uni-leipzig-open-access/json/amt-16-1563-2023

1 line
30 KiB
Plaintext

{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,12,14]],"date-time":"2023-12-14T15:22:50Z","timestamp":1702567370192},"reference-count":53,"publisher":"Copernicus GmbH","issue":"6","license":[{"start":{"date-parts":[[2023,3,27]],"date-time":"2023-03-27T00:00:00Z","timestamp":1679875200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","award":["422897361","316500630","268020496"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Atmos. Meas. Tech."],"abstract":"<jats:p>Abstract. The instrumentation of the High Altitude and Long Range (HALO) research aircraft is extended by the new Broadband AirCrAft RaDiometer Instrumentation (BACARDI) to quantify the radiative energy budget. Two sets of pyranometers and pyrgeometers are mounted to measure upward and downward solar (0.3\u20133\u2009\u00b5m) and thermal\u2013infrared (3\u2013100\u2009\u00b5m) irradiances. The radiometers are installed in a passively ventilated fairing to reduce the effects of the dynamic environment, e.g., fast changes in altitude and temperature. The remaining thermal effects range up to 20\u2009W\u2009m\u22122 for the pyranometers and 10\u2009W\u2009m\u22122 for the pyrgeometers. Using data collected by BACARDI during a night flight, it is demonstrated that the dynamic components of the offsets can be parameterized by the rate of change of the radiometer sensor temperatures, providing a greatly simplifying correction of the dynamic thermal effects. The parameterization provides a linear correction function (200\u2013500\u2009W\u2009m\u22122\u2009K\u22121\u2009s) that depends on the radiometer type and the mounting position of the radiometer on HALO. Furthermore, BACARDI measurements from the EUREC4A (Elucidating the Role of Clouds\u2014Circulation Coupling in Climate) field campaign are analyzed to characterize the performance of the radiometers and to evaluate all corrections applied in the data processing. Vertical profiles of irradiance measurements up to 10\u2009km altitude show that the thermal offset correction limits the bias due to temperature changes to values below 10\u2009W\u2009m\u22122. Measurements with BACARDI during horizontal, circular flight patterns in cloud-free conditions demonstrate that the common geometric attitude correction of the solar downward irradiance provides reliable measurements in this typical flight section of EUREC4A, even without active stabilization of the radiometer.\n <\/jats:p>","DOI":"10.5194\/amt-16-1563-2023","type":"journal-article","created":{"date-parts":[[2023,3,27]],"date-time":"2023-03-27T09:58:32Z","timestamp":1679911112000},"page":"1563-1581","source":"Crossref","is-referenced-by-count":1,"title":["A new airborne broadband radiometer system and an efficient method to correct dynamic thermal offsets"],"prefix":"10.5194","volume":"16","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0860-8216","authenticated-orcid":false,"given":"Andr\u00e9","family":"Ehrlich","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8291-345X","authenticated-orcid":false,"given":"Martin","family":"Z\u00f6ger","sequence":"additional","affiliation":[]},{"given":"Andreas","family":"Giez","sequence":"additional","affiliation":[]},{"given":"Vladyslav","family":"Nenakhov","sequence":"additional","affiliation":[]},{"given":"Christian","family":"Mallaun","sequence":"additional","affiliation":[]},{"given":"Rolf","family":"Maser","sequence":"additional","affiliation":[]},{"given":"Timo","family":"R\u00f6schenthaler","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1606-6939","authenticated-orcid":false,"given":"Anna