DOI":"10.1016\/j.ceramint.2022.08.324","article-title":"Microstructure and properties of Nb2O5\/Mg gradient coating on AZ31 magnesium alloy by magnetron sputtering","volume":"49","author":"Ding","year":"2023","journal-title":"Ceram. Int."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"2919","DOI":"10.1016\/j.actbio.2014.02.026","article-title":"Calcium orthophosphate coatings on magnesium and its biodegradable alloys","volume":"10","author":"Dorozhkin","year":"2014","journal-title":"Acta Biomater."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"1821","DOI":"10.1016\/j.jma.2022.06.005","article-title":"Calcium phosphate conversion technique: A versatile route to develop corrosion resistant hydroxyapatite coating over Mg\/Mg alloys based implants","volume":"10","author":"Hikku","year":"2022","journal-title":"J. Magnes. Alloy."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"1511","DOI":"10.1016\/j.jma.2022.03.001","article-title":"Recent progress and perspectives in additive manufacturing of magnesium alloys","volume":"10","author":"Zeng","year":"2022","journal-title":"J. Magnes. Alloy."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"1884","DOI":"10.1016\/j.jma.2021.06.024","article-title":"Biodegradable Mg alloys for orthopedic implants\u2014A review","volume":"9","author":"Tsakiris","year":"2021","journal-title":"J. Magnes. Alloy."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.actbio.2014.11.048","article-title":"Mg and Mg alloys: How comparable are in vitro and in vivo corrosion rates? A review","volume":"13","author":"Sanchez","year":"2015","journal-title":"Acta Biomater."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.jma.2019.09.008","article-title":"Advances in coatings on biodegradable magnesium alloys","volume":"8","author":"Yin","year":"2020","journal-title":"J. Magnes. Alloy."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"134","DOI":"10.1016\/j.jma.2019.12.001","article-title":"Formulation of corrosion rate of magnesium alloys using microstructural parameters","volume":"8","author":"Bahmani","year":"2020","journal-title":"J. Magnes. Alloy."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"1154","DOI":"10.1016\/j.jma.2022.01.001","article-title":"Advances in hydroxyapatite coatings on biodegradable magnesium and its alloys","volume":"10","author":"Zhang","year":"2022","journal-title":"J. Magnes. Alloy."},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"Li, B., Zhang, Z., Liu, T., Qiu, Z., Su, Y., Zhang, J., Lin, C., and Wang, L. (2022). Recent Progress in Functionalized Coatings for Corrosion Protection of Magnesium Alloys\u2014A Review. Materials, 15.","DOI":"10.3390\/ma15113912"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"456","DOI":"10.1016\/j.irbm.2021.02.003","article-title":"Surface Modification of Biodegradable Mg-4Zn Alloy Using PMEDM: An Experimental Investigation, Optimization and Corrosion Analysis","volume":"43","author":"Sharma","year":"2021","journal-title":"IRBM J."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1016\/j.vacuum.2015.04.004","article-title":"Microstructure characterization and corrosion behaviour of a nano-hydroxyapatite coating deposited on AZ31 magnesium alloy using radio frequency magnetron sputtering","volume":"117","author":"Surmeneva","year":"2015","journal-title":"Vacuum"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"104","DOI":"10.1016\/j.smaim.2021.12.007","article-title":"Recent progress on coatings of biomedical magnesium alloy","volume":"3","author":"Tong","year":"2021","journal-title":"Smart Mater. Med."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"104214","DOI":"10.1016\/j.arabjc.2022.104214","article-title":"Advances in coatings on Mg alloys and their anti-microbial activity for implant applications","volume":"15","author":"Chowdhury","year":"2022","journal-title":"Arab. J. Chem."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1016\/j.surfcoat.2016.01.045","article-title":"Corrosion behaviour of biodegradable magnesium alloys with hydroxyapatite coatings","volume":"289","author":"Dunne","year":"2016","journal-title":"Surf. Coat. Technol."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1016\/j.surfcoat.2012.10.009","article-title":"Surface design of biodegradable magnesium alloys\u2014A review","volume":"233","author":"Wu","year":"2012","journal-title":"Surf. Coat. Technol."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"366","DOI":"10.1016\/j.jallcom.2016.02.156","article-title":"Growth, in vitro biodegradation and cytocompatibility properties of nano-hydroxyapatite coatings on biodegradable magnesium alloys","volume":"672","author":"Yang","year":"2016","journal-title":"J. Alloy. Compd."