uni-leipzig-open-access/json/amt-16-3915-2023

1 line
33 KiB
Plaintext

{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,1,15]],"date-time":"2024-01-15T05:21:55Z","timestamp":1705296115341},"reference-count":67,"publisher":"Copernicus GmbH","issue":"16","license":[{"start":{"date-parts":[[2023,8,24]],"date-time":"2023-08-24T00:00:00Z","timestamp":1692835200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","award":["268020496"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Atmos. Meas. Tech."],"abstract":"<jats:p>Abstract. A melting snow layer on Arctic sea ice, as a composition of ice, liquid water, and air, supplies meltwater that may trigger the formation of melt ponds. As a result, surface reflection properties are altered during the melting season and thereby may change the surface energy budget. To study these processes, sea ice surface\nreflection properties were derived from airborne measurements using imaging spectrometers. The data were collected over the closed and marginal Arctic sea ice zone north of Svalbard in May\u2013June 2017. A retrieval approach based\non different absorption indices of pure ice and liquid water in the near-infrared spectral range was applied to the campaign data. The technique enabled us to retrieve the spatial distribution of the liquid water\nfraction of a snow layer and the effective radius of snow grains. For observations from three research flights, liquid water fractions between 6.5\u2009% and 17.3\u2009% and snow grain sizes between 129 and 414\u2009\u00b5m were derived. In addition, the melt pond depth was\nretrieved based on an existing approach that isolates the dependence of a melt pond reflection spectrum on the pond depth by eliminating the reflection contribution of the pond ice bottom. The application of the approach to several case studies revealed a high variability of melt pond depth, with maximum depths of 0.33\u2009m.\nThe results were discussed considering uncertainties arising from the airborne reflection measurements, the setup of radiative transfer simulations, and the retrieval method itself.\nOverall, the presented retrieval methods show the potential and the limitations of airborne measurements with imaging spectrometers to map the transition phase of the Arctic sea ice surface, examining the snow layer\ncomposition and melt pond depth.\n <\/jats:p>","DOI":"10.5194\/amt-16-3915-2023","type":"journal-article","created":{"date-parts":[[2023,8,24]],"date-time":"2023-08-24T13:03:17Z","timestamp":1692882197000},"page":"3915-3930","source":"Crossref","is-referenced-by-count":2,"title":["Retrieval of snow layer and melt pond properties on Arctic sea ice from airborne imaging spectrometer observations"],"prefix":"10.5194","volume":"16","author":[{"given":"Sophie","family":"Rosenburg","sequence":"first","affiliation":[]},{"given":"Charlotte","family":"Lange","sequence":"additional","affiliation":[]},{"given":"Evelyn","family":"J\u00e4kel","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1896-1574","authenticated-orcid":false,"given":"Michael","family":"Sch\u00e4fer","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0860-8216","authenticated-orcid":false,"given":"Andr\u00e9","family":"Ehrlich","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4652-5561","authenticated-orcid":false,"given":"Manfred","family":"Wendisch","sequence":"additional","affiliation":[]}],"member":"3145","published-online":{"date-parts":[[2023,8,24]]},"reference":[{"key":"ref1","unstructured":"Anderson, G.\u00a0P., Clough, S.\u00a0A., Kneizys, F.\u00a0X., Chetwynd, J.\u00a0H., and Shettle, E.\u00a0P.: AFGL atmospheric constituent profiles (0.120\u2009km), Tech. Rep. AFGL-TR-86-0110, Air Force Geophys. Lab., Hanscom Air Force Base, Bedford, Mass., 1986.\u2002a"},{"key":"ref2","doi-asserted-by":"crossref","unstructured":"Bierwirth, E., Wendisch, M., Ehrlich, A., Heese, B., Tesche, M., Althausen, D., Schladitz, A., M\u00fcller, D., Otto, S., Trautmann, T., Dinter, T., Hoyningen-Huene, W.\u00a0V., and Kahn, R.: Spectral surface albedo over Morocco and its impact on radiative forcing of Saharan dust, Tellus B, 61, 252\u2013269, https:\/\/doi.org\/10.1111\/j.1600-0889.2008.00395.x, 2009.