E.","family":"Luebke","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8461-5261","authenticated-orcid":false,"given":"Kevin","family":"Wolf","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3795-0475","authenticated-orcid":false,"given":"Bjorn","family":"Stevens","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4652-5561","authenticated-orcid":false,"given":"Manfred","family":"Wendisch","sequence":"additional","affiliation":[]}],"member":"3145","published-online":{"date-parts":[[2023,3,27]]},"reference":[{"key":"ref1","doi-asserted-by":"crossref","unstructured":"Albrecht, B., Poellot, M., and Cox, S.\u00a0K.: Pyrgeometer measurements from aircraft, Rev. Sci. Instrum., 45, 33\u201338, https:\/\/doi.org\/10.1063\/1.1686443, 1974.\u2002a, b","DOI":"10.1063\/1.1686443"},{"key":"ref2","doi-asserted-by":"crossref","unstructured":"Bannehr, L. and Schwiesow, R.: A Technique to Account for the Misalignment of Pyranometers Installed on Aircraft, J. Atmos. Ocean. Tech., 10, 774\u2013777, 1993.\u2002a, b, c","DOI":"10.1175\/1520-0426(1993)010<0774:ATTAFT>2.0.CO;2"},{"key":"ref3","doi-asserted-by":"crossref","unstructured":"Boers, R., Mitchell, R.\u00a0M., and Krummel, P.\u00a0B.: Correction of aircraft pyranometer measurements for diffuse radiance and alignment errors, J. Geophys. Res., 103, 16753\u201316758, 1998.\u2002a, b","DOI":"10.1029\/98JD01431"},{"key":"ref4","doi-asserted-by":"crossref","unstructured":"Bony, S., Stevens, B., Ament, F., Bigorre, S., Chazette, P., Crewell, S.,\nDelano\u00eb, J., Emanuel, K., Farrell, D., Flamant, C., Gross, S., Hirsch,\nL., Karstensen, J., Mayer, B., Nuijens, L., Ruppert, J.\u00a0H., Sandu, I.,\nSiebesma, P., Speich, S., Szczap, F., Totems, J., Vogel, R., Wendisch, M.,\nand Wirth, M.: EUREC4A: A Field Campaign to Elucidate the Couplings Between\nClouds, Convection and Circulation, Surv. Geophys., 38, 1529\u20131568,\nhttps:\/\/doi.org\/10.1007\/s10712-017-9428-0, 2017.\u2002a, b","DOI":"10.1007\/s10712-017-9428-0"},{"key":"ref5","doi-asserted-by":"crossref","unstructured":"Bucholtz, A., Bluth, R.\u00a0T., Kelly, B., Taylor, S., Batson, K., Sarto, A.\u00a0W., Tooman, T.\u00a0P., and McCoy, R.\u00a0F.: The Stabilized Radiometer Platform (STRAP) \u2013 An Actively Stabilized Horizontally Level Platform for Improved Aircraft\nIrradiance Measurements, J. Atmos. Ocean. Tech., 25, 2161\u20132175,\nhttps:\/\/doi.org\/10.1175\/2008JTECHA1085.1, 2008.\u2002a, b","DOI":"10.1175\/2008JTECHA1085.1"},{"key":"ref6","doi-asserted-by":"crossref","unstructured":"Bucholtz, A., Hlavka, D.\u00a0L., McGill, M.\u00a0J., Schmidt, K.\u00a0S., Pilewskie, P., Davis, S.\u00a0M., Reid, E.\u00a0A., and Walker, A.\u00a0L.: Directly measured heating rates\nof a tropical subvisible cirrus cloud, J. Geophys. Res.-Atmos., 115, D00J09, https:\/\/doi.org\/10.1029\/2009JD013128, 2010.\u2002a","DOI":"10.1029\/2009JD013128"},{"key":"ref7","doi-asserted-by":"crossref","unstructured":"Bush, B.\u00a0C., Valero, F. P.\u00a0J., Simpson, A.\u00a0S., and Bignone, L.: Characterization of Thermal Effects in Pyranometers: A Data Correction Algorithm for Improved Measurement of Surface Insolation, J. Atmos. Ocean. Tech., 17, 165\u2013175, https:\/\/doi.org\/10.1175\/1520-0426(2000)017&amp;lt;0165:COTEIP&amp;gt;2.0.CO;2, 2000.