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1016\/j.jma.2020.07.004","article-title":"Surface characterization and corrosion behavior of calcium phosphate (Ca-P) base composite layer on Mg and its alloys using plasma electrolytic oxidation (PEO): A review","volume":"9","author":"Chaharmahali","year":"2020","journal-title":"J. Magnes. Alloy."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"735","DOI":"10.1007\/s42235-021-0064-5","article-title":"Research Progress on Corrosion Resistance of Magnesium Alloys with Bio-inspired Water-repellent Properties: A Review","volume":"18","author":"Xu","year":"2021","journal-title":"J. Bionic Eng."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"127732","DOI":"10.1016\/j.matlet.2020.127732","article-title":"Degradation kinetics and surface properties of bioceramic hydroxyapatite coated AZ31 magnesium alloys for biomedical applications","volume":"270","author":"Yadav","year":"2020","journal-title":"Mater. Lett."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"10486","DOI":"10.1016\/j.ceramint.2021.12.258","article-title":"Deposition temperature effect on sputtered hydroxyapatite coatings prepared on AZ31B alloy substrate","volume":"48","author":"Parau","year":"2021","journal-title":"Ceram. Int."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"s329","DOI":"10.1016\/S1003-6326(10)60226-9","article-title":"Fabrication of Cr coating on AZ31 magnesium alloy by magnetron sputtering","volume":"18","author":"Wu","year":"2008","journal-title":"Trans. Nonferrous Met. Soc. China"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"1090","DOI":"10.1016\/j.surfcoat.2014.07.025","article-title":"Fabrication and corrosion behavior of Si\/HA nano-composite coatings on biodegradable Mg\u2013Zn\u2013Mn\u2013Ca alloy","volume":"258","author":"Hamzah","year":"2014","journal-title":"Surf. Coat. Technol."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"9203","DOI":"10.1016\/j.ceramint.2015.03.316","article-title":"Substituted hydroxyapatites for biomedical applications: A review","volume":"41","year":"2015","journal-title":"Ceram. Int."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"145333","DOI":"10.1016\/j.apsusc.2020.145333","article-title":"In-vitro and in-vivo evaluation of strontium doped calcium phosphate coatings on biodegradable magnesium alloy for bone applications","volume":"510","author":"Makkar","year":"2020","journal-title":"Appl. Surf. Sci."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/j.cirpj.2016.07.003","article-title":"Formability in single point incremental forming: A comparative analysis of the state of the art","volume":"16","author":"McAnulty","year":"2017","journal-title":"CIRP J. Manuf. Sci. Technol."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"1819","DOI":"10.1007\/s00170-014-6398-y","article-title":"Temperature variation during high speed incremental forming on different lightweight alloys","volume":"76","author":"Ambrogio","year":"2014","journal-title":"Int. J. Adv. Manuf. Technol."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"11050","DOI":"10.1016\/j.ceramint.2019.02.191","article-title":"In vitro evaluation of Ag doped hydroxyapatite coatings in acellular media","volume":"45","author":"Vranceanu","year":"2019","journal-title":"Ceram. Int."},{"key":"ref_42","unstructured":"(2020). Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements, (n.d.) (Standard No. ASTM G59-97(2020)). Available online: https:\/\/www.astm.org\/g0059-97r20.html."},{"key":"ref_43","doi-asserted-by":"crossref","unstructured":"Bechir, F., Bataga, S.M., Tohati, A., Ungureanu, E., Cotrut, C.M., Bechir, E.S., Suciu, M., and Vranceanu, D.M. (2021). Evaluation of the Behavior of Two CAD\/CAM Fiber-Reinforced Composite Dental Materials by Immersion Tests. Materials, 14.","DOI":"10.3390\/ma14237185"},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"2664","DOI":"10.1021\/acs.bioconjchem.9b00573","article-title":"Endothelialization of Titanium Surfaces by Bioinspired Cell Adhesion Peptide Coatings","volume":"30","author":"Clauder","year":"2019","journal-title":"Bioconjugate Chem."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"1734","DOI":"10.1039\/C9BM01801H","article-title":"Multifunctional coatings combining bioactive peptides and affinity-based cytokine delivery for enhanced integration of degradable vascular grafts","volume":"8","author":"Clauder","year":"2020","journal-title":"Biomater. Sci."