\u2002a","DOI":"10.1111\/j.1600-0889.2008.00395.x"},{"key":"ref3","doi-asserted-by":"crossref","unstructured":"Bohn, N., Painter, T.\u00a0H., Thompson, D.\u00a0R., Carmon, N., Susiluoto, J., Turmon, M.\u00a0J., Helmlinger, M.\u00a0C., Green, R.\u00a0O., Cook, J.\u00a0M., and Guanter, L.: Optimal\nestimation of snow and ice surface parameters from imaging spectroscopy\nmeasurements, Remote Sens. Environ., 264, 112613,\nhttps:\/\/doi.org\/10.1016\/j.rse.2021.112613, 2021.\u2002a","DOI":"10.1016\/j.rse.2021.112613"},{"key":"ref4","doi-asserted-by":"crossref","unstructured":"Colbeck, S.\u00a0C.: The Physical Aspects of Water Flow Through Snow, vol.\u00a011 of\nAdvances in Hydroscience, Elsevier, 165\u2013206, https:\/\/doi.org\/10.1016\/B978-0-12-021811-0.50008-5, 1978.\u2002a","DOI":"10.1016\/B978-0-12-021811-0.50008-5"},{"key":"ref5","doi-asserted-by":"crossref","unstructured":"Colbeck, S.\u00a0C.: Water flow through heterogeneous snow, Cold Reg. Sci. Technol., 1, 37\u201345, https:\/\/doi.org\/10.1016\/0165-232X(79)90017-X, 1979.\u2002a","DOI":"10.1016\/0165-232X(79)90017-X"},{"key":"ref6","doi-asserted-by":"crossref","unstructured":"Colbeck, S. C.: Theory of metamorphism of dry snow, J. Geophys. Res.-Oceans, 88, 5475\u20135482, https:\/\/doi.org\/10.1029\/JC088iC09p05475, 1983.\u2002a","DOI":"10.1029\/JC088iC09p05475"},{"key":"ref7","doi-asserted-by":"crossref","unstructured":"Curry, J.\u00a0A., Schramm, J.\u00a0L., and Ebert, E.\u00a0E.: Sea Ice-Albedo Climate Feedback Mechanism, J. Climate, 8, 240\u2013247,\nhttps:\/\/doi.org\/10.1175\/1520-0442(1995)008&amp;lt;0240:siacfm&amp;gt;2.0.co;2, 1995.\u2002a","DOI":"10.1175\/1520-0442(1995)008<0240:SIACFM>2.0.CO;2"},{"key":"ref8","unstructured":"Dingman, S.\u00a0L.: Physical hydrology,3rd ed., Waveland press, ISBN:\u2009978-1-4786-1118-9, 2015.\u2002a, b"},{"key":"ref9","doi-asserted-by":"crossref","unstructured":"Donahue, C., Skiles, S. M., and Hammonds, K.: Mapping liquid water content in snow at the millimeter scale: an intercomparison of mixed-phase optical property models using hyperspectral imaging and in situ measurements, The Cryosphere, 16, 43\u201359, https:\/\/doi.org\/10.5194\/tc-16-43-2022, 2022.\u2002a, b, c, d","DOI":"10.5194\/tc-16-43-2022"},{"key":"ref10","doi-asserted-by":"crossref","unstructured":"Dozier, J., Green, R.\u00a0O., Nolin, A.\u00a0W., and Painter, T.\u00a0H.: Interpretation of snow properties from imaging spectrometry, Remote Sens. Environ., 113, S25\u2013S37, https:\/\/doi.org\/10.1016\/j.rse.2007.07.029, 2009.\u2002a","DOI":"10.1016\/j.rse.2007.07.029"},{"key":"ref11","doi-asserted-by":"crossref","unstructured":"Ehrlich, A., Wendisch, M., L\u00fcpkes, C., Buschmann, M., Bozem, H., Chechin, D., Clemen, H.-C., Dupuy, R., Eppers, O., Hartmann, J., Herber, A., J\u00e4kel, E., J\u00e4rvinen, E., Jourdan, O., K\u00e4stner, U., Kliesch, L.-L., K\u00f6llner, F., Mech, M., Mertes, S., Neuber, R., Ruiz-Donoso, E., Schnaiter, M., Schneider, J., Stapf, J., and Zanatta, M.: A comprehensive in situ and remote sensing data set from the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign, Earth Syst. Sci. Data, 11, 1853\u20131881, https:\/\/doi.org\/10.5194\/essd-11-1853-2019, 2019.\u2002a, b, c, d","DOI":"10.5194\/essd-11-1853-2019"},{"key":"ref12","doi-asserted-by":"crossref","unstructured":"Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U., Kylling, J., Richter, B., Pause, C., Dowling, T., and Bugliaro, L.: The libRadtran software package for radiative transfer calculations (version 2.0.1), Geosci. Model Dev., 9, 1647\u20131672, https:\/\/doi.org\/10.5194\/gmd-9-1647-2016, 2016.\u2002a, b, c","DOI":"10.5194\/gmd-9-1647-2016"},{"key":"ref13","unstructured":"Fierz, C., Armstrong, R., Durand, Y., Etchevers, P., Greene, E., McClung, D.,\nNishimura, K., Satyawali, P., and Sokratov, S.: The International\nClassification for Seasonal Snow on the Ground, vol. IHP-VII Technical\nDocuments in Hydrology No.\u00a083, IACS Contribution No.\u00a01,\nUNESCO-IHP, Paris, 2009.