\u2002a, b","DOI":"10.1175\/1520-0426(2000)017<0165:COTEIP>2.0.CO;2"},{"key":"ref8","doi-asserted-by":"crossref","unstructured":"Colbo, K. and Weller, R.\u00a0A.: Accuracy of the IMET Sensor Package in the\nSubtropics, J. Atmos. Ocean. Tech., 26, 1867\u20131890,\nhttps:\/\/doi.org\/10.1175\/2009JTECHO667.1, 2009.\u2002a","DOI":"10.1175\/2009JTECHO667.1"},{"key":"ref9","doi-asserted-by":"crossref","unstructured":"Cox, C. and Munk, W.: Measurement of the roughness of the sea surface from\nphotographs of the sun's glitter, J. Opt. Soc. Am. A., 44, 838\u2013850, 1954.\u2002a","DOI":"10.1364\/JOSA.44.000838"},{"key":"ref10","doi-asserted-by":"crossref","unstructured":"Curry, J.\u00a0A. and Herman, G.\u00a0F.: Infrared radiative properties of summertime\nArctic stratus clouds, J. Clim. Appl. Meteorol., 24, 525\u2013538,\nhttps:\/\/doi.org\/10.1175\/1520-0450(1985)024&amp;lt;0525:IRPOSA&amp;gt;2.0.CO;2, 1985.\u2002a","DOI":"10.1175\/1520-0450(1985)024<0525:IRPOSA>2.0.CO;2"},{"key":"ref11","doi-asserted-by":"crossref","unstructured":"Driemel, A., Augustine, J., Behrens, K., Colle, S., Cox, C., Cuevas-Agull\u00f3, E., Denn, F. M., Duprat, T., Fukuda, M., Grobe, H., Haeffelin, M., Hodges, G., Hyett, N., Ijima, O., Kallis, A., Knap, W., Kustov, V., Long, C. N., Longenecker, D., Lupi, A., Maturilli, M., Mimouni, M., Ntsangwane, L., Ogihara, H., Olano, X., Olefs, M., Omori, M., Passamani, L., Pereira, E. B., Schmith\u00fcsen, H., Schumacher, S., Sieger, R., Tamlyn, J., Vogt, R., Vuilleumier, L., Xia, X., Ohmura, A., and K\u00f6nig-Langlo, G.: Baseline Surface Radiation Network (BSRN): structure and data description (1992\u20132017), Earth Syst. Sci. Data, 10, 1491\u20131501, https:\/\/doi.org\/10.5194\/essd-10-1491-2018, 2018.\u2002a","DOI":"10.5194\/essd-10-1491-2018"},{"key":"ref12","doi-asserted-by":"crossref","unstructured":"Dutton, E.\u00a0G., Michalsky, J.\u00a0J., Stoffel, T., Forgan, B.\u00a0W., Hickey, J., Nelson, D.\u00a0W., Alberta, T.\u00a0L., and Reda, I.: Measurement of Broadband Diffuse\nSolar Irradiance Using Current Commercial Instrumentation with a Correction\nfor Thermal Offset Errors, J. Atmos. Ocean. Tech., 18, 297\u2013314,\nhttps:\/\/doi.org\/10.1175\/1520-0426(2001)018&amp;lt;0297:MOBDSI&amp;gt;2.0.CO;2, 2001.\u2002a","DOI":"10.1175\/1520-0426(2001)018<0297:MOBDSI>2.0.CO;2"},{"key":"ref13","doi-asserted-by":"crossref","unstructured":"Egerer, U., Gottschalk, M., Siebert, H., Ehrlich, A., and Wendisch, M.: The new BELUGA setup for collocated turbulence and radiation measurements using a tethered balloon: first applications in the cloudy Arctic boundary layer, Atmos. Meas. Tech., 12, 4019\u20134038, https:\/\/doi.org\/10.5194\/amt-12-4019-2019, 2019.\u2002a, b","DOI":"10.5194\/amt-12-4019-2019"},{"key":"ref14","doi-asserted-by":"crossref","unstructured":"Ehrlich, A. and Wendisch, M.: Reconstruction of high-resolution time series from slow-response broadband terrestrial irradiance measurements by deconvolution, Atmos. Meas. Tech., 8, 3671\u20133684, https:\/\/doi.org\/10.5194\/amt-8-3671-2015, 2015.\u2002a, b, c, d, e","DOI":"10.5194\/amt-8-3671-2015"},{"key":"ref15","unstructured":"Ehrlich, A., Wolf, K., Luebke, A., Zoeger, M., and Giez, A.: Broadband solar and terrestrial, upward and downward irradiance measured by BACARDI on HALO during the EUREC4A Field Campaign, AERIS [data set], https:\/\/doi.org\/10.25326\/160, 2021.