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"216","DOI":"10.1117\/12.604245","article-title":"Determination of mechanical properties of silicon nitride thin films using nanoindentation","volume":"Volume 5798","author":"Martyniuk","year":"2005","journal-title":"Proceedings Spaceborne Sensors II"},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"025011","DOI":"10.1088\/1748-605X\/aa9718","article-title":"Sputtered Si and Mg doped hydroxyapatite for biomedical applications","volume":"13","author":"Vladescu","year":"2018","journal-title":"Biomed. Mater."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"2518","DOI":"10.1016\/j.surfcoat.2005.07.077","article-title":"Biomedical applications of diamond-like carbon (DLC) coatings: A review","volume":"200","author":"Dearnaley","year":"2005","journal-title":"Surf. Coat. Technol."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"168","DOI":"10.1179\/174327806X107941","article-title":"Corrosion behaviour of TaN thin PVD films on steels","volume":"41","author":"Flores","year":"2006","journal-title":"Corros. Eng. Sci. Technol."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"2078","DOI":"10.1016\/j.jma.2021.01.002","article-title":"In vitro corrosion behavior of the cast and extruded biodegradable Mg-Zn-Cu alloys in simulated body fluid (SBF)","volume":"9","author":"Lotfpour","year":"2021","journal-title":"J. Magnes. Alloy."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"536","DOI":"10.1002\/cphc.201402666","article-title":"Revisiting the Electrochemical Impedance Spectroscopy of Magnesium with Online Inductively Coupled Plasma Atomic Emission Spectroscopy","volume":"16","author":"Shkirskiy","year":"2014","journal-title":"Chem. Phys. Chem."},{"key":"ref_52","doi-asserted-by":"crossref","unstructured":"Singh, N., Batra, U., Kumar, K., and Siddiquee, A.N. (2022). Evaluating the Electrochemical and In Vitro Degradation of an HA-Titania Nano-Channeled Coating for Effective Corrosion Resistance of Biodegradable Mg Alloy. Coatings, 13.","DOI":"10.3390\/coatings13010030"},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"1669","DOI":"10.1016\/j.jmrt.2022.03.040","article-title":"Electrochemical techniques for monitoring the biodegradability of nanocomposite Mg-alloy\/HA for repairing bone fracture","volume":"18","author":"Hu","year":"2022","journal-title":"J. Mater. Res. Technol."},{"key":"ref_54","doi-asserted-by":"crossref","unstructured":"Feliu, S. (2020). Electrochemical Impedance Spectroscopy for the Measurement of the Corrosion Rate of Magnesium Alloys: Brief Review and Challenges. Metals, 10.","DOI":"10.3390\/met10060775"},{"key":"ref_55","doi-asserted-by":"crossref","unstructured":"Cesiulis, H., Tsyntsaru, N., Ramanavicius, A., and Ragoisha, G. (2016). The Study of Thin Films by Electrochemical Impedance Spectroscopy, Springer.","DOI":"10.1007\/978-3-319-30198-3_1"},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"495","DOI":"10.1007\/s11998-011-9382-6","article-title":"Electrodeposition of hydroxyapatite coating on magnesium for biomedical applications","volume":"9","author":"Jamesh","year":"2011","journal-title":"J. Coatings Technol. Res."},{"key":"ref_57","unstructured":"Watson, W., and Orazem, M.E. (2022, December 10). IS: Measurement Model Program. Available online: www.ecsarxiv.org\/kze9x."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1007\/s40828-020-0110-7","article-title":"A tutorial on electrochemical impedance spectroscopy","volume":"6","author":"Orazem","year":"2020","journal-title":"Chemtexts"},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"2151","DOI":"10.1007\/s10008-020-04725-9","article-title":"Electrochemical impedance spectroscopy: The journey to physical understanding","volume":"24","author":"Orazem","year":"2020","journal-title":"J. Solid State Electrochem."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"2170","DOI":"10.1149\/MA2019-02\/48\/2170","article-title":"(Invited) On Teaching Electrochemical Impedance Spectroscopy","volume":"28","author":"Orazem","year":"2019","journal-title":"ECS Meet. Abstr."}],"container-title":["Coatings"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2079-6412\/13\/3\/591\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,11]],"date-time":"2023-03-11T05:20:59Z","timestamp":1678512059000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2079-6412\/13\/3\/591"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3,9]]},"references-count":60,"journal-issue":{"issue":"3","published-online":{"date-parts":[[2023,3]]}},"alternative-id":["coatings13030591"],"URL":"http:\/\/dx.doi.org\/10.3390\/coatings13030591","relation":{},"ISSN":["2079-6412"],"issn-type":[{"value":"2079-6412","type":"electronic"}],"subject":["Materials Chemistry","Surfaces, Coatings and Films","Surfaces and Interfaces"],"published":{"date-parts":[[2023,3,9]]}}}