\u2002a, b"},{"key":"ref14","doi-asserted-by":"crossref","unstructured":"Gardner, A.\u00a0S. and Sharp, M.\u00a0J.: A review of snow and ice albedo and the\ndevelopment of a new physically based broadband albedo parameterization, J.\nGeophys. Res.-Earth Surf., 115, F01009, https:\/\/doi.org\/10.1029\/2009JF001444, 2010.\u2002a","DOI":"10.1029\/2009JF001444"},{"key":"ref15","doi-asserted-by":"crossref","unstructured":"Gasteiger, J., Emde, C., Mayer, B., Buras, R., Buehler, S., and Lemke, O.:\nRepresentative wavelengths absorption parameterization applied to satellite\nchannels and spectral bands, J. Quant. Spectrosc. Ra., 148, 99\u2013115,\nhttps:\/\/doi.org\/10.1016\/j.jqsrt.2014.06.024, 2014.\u2002a","DOI":"10.1016\/j.jqsrt.2014.06.024"},{"key":"ref16","doi-asserted-by":"crossref","unstructured":"Goyens, C., Marty, S., Leymarie, E., Antoine, D., Babin, M., and B\u00e9langer, S.: High Angular Resolution Measurements of the Anisotropy of Reflectance of Sea Ice and Snow, Earth Space Sci., 5, 30\u201347,\nhttps:\/\/doi.org\/10.1002\/2017EA000332, 2018.\u2002a","DOI":"10.1002\/2017EA000332"},{"key":"ref17","doi-asserted-by":"crossref","unstructured":"Green, R.\u00a0O., Dozier, J., Roberts, D., and Painter, T.: Spectral\nsnow-reflectance models for grain-size and liquid-water fraction in melting\nsnow for the solar-reflected spectrum, Ann. Glaciol., 34, 71\u201373,\nhttps:\/\/doi.org\/10.3189\/172756402781817987, 2002.\u2002a, b, c, d, e, f, g","DOI":"10.3189\/172756402781817987"},{"key":"ref18","doi-asserted-by":"crossref","unstructured":"Gubler, H.: Model for dry snow metamorphism by interparticle vapor flux, J.\nGeophys. Res.-Atmos., 90, 8081\u20138092, https:\/\/doi.org\/10.1029\/JD090iD05p08081, 1985.\u2002a","DOI":"10.1029\/JD090iD05p08081"},{"key":"ref19","doi-asserted-by":"crossref","unstructured":"Gueymard, C.\u00a0A.: The sun's total and spectral irradiance for solar energy\napplications and solar radiation models, Sol. Energy, 76, 423\u2013453,\nhttps:\/\/doi.org\/10.1016\/j.solener.2003.08.039, 2004.\u2002a","DOI":"10.1016\/j.solener.2003.08.039"},{"key":"ref20","doi-asserted-by":"crossref","unstructured":"Hall, A.: The Role of Surface Albedo Feedback in Climate, J. Climate, 17,\n1550\u20131568, https:\/\/doi.org\/10.1175\/1520-0442(2004)017&amp;lt;1550:trosaf&amp;gt;2.0.co;2, 2004.\u2002a","DOI":"10.1175\/1520-0442(2004)017<1550:TROSAF>2.0.CO;2"},{"key":"ref21","doi-asserted-by":"crossref","unstructured":"Hannula, H.-R. and Pulliainen, J.: Spectral reflectance behavior of different boreal snow types, J. Glaciol., 65, 926\u2013939, https:\/\/doi.org\/10.1017\/jog.2019.68, 2019.\u2002a, b","DOI":"10.1017\/jog.2019.68"},{"key":"ref22","unstructured":"J\u00e4kel, E., Ehrlich, A., Sch\u00e4fer, M., and Wendisch, M.: Aircraft measurements of spectral solar up- and downward irradiances in the Arctic during the ACLOUD campaign 2017, Universit\u00e4t Leipzig, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.899177, 2019.\u2002a"},{"key":"ref23","doi-asserted-by":"crossref","unstructured":"J\u00e4kel, E., Carlsen, T., Ehrlich, A., Wendisch, M., Sch\u00e4fer, M., Rosenburg, S., Nakoudi, K., Zanatta, M., Birnbaum, G., Helm, V., Herber, A.,\nIstomina, L., Mei, L., and Rohde, A.: Measurements and Modeling of\nOptical-Equivalent Snow Grain Sizes under Arctic Low-Sun Conditions, Remote\nSens., 13, 4904, https:\/\/doi.org\/10.3390\/rs13234904, 2021.\u2002a, b, c, d","DOI":"10.3390\/rs13234904"},{"key":"ref24","doi-asserted-by":"crossref","unstructured":"Kokhanovsky, A.\u00a0A. and Zege, E.\u00a0P.: Scattering optics of snow, Appl. Optics,\n43, 1589, https:\/\/doi.org\/10.1364\/ao.43.001589, 2004.\u2002a","DOI":"10.1364\/AO.43.001589"},{"key":"ref25","doi-asserted-by":"crossref","unstructured":"K\u00f6nig, M. and Oppelt, N.: A linear model to derive melt pond depth on Arctic sea ice from hyperspectral data, The Cryosphere, 14, 2567\u20132579, https:\/\/doi.org\/10.5194\/tc-14-2567-2020, 2020.\u2002a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p","DOI":"10.5194\/tc-14-2567-2020"},{"key":"ref26","doi-asserted-by":"crossref","unstructured":"K\u00f6nig, M., Birnbaum, G., and Oppelt, N.: Mapping the Bathymetry of Melt Ponds on Arctic Sea Ice Using Hyperspectral Imagery, Remote Sens., 12, 2623, https:\/\/doi.org\/10.3390\/rs12162623, 2020.