\u2002a, b"},{"key":"ref16","doi-asserted-by":"crossref","unstructured":"Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U., Kylling, J., Richter, B., Pause, C., Dowling, T., and Bugliaro, L.: The libRadtran software package for radiative transfer calculations (version 2.0.1), Geosci. Model Dev., 9, 1647\u20131672, https:\/\/doi.org\/10.5194\/gmd-9-1647-2016, 2016.\u2002a, b","DOI":"10.5194\/gmd-9-1647-2016"},{"key":"ref17","doi-asserted-by":"crossref","unstructured":"Fairall, C.\u00a0W., Persson, P. O.\u00a0G., Bradley, E.\u00a0F., Payne, R.\u00a0E., and Anderson, S.\u00a0P.: A New Look at Calibration and Use of Eppley Precision Infrared Radiometers. Part\u00a0I: Theory and Application, J. Atmos. Ocean. Tech., 15, 1229\u20131242, https:\/\/doi.org\/10.1175\/1520-0426(1998)015&amp;lt;1229:ANLACA&amp;gt;2.0.CO;2, 1998.\u2002a","DOI":"10.1175\/1520-0426(1998)015<1229:ANLACA>2.0.CO;2"},{"key":"ref18","doi-asserted-by":"crossref","unstructured":"Foot, J.\u00a0S.: A New Pyrgeometer, J. Atmos. Ocean. Tech., 3, 363\u2013370, https:\/\/doi.org\/10.1175\/1520-0426(1986)003&amp;lt;0363:ANP&amp;gt;2.0.CO;2, 1986.\u2002a","DOI":"10.1175\/1520-0426(1986)003<0363:ANP>2.0.CO;2"},{"key":"ref19","doi-asserted-by":"crossref","unstructured":"Freese, D. and Kottmeier, C.: Radiation exchange between stratus clouds and\npolar marine surfaces, Bound.-Lay. Meteorol., 87, 331\u2013356,\nhttps:\/\/doi.org\/10.1023\/A:1000992701127, 1998.\u2002a","DOI":"10.1023\/A:1000992701127"},{"key":"ref20","doi-asserted-by":"crossref","unstructured":"George, G.: JOANNE: Joint dropsonde Observations of the Atmosphere in tropical North atlaNtic meso-scale Environments, Aeris [data set], https:\/\/doi.org\/10.25326\/221, 2021.\u2002a","DOI":"10.5194\/essd-2021-162"},{"key":"ref21","doi-asserted-by":"crossref","unstructured":"Gr\u00f6bner, J. and Los, A.: Laboratory calibration of pyrgeometers with known spectral responsivities, Appl. Opt., 46, 7419\u20137425,\nhttps:\/\/doi.org\/10.1364\/AO.46.007419, 2007.\u2002a","DOI":"10.1364\/AO.46.007419"},{"key":"ref22","doi-asserted-by":"crossref","unstructured":"Gr\u00f6bner, J., Reda, I., Wacker, S., Nyeki, S., Behrens, K., and Gorman, J.: A new absolute reference for atmospheric longwave irradiance measurements with traceability to SI units, J. Geophys. Res-Atmos., 119, 7083\u20137090,\nhttps:\/\/doi.org\/10.1002\/2014JD021630, 2014.\u2002a, b","DOI":"10.1002\/2014JD021630"},{"key":"ref23","doi-asserted-by":"crossref","unstructured":"Haeffelin, M., Kato, S., Smith, A.\u00a0M., Rutledge, C.\u00a0K., Charlock, T.\u00a0P., and\nMahan, J.\u00a0R.: Determination of the thermal offset of the Eppley precision\nspectral pyranometer, Appl. Opt., 40, 472\u2013484, 2001.\u2002a","DOI":"10.1364\/AO.40.000472"},{"key":"ref24","doi-asserted-by":"crossref","unstructured":"Ji, Q. and Tsay, S.-C.: On the dome effect of Eppley pyrgeometers and pyranometers, Geophys. Res. Lett., 27, 971\u2013974, https:\/\/doi.org\/10.1029\/1999GL011093, 2000.\u2002a, b","DOI":"10.1029\/1999GL011093"},{"key":"ref25","doi-asserted-by":"crossref","unstructured":"Kalisch, J. and Macke, A.: Radiative budget and cloud radiative effect over the Atlantic from ship-based observations, Atmos. Meas. Tech., 5, 2391\u20132401, https:\/\/doi.org\/10.5194\/amt-5-2391-2012, 2012.