\u2002a, b, c","DOI":"10.3390\/rs12162623"},{"key":"ref27","doi-asserted-by":"crossref","unstructured":"Kou, L., Labrie, D., and Chylek, P.: Refractive indices of water and ice in the 0.65- to 2.5-\u00b5m spectral range, Appl. Optics, 32, 3531\u20133540,\nhttps:\/\/doi.org\/10.1364\/AO.32.003531, 1993.\u2002a","DOI":"10.1364\/AO.32.003531"},{"key":"ref28","doi-asserted-by":"crossref","unstructured":"Legleiter, C. J., Tedesco, M., Smith, L. C., Behar, A. E., and Overstreet, B. T.: Mapping the bathymetry of supraglacial lakes and streams on the Greenland ice sheet using field measurements and high-resolution satellite images, The Cryosphere, 8, 215\u2013228, https:\/\/doi.org\/10.5194\/tc-8-215-2014, 2014.\u2002a","DOI":"10.5194\/tc-8-215-2014"},{"key":"ref29","doi-asserted-by":"crossref","unstructured":"Light, B., Smith, M.\u00a0M., Perovich, D.\u00a0K., Webster, M.\u00a0A., Holland, M.\u00a0M., Linhardt, F., Raphael, I.\u00a0A., Clemens-Sewall, D., Macfarlane, A.\u00a0R., Anhaus, P., and Bailey, D.\u00a0A.: Arctic sea ice albedo: Spectral composition, spatial heterogeneity, and temporal evolution observed during the MOSAiC drift, Elem. Sci. Anth., 10, 000103, https:\/\/doi.org\/10.1525\/elementa.2021.000103, 2022.\u2002a","DOI":"10.1525\/elementa.2021.000103"},{"key":"ref30","doi-asserted-by":"crossref","unstructured":"Linhardt, F., Fuchs, N., K\u00f6nig, M., Webster, M., von Albedyll, L., Birnbaum, G., and Oppelt, N.: Comparison of complementary methods of melt pond depth retrieval on different spatial scales, EGU General Assembly 2021, online, 19\u201330\u00a0April 2021, EGU21-12860, https:\/\/doi.org\/10.5194\/egusphere-egu21-12860, 2021.\u2002a","DOI":"10.5194\/egusphere-egu21-12860"},{"key":"ref31","doi-asserted-by":"crossref","unstructured":"Lu, P., Lepp\u00e4ranta, M., Cheng, B., and Li, Z.: Influence of melt-pond depth and ice thickness on Arctic sea-ice albedo and light transmittance, Cold Reg. Sci. Technol., 124, 1\u201310, https:\/\/doi.org\/10.1016\/j.coldregions.2015.12.010, 2016.\u2002a","DOI":"10.1016\/j.coldregions.2015.12.010"},{"key":"ref32","doi-asserted-by":"crossref","unstructured":"Lu, P., Lepp\u00e4ranta, M., Cheng, B., Li, Z., Istomina, L., and Heygster, G.: The color of melt ponds on Arctic sea ice, The Cryosphere, 12, 1331\u20131345, https:\/\/doi.org\/10.5194\/tc-12-1331-2018, 2018.\u2002a, b","DOI":"10.5194\/tc-12-1331-2018"},{"key":"ref33","doi-asserted-by":"crossref","unstructured":"Malinka, A., Zege, E., Istomina, L., Heygster, G., Spreen, G., Perovich, D., and Polashenski, C.: Reflective properties of melt ponds on sea ice, The Cryosphere, 12, 1921\u20131937, https:\/\/doi.org\/10.5194\/tc-12-1921-2018, 2018.\u2002a, b","DOI":"10.5194\/tc-12-1921-2018"},{"key":"ref34","doi-asserted-by":"crossref","unstructured":"Marin, C., Bertoldi, G., Premier, V., Callegari, M., Brida, C., H\u00fcrkamp, K., Tschiersch, J., Zebisch, M., and Notarnicola, C.: Use of Sentinel-1 radar observations to evaluate snowmelt dynamics in alpine regions, The Cryosphere, 14, 935\u2013956, https:\/\/doi.org\/10.5194\/tc-14-935-2020, 2020.\u2002a","DOI":"10.5194\/tc-14-935-2020"},{"key":"ref35","unstructured":"Maturilli, M.: High resolution radiosonde measurements from station Ny-\u00c5lesund (2017-04 et seq). Alfred Wegener Institute \u2013 Research Unit Potsdam, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.914973, 2020.\u2002a"},{"key":"ref36","doi-asserted-by":"crossref","unstructured":"Mayer, B. and Kylling, A.: Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use, Atmos. Chem. Phys., 5, 1855\u20131877, https:\/\/doi.org\/10.5194\/acp-5-1855-2005\u200b\u200b\u200b\u200b\u200b\u200b\u200b, 2005.\u2002a, b","DOI":"10.5194\/acp-5-1855-2005"},{"key":"ref37","doi-asserted-by":"crossref","unstructured":"Mei, L., Rozanov, V., J\u00e4kel, E., Cheng, X., Vountas, M., and Burrows, J. P.: The retrieval of snow properties from SLSTR Sentinel-3 \u2013 Part\u00a02: Results and validation, The Cryosphere, 15, 2781\u20132802, https:\/\/doi.org\/10.5194\/tc-15-2781-2021, 2021.\u2002a","DOI":"10.5194\/tc-15-2781-2021"},{"key":"ref38","doi-asserted-by":"crossref","unstructured":"Morassutti, M.\u00a0P. and LeDrew, E.\u00a0F.: Albedo and depth of melt ponds on sea-ice, Int. J. Climatol., 16, 817\u2013838, https:\/\/doi.org\/10.1002\/(SICI)1097-0088(199607)16:7&amp;lt;817::AID-JOC44&amp;gt;3.0.CO;2-5, 1996.\u2002a","DOI":"10.1002\/(SICI)1097-0088(199607)16:7<817::AID-JOC44>3.0.CO;2-5"},{"key":"ref39","doi-asserted-by":"crossref","unstructured":"Nakajima, T. and Tanaka, M.: Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation, J. Quant. Spectrosc. Ra., 40, 51\u201369, https:\/\/doi.org\/10.1016\/0022-4073(88)90031-3, 1988.\u2002a","DOI":"10.1016\/0022-4073(88)90031-3"},{"key":"ref40","doi-asserted-by":"crossref","unstructured":"Nicolaus, M., Perovich, D.\u00a0K., Spreen, G., Granskog, M.\u00a0A., von Albedyll, L., Angelopoulos, M., Anhaus, P., Arndt, S., Belter, H.\u00a0J., Bessonov, V., Birnbaum, G., Brauchle, J., Calmer, R., Cardellach, E., Cheng, B., Clemens-Sewall, D., Dadic, R., Damm, E., de\u00a0Boer, G., Demir, O., Dethloff, K., Divine, D.\u00a0V., Fong, A.\u00a0A., Fons, S., Frey, M.\u00a0M., Fuchs, N., Gabarr\u00f3, C., Gerland, S., Goessling, H.\u00a0F., Gradinger, R., Haapala, J., Haas, C., Hamilton, J., Hannula, H.-R., Hendricks, S., Herber, A., Heuz\u00e9, C., Hoppmann, M., H\u00f8yland, K.\u00a0V., Huntemann, M., Hutchings, J.\u00a0K., Hwang, B., Itkin, P., Jacobi, H.-W., Jaggi, M., Jutila, A., Kaleschke, L., Katlein, C., Kolabutin, N., Krampe, D., Kristensen, S.\u00a0S., Krumpen, T., Kurtz, N., Lampert, A., Lange, B.\u00a0A., Lei, R., Light, B., Linhardt, F., Liston, G.\u00a0E., Loose, B., Macfarlane, A.\u00a0R., Mahmud, M., Matero, I.\u00a0O., Maus, S., Morgenstern, A., Naderpour, R., Nandan, V., Niubom, A., Oggier, M., Oppelt, N., P\u00e4tzold, F., Perron, C., Petrovsky, T., Pirazzini, R., Polashenski, C., Rabe, B., Raphael, I.\u00a0A., Regnery, J., Rex, M., Ricker, R., Riemann-Campe, K., Rinke, A., Rohde, J., Salganik, E., Scharien, R.\u00a0K., Schiller, M., Schneebeli, M., Semmling, M., Shimanchuk, E., Shupe, M.\u00a0D., Smith, M.\u00a0M., Smolyanitsky, V., Sokolov, V., Stanton, T., Stroeve, J., Thielke, L., Timofeeva, A., Tonboe, R.\u00a0T., Tavri, A., Tsamados, M., Wagner, D.\u00a0N., Watkins, D., Webster, M., and Wendisch, M.: Overview of the MOSAiC expedition: Snow and sea ice, Elem. Sci. Anth., 10, 000046, https:\/\/doi.org\/10.1525\/elementa.2021.000046, 2022.\u2002a","DOI":"10.1525\/elementa.2021.000046"},{"key":"ref41","doi-asserted-by":"crossref","unstructured":"Perovich, D., Smith, M., Light, B., and Webster, M.: Meltwater sources and sinks for multiyear Arctic sea ice in summer, The Cryosphere, 15, 4517\u20134525, https:\/\/doi.org\/10.5194\/tc-15-4517-2021, 2021.\u2002a","DOI":"10.5194\/tc-15-4517-2021"},{"key":"ref42","doi-asserted-by":"crossref","unstructured":"Perovich, D.\u00a0K. and Polashenski, C.: Albedo evolution of seasonal Arctic sea\nice, Geophys. Res. Lett., 39, L08501, https:\/\/doi.org\/10.1029\/2012GL051432, 2012.\u2002a","DOI":"10.1029\/2012GL051432"},{"key":"ref43","doi-asserted-by":"crossref","unstructured":"Perovich, D.\u00a0K., Grenfell, T.\u00a0C., Light, B., and Hobbs, P.\u00a0V.: Seasonal evolution of the albedo of multiyear Arctic sea ice, J. Geophys. Res.-Oceans,\n107, SHE 20-1\u2013SHE 20-13, https:\/\/doi.org\/10.1029\/2000JC000438, 2002.\u2002a","DOI":"10.1029\/2000JC000438"},{"key":"ref44","doi-asserted-by":"crossref","unstructured":"Pitarch, J., Talone, M., Zibordi, G., and Groetsch, P.: Determination of the\nremote-sensing reflectance from above-water measurements with the\n\u201c3C model\u201d: a further assessment, Opt. Express, 28, 15885, https:\/\/doi.org\/10.1364\/oe.388683, 2020.\u2002a","DOI":"10.1364\/OE.388683"},{"key":"ref45","doi-asserted-by":"crossref","unstructured":"Pithan, F. and Mauritsen, T.: Arctic amplification dominated by temperature\nfeedbacks in contemporary climate models, Nat. Geosci., 7, 181\u2013184,\nhttps:\/\/doi.org\/10.1038\/ngeo2071, 2014.