\u2002a","DOI":"10.5194\/amt-5-2391-2012"},{"key":"ref26","unstructured":"Kipp &amp;amp; Zonen: Instruction Manual CGR4 Pyrgeometer, Kipp &amp;amp; Zonen B.V., p.\u00a035, https:\/\/www.kippzonen.com\/Download\/38\/Manual-CGR4-Pyrgeometer\n(last access: 17\u00a0March 2023), 2014.\u2002a, b, c, d"},{"key":"ref27","unstructured":"Kipp &amp;amp; Zonen: Instruction Manual CMP series Pyranometer, Kipp &amp;amp; Zonen B.V., p.\u00a046, https:\/\/www.kippzonen.com\/Download\/72\/Manual-Pyranometers-CMP-series-English\n(last access: 17\u00a0March 2023), 2016.\u2002a, b, c"},{"key":"ref28","doi-asserted-by":"crossref","unstructured":"Krautstrunk, M. and Giez, A.: The Transition From FALCON to HALO Era Airborne Atmospheric Research, Springer Berlin Heidelberg, Berlin, Heidelberg, 609\u2013624, https:\/\/doi.org\/10.1007\/978-3-642-30183-4_37, 2012.\u2002a","DOI":"10.1007\/978-3-642-30183-4_37"},{"key":"ref29","doi-asserted-by":"crossref","unstructured":"Laszlo, I., Stamnes, K., Wiscombe, W. J., and Tsay, S, C.: The Discrete Ordinate Algorithm, DISORT for Radiative Transfer, in: Light Scattering Reviews, edited by: Kokhanovsky, A., vol.\u00a011, Springer Praxis Books, Springer, Berlin, Heidelberg, https:\/\/doi.org\/10.1007\/978-3-662-49538-4_1, 2016.\u2002a, b","DOI":"10.1007\/978-3-662-49538-4_1"},{"key":"ref30","doi-asserted-by":"crossref","unstructured":"Luebke, A. E., Ehrlich, A., Sch\u00e4fer, M., Wolf, K., and Wendisch, M.: An assessment of macrophysical and microphysical cloud properties driving radiative forcing of shallow trade-wind clouds, Atmos. Chem. Phys., 22, 2727\u20132744, https:\/\/doi.org\/10.5194\/acp-22-2727-2022, 2022.\u2002a","DOI":"10.5194\/acp-22-2727-2022"},{"key":"ref31","unstructured":"Marty, C.: Surface radiation, cloud forcing and greenhouse effect in the Alps, ETH Z\u00fcrich, https:\/\/doi.org\/10.3929\/ethz-a-003897100, 2000.\u2002a, b"},{"key":"ref32","doi-asserted-by":"crossref","unstructured":"Meloni, D., Biagio, C.\u00a0D., di\u00a0Sarra, A., Monteleone, F., Pace, G., and\nSferlazzo, D.\u00a0M.: Accounting for the Solar Radiation Influence on Downward\nLongwave Irradiance Measurements by Pyrgeometers, J. Atmos. Ocean. Tech.,\n29, 1629\u20131643, https:\/\/doi.org\/10.1175\/JTECH-D-11-00216.1, 2012.\u2002a, b, c, d, e, f","DOI":"10.1175\/JTECH-D-11-00216.1"},{"key":"ref33","doi-asserted-by":"crossref","unstructured":"Michalsky, J.\u00a0J., Kutchenreiter, M., and Long, C.\u00a0N.: Significant Improvements in Pyranometer Nighttime Offsets Using High-Flow DC Ventilation, J. Atmos. Ocean. Tech., 34, 1323\u20131332, https:\/\/doi.org\/10.1175\/JTECH-D-16-0224.1, 2017.\u2002a","DOI":"10.1175\/JTECH-D-16-0224.1"},{"key":"ref34","doi-asserted-by":"crossref","unstructured":"Nyeki, S., Wacker, S., Gr\u00f6bner, J., Finsterle, W., and Wild, M.: Revising shortwave and longwave radiation archives in view of possible revisions of the WSG and WISG reference scales: methods and implications, Atmos. Meas. Tech., 10, 3057\u20133071, https:\/\/doi.org\/10.5194\/amt-10-3057-2017, 2017.\u2002a","DOI":"10.5194\/amt-10-3057-2017"},{"key":"ref35","doi-asserted-by":"crossref","unstructured":"Pascal, R.\u00a0W. and Josey, S.\u00a0A.: Accurate Radiometric Measurement of the\nAtmospheric Longwave Flux at theSea Surface, J. Atmos. Ocean. Tech., 17,\n1271\u20131282, https:\/\/doi.org\/10.1175\/1520-0426(2000)017&amp;lt;1271:ARMOTA&amp;gt;2.0.CO;2, 2000.