\u2002a","DOI":"10.1038\/ngeo2071"},{"key":"ref46","doi-asserted-by":"crossref","unstructured":"Pohl, C., Rozanov, V.\u00a0V., Wendisch, M., Spreen, G., and Heygster, G.: Impact of the near-field effects on radiative transfer simulations of the bidirectional reflectance factor and albedo of a densely packed snow layer, J. Quant. Spectrosc. Ra., 241, 106704, https:\/\/doi.org\/10.1016\/j.jqsrt.2019.106704, 2020.\u2002a, b","DOI":"10.1016\/j.jqsrt.2019.106704"},{"key":"ref47","doi-asserted-by":"crossref","unstructured":"Polashenski, C., Perovich, D., and Courville, Z.: The mechanisms of sea ice melt pond formation and evolution, J. Geophys. Res.-Oceans, 117, C01001,\nhttps:\/\/doi.org\/10.1029\/2011JC007231, 2012.\u2002a","DOI":"10.1029\/2011JC007231"},{"key":"ref48","unstructured":"Ruiz-Donoso, E., Ehrlich, A., Sch\u00e4fer, M., J\u00e4kel, E., and Wendisch, M.: Spectral solar cloud top radiance measured by airborne spectral imaging during the ACLOUD campaign in 2017, Leipzig Institute for Meteorology, University of Leipzig, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.902150, 2019.\u2002a"},{"key":"ref49","doi-asserted-by":"crossref","unstructured":"Ruiz-Donoso, E., Ehrlich, A., Sch\u00e4fer, M., J\u00e4kel, E., Schemann, V., Crewell, S., Mech, M., Kulla, B. S., Kliesch, L.-L., Neuber, R., and Wendisch, M.: Small-scale structure of thermodynamic phase in Arctic mixed-phase clouds observed by airborne remote sensing during a cold air outbreak and a warm air advection event, Atmos. Chem. Phys., 20, 5487\u20135511, https:\/\/doi.org\/10.5194\/acp-20-5487-2020, 2020.\u2002a","DOI":"10.5194\/acp-20-5487-2020"},{"key":"ref50","doi-asserted-by":"crossref","unstructured":"Sch\u00e4fer, M., Bierwirth, E., Ehrlich, A., Heyner, F., and Wendisch, M.: Retrieval of cirrus optical thickness and assessment of ice crystal shape from ground-based imaging spectrometry, Atmos. Meas. Tech., 6, 1855\u20131868, https:\/\/doi.org\/10.5194\/amt-6-1855-2013, 2013.\u2002a, b","DOI":"10.5194\/amt-6-1855-2013"},{"key":"ref51","doi-asserted-by":"crossref","unstructured":"Serreze, M.\u00a0C. and Barry, R.\u00a0G.: Processes and impacts of Arctic amplification: A research synthesis, Global Planet. Change, 77, 85\u201396,\nhttps:\/\/doi.org\/10.1016\/j.gloplacha.2011.03.004, 2011.\u2002a","DOI":"10.1016\/j.gloplacha.2011.03.004"},{"key":"ref52","doi-asserted-by":"crossref","unstructured":"Serreze, M.\u00a0C. and Francis, J.\u00a0A.: The Arctic Amplification Debate, Climatic\nChange, 76, 241\u2013264, https:\/\/doi.org\/10.1007\/s10584-005-9017-y, 2006.\u2002a","DOI":"10.1007\/s10584-005-9017-y"},{"key":"ref53","doi-asserted-by":"crossref","unstructured":"Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using AMSR-E 89-GHz channels, J. Geophys. Res., 113, C02S03, https:\/\/doi.org\/10.1029\/2005jc003384, 2008.\u2002a","DOI":"10.1029\/2005JC003384"},{"key":"ref54","unstructured":"Stamnes, K., Tsay, S.-C., Wiscombe, W., and Laszlo, I.: DISORT, a\ngeneral-purpose Fortran program for discrete-ordinate-method radiative\ntransfer in scattering and emitting layered media: documentation of\nmethodology, Tech. rep., Dept. of Physics and Engineering Physics, Stevens\nInstitute of Technology, Hoboken, NJ 07030, 2000.\u2002a"},{"key":"ref55","doi-asserted-by":"crossref","unstructured":"Untersteiner, N.: On the mass and heat budget of arctic sea ice, Arch. Meteor. Geophy. A, 12, 151\u2013182, https:\/\/doi.org\/10.1007\/bf02247491, 1961.\u2002a","DOI":"10.1007\/BF02247491"},{"key":"ref56","doi-asserted-by":"crossref","unstructured":"Warren, S.\u00a0G.: Optical properties of snow, Rev. Geophys., 20, 67\u201389,\nhttps:\/\/doi.org\/10.1029\/RG020i001p00067, 1982.\u2002a, b, c","DOI":"10.1029\/RG020i001p00067"},{"key":"ref57","doi-asserted-by":"crossref","unstructured":"Webster, M.\u00a0A., Holland, M., Wright, N.\u00a0C., Hendricks, S., Hutter, N., Itkin, P., Light, B., Linhardt, F., Perovich, D.\u00a0K., Raphael, I.\u00a0A., Smith, M.\u00a0M., von Albedyll, L., and Zhang, J.: Spatiotemporal evolution of melt ponds on Arctic sea ice, Elem. Sci. Anth., 10, 000072, https:\/\/doi.org\/10.1525\/elementa.2021.000072, 2022.\u2002a, b","DOI":"10.1525\/elementa.2021.000072"},{"key":"ref58","doi-asserted-by":"crossref","unstructured":"Wendisch, M. and Mayer, B.: Vertical distribution of spectral solar irradiance in the cloudless sky: A case study, Geophys. Res. Lett., 30, 1183, https:\/\/doi.org\/10.1029\/2002GL016529, 2003.\u2002a","DOI":"10.1029\/2002GL016529"},{"key":"ref59","doi-asserted-by":"crossref","unstructured":"Wendisch, M., M\u00fcller, D., Schell, D., and Heintzenberg, J.: An Airborne Spectral Albedometer with Active Horizontal Stabilization, J. Atmos. Ocean. Tech., 18, 1856\u20131866, https:\/\/doi.org\/10.1175\/1520-0426(2001)018&amp;lt;1856:aasawa&amp;gt;2.0.co;2,\n2001.\u2002a, b","DOI":"10.1175\/1520-0426(2001)018<1856:AASAWA>2.0.CO;2"},{"key":"ref60","doi-asserted-by":"crossref","unstructured":"Wendisch, M., Macke, A., Ehrlich, A., L\u00fcpkes, C., Mech, M., Chechin, D., Dethloff, K., Velasco, C.\u00a0B., Bozem, H., Br\u00fcckner, M., Clemen, H.-C., Crewell, S., Donth, T., Dupuy, R., Ebell, K., Egerer, U., Engelmann, R., Engler, C., Eppers, O., Gehrmann, M., Gong, X., Gottschalk, M., Gourbeyre, C., Griesche, H., Hartmann, J., Hartmann, M., Heinold, B., Herber, A., Herrmann, H., Heygster, G., Hoor, P., Jafariserajehlou, S., J\u00e4kel, E., J\u00e4rvinen, E., Jourdan, O., K\u00e4stner, U., Kecorius, S., Knudsen, E.\u00a0M., K\u00f6llner, F., Kretzschmar, J., Lelli, L., Leroy, D., Maturilli, M., Mei, L., Mertes, S., Mioche, G., Neuber, R., Nicolaus, M., Nomokonova, T., Notholt, J., Palm, M., van Pinxteren, M., Quaas, J., Richter, P., Ruiz-Donoso, E., Sch\u00e4fer, M., Schmieder, K., Schnaiter, M., Schneider, J., Schwarzenb\u00f6ck, A., Seifert, P., Shupe, M.\u00a0D., Siebert, H., Spreen, G., Stapf, J., Stratmann, F., Vogl, T., Welti, A., Wex, H., Wiedensohler, A., Zanatta, M., and Zeppenfeld, S.: The Arctic Cloud Puzzle: Using ACLOUD\/PASCAL Multiplatform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification, B. Am. Meteorol. Soc., 100,\n841\u2013871, https:\/\/doi.org\/10.1175\/bams-d-18-0072.1, 2019.\u2002a","DOI":"10.1175\/BAMS-D-18-0072.1"},{"key":"ref61","doi-asserted-by":"crossref","unstructured":"Wendisch, M., Br\u00fcckner, M., Crewell, S., Ehrlich, A., Notholt, J., L\u00fcpkes, C., Macke, A., Burrows, J.\u00a0P., Rinke, A., Quaas, J., Maturilli, M., Schemann, V., Shupe, M.\u00a0D., Akansu, E.\u00a0F., Barrientos-Velasco, C., B\u00e4rfuss, K., Blechschmidt, A.-M., Block, K., Bougoudis, I., Bozem, H., B\u00f6ckmann, C., Bracher, A., Bresson, H., Bretschneider, L., Buschmann, M., Chechin, D.\u00a0G., Chylik, J., Dahlke, S., Deneke, H., Dethloff, K., Donth, T., Dorn, W., Dupuy, R., Ebell, K., Egerer, U., Engelmann, R., Eppers, O., Gerdes, R., Gierens, R., Gorodetskaya, I.\u00a0V., Gottschalk, M., Griesche, H., Gryanik, V.\u00a0M., Handorf, D., Harm-Altst\u00e4dter, B., Hartmann, J., Hartmann, M., Heinold, B., Herber, A., Herrmann, H., Heygster, G., H\u00f6schel, I., Hofmann, Z., H\u00f6lemann, J., H\u00fcnerbein, A., Jafariserajehlou, S., J\u00e4kel, E., Jacobi, C., Janout, M., Jansen, F., Jourdan, O., Jur\u00e1nyi, Z., Kalesse-Los, H., Kanzow, T., K\u00e4thner, R., Kliesch, L.\u00a0L., Klingebiel, M., Knudsen, E.\u00a0M., Kov\u00e1cs, T., K\u00f6rtke, W., Krampe, D., Kretzschmar, J., Kreyling, D., Kulla, B., Kunkel, D., Lampert, A., Lauer, M., Lelli, L., von Lerber, A., Linke, O., L\u00f6hnert, U., Lonardi, M., Losa, S.\u00a0N., Losch, M., Maahn, M., Mech, M., Mei, L., Mertes, S., Metzner, E., Mewes, D., Michaelis, J., Mioche, G., Moser, M., Nakoudi, K., Neggers, R., Neuber, R., Nomokonova, T., Oelker, J., Papakonstantinou-Presvelou, I., P\u00e4tzold, F., Pefanis, V., Pohl, C., van Pinxteren, M., Radovan, A., Rhein, M., Rex, M., Richter, A., Risse, N., Ritter, C., Rostosky, P., Rozanov, V.\u00a0V., Donoso, E.\u00a0R., Garfias, P.\u00a0S., Salzmann, M., Schacht, J., Sch\u00e4fer, M., Schneider, J., Schnierstein, N., Seifert, P., Seo, S., Siebert, H., Soppa, M.\u00a0A., Spreen, G., Stachlewska, I.\u00a0S., Stapf, J., Stratmann, F., Tegen, I., Viceto, C., Voigt, C., Vountas, M., Walbr\u00f6l, A., Walter, M., Wehner, B., Wex, H., Willmes, S., Zanatta, M., and Zeppenfeld, S.: Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)3 Project, B. Am. Meteorol. Soc., 104, E208\u2013E242,\nhttps:\/\/doi.org\/10.1175\/bams-d-21-0218.1, 2023.\u2002a","DOI":"10.1175\/BAMS-D-21-0218.1"},{"key":"ref62","doi-asserted-by":"crossref","unstructured":"Wesche, C., Steinhage, D., and Nixdorf, U.: Polar aircraft Polar5 and Polar6 operated by the Alfred Wegener Institute, Journal of Large-Scale Research Facilities, 2, A87, https:\/\/doi.org\/10.17815\/jlsrf-2-153, 2016.\u2002a","DOI":"10.17815\/jlsrf-2-153"},{"key":"ref63","doi-asserted-by":"crossref","unstructured":"Wiscombe, W.\u00a0J.: The Delta\u2013M Method: Rapid Yet Accurate Radiative Flux Calculations for Strongly Asymmetric Phase Functions, J. Atmos. Sci., 34, 1408\u20131422, https:\/\/doi.org\/10.1175\/1520-0469(1977)034&amp;lt;1408:TDMRYA&amp;gt;2.0.CO;2, 1977.\u2002a, b","DOI":"10.1175\/1520-0469(1977)034<1408:TDMRYA>2.0.CO;2"},{"key":"ref64","doi-asserted-by":"crossref","unstructured":"Wiscombe, W.\u00a0J.: Improved Mie scattering algorithms, Appl. Optics, 19,\n1505\u20131509, https:\/\/doi.org\/10.1364\/AO.19.001505, 1980.\u2002a, b","DOI":"10.1364\/AO.19.001505"},{"key":"ref65","doi-asserted-by":"crossref","unstructured":"Yang, P., Liou, K.\u00a0N., Wyser, K., and Mitchell, D.: Parameterization of the scattering and absorption properties of individual ice crystals, J. Geophys.\nRes.-Atmos., 105, 4699\u20134718, https:\/\/doi.org\/10.1029\/1999JD900755, 2000.\u2002a, b","DOI":"10.1029\/1999JD900755"},{"key":"ref66","doi-asserted-by":"crossref","unstructured":"Zhang, H., Lu, P., Yu, M., Zhou, J., Wang, Q., Li, Z., and Zhang, L.:\nComparison of Pond Depth and Ice Thickness Retrieval Algorithms for Summer\nArctic Sea Ice, Remote Sens., 14, 2831, https:\/\/doi.org\/10.3390\/rs14122831, 2022.\u2002a","DOI":"10.3390\/rs14122831"},{"key":"ref67","unstructured":"Zibordi, G., Voss, K.\u00a0J., Johnson, B.\u00a0C., and Mueller, J.\u00a0L.: Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation,\nVolume\u00a03.0: Protocols for Satellite Ocean Colour Data Validation: In Situ\nOptical Radiometry, IOCCG Protocols Document, International Ocean-Colour Coordinating Group (IOCCG), https:\/\/doi.org\/10.25607\/OBP-691, 2019.\u2002a"}],"container-title":["Atmospheric Measurement Techniques"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/amt.copernicus.org\/articles\/16\/3915\/2023\/amt-16-3915-2023.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,24]],"date-time":"2023-08-24T13:03:37Z","timestamp":1692882217000},"score":1,"resource":{"primary":{"URL":"https:\/\/amt.copernicus.org\/articles\/16\/3915\/2023\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,8,24]]},"references-count":67,"journal-issue":{"issue":"16","published-online":{"date-parts":[[2023]]}},"URL":"http:\/\/dx.doi.org\/10.5194\/amt-16-3915-2023","relation":{"has-preprint":[{"id-type":"doi","id":"10.5194\/amt-2023-64","asserted-by":"subject"}],"has-review":[{"id-type":"doi","id":"10.5194\/amt-2023-64-RC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/amt-2023-64-AC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/amt-2023-64-RC2","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/amt-2023-64-AC2","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/amt-2023-64-RC3","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/amt-2023-64-AC3","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/amt-2023-64-AC3","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/amt-2023-64-RC2","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/amt-2023-64-RC3","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/amt-2023-64-AC1","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/amt-2023-64-RC1","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/amt-2023-64-AC2","asserted-by":"object"}],"is-part-of":[{"id-type":"doi","id":"10.1594\/PANGAEA.902150","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.899177","asserted-by":"subject"}]},"ISSN":["1867-8548"],"issn-type":[{"value":"1867-8548","type":"electronic"}],"subject":["Atmospheric Science"],"published":{"date-parts":[[2023,8,24]]}}}