\u2002a","DOI":"10.1175\/1520-0426(2000)017<1271:ARMOTA>2.0.CO;2"},{"key":"ref36","doi-asserted-by":"crossref","unstructured":"Philipona, R.: Underestimation of solar global and diffuse radiation measured at Earth\u2019s surface, J. Geophys. Res., 107, 4654,\nhttps:\/\/doi.org\/10.1029\/2002JD002396, 2002.\u2002a","DOI":"10.1029\/2002JD002396"},{"key":"ref37","doi-asserted-by":"crossref","unstructured":"Philipona, R., Fr\u00f6hlich, and Betz, C.: Characterisation of pyrgeometers\nand the accuracy of atmospheric long\u2013wave radiation measurements, Appl.\nOpt., 34, 1598\u20131605, https:\/\/doi.org\/10.1364\/AO.34.001598, 1995.\u2002a, b, c, d, e","DOI":"10.1364\/AO.34.001598"},{"key":"ref38","doi-asserted-by":"crossref","unstructured":"Philipona, R., Dutton, E., Stoffel, T., Michalsky, J., Reda, I., Stifter, A., Wendling, P., Wood, N., Clough, S., Mlawer, E., Anderson, G., Revercomb, H., and Shippert, T.: Atmospheric longwave irradiance uncertainty: Pyrgeometers compared to an absolute sky-scanning radiometer, atmospheric emitted radiance interferometer and radiative transfer model calculations, J. Geophys. Res.,\n106, 28129\u201328141, https:\/\/doi.org\/10.1029\/2000JD000196, 2001.\u2002a","DOI":"10.1029\/2000JD000196"},{"key":"ref39","doi-asserted-by":"crossref","unstructured":"Reda, I., Hickey, J., Long, C., Myers, D., Stoffel, T., Wilcox, S., Michalsky, J.\u00a0J., Dutton, E.\u00a0G., and Nelson, D.: Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error during Outdoor Calibration Using the Component Sum Method, J. Atmos. Ocean. Tech., 22, 1531\u20131540,\nhttps:\/\/doi.org\/10.1175\/JTECH1782.1, 2005.\u2002a","DOI":"10.1175\/JTECH1782.1"},{"key":"ref40","doi-asserted-by":"crossref","unstructured":"Ricchiazzi, P. and Gautier, C.: Investigation of the effect of surface heterogeneity and topography on the radiation environment of Palmer Station, Antarctica, with a hybrid 3-D radiative transfer model, J. Geophys. Res.,\n103, 6161\u20136178, 1998.\u2002a","DOI":"10.1029\/97JD03629"},{"key":"ref41","doi-asserted-by":"crossref","unstructured":"Saunders, R.\u00a0W., Brogniez, G., Buriez, J.\u00a0C., Meerk\u00f6tter, R., and Wendling, P.: A comparison of measured and modeled broadband fluxes from aircraft data during the ICE'89 field experiment, J. Atmos. Ocean. Tech., 9, 391\u2013406, 1992.\u2002a","DOI":"10.1175\/1520-0426(1992)009<0391:ACOMAM>2.0.CO;2"},{"key":"ref42","doi-asserted-by":"crossref","unstructured":"Shupe, M.\u00a0D. and Intrieri, J.\u00a0M.: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and 40 solar zenith angle, J. Climate, 17, 616\u2013628, https:\/\/doi.org\/10.1175\/1520-0442(2004)017&amp;lt;0616:CRFOTA&amp;gt;2.0.CO;2, 2004.\u2002a","DOI":"10.1175\/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2"},{"key":"ref43","doi-asserted-by":"crossref","unstructured":"Siebert, H., Szodry, K.-E., Egerer, U., Wehner, B., Henning, S., Chevalier, K., L\u00fcckerath, J., Welz, O., Weinhold, K., Lauermann, F., Gottschalk, M., Ehrlich, A., Wendisch, M., Fialho, P., Roberts, G., Allwayin, N., Schum, S., Shaw, R.\u00a0A., Mazzoleni, C., Mazzoleni, L., Nowak, J.\u00a0L., Malinowski, S.\u00a0P., Karpinska, K., Kumala, W., Czyzewska, D., Luke, E.\u00a0P., Kollias, P., Wood, R., and Mellado, J.\u00a0P.: Observations of aerosol, cloud, turbulence, and radiation properties at the top of the marine boundary layer over the Eastern North Atlantic Ocean: The ACORES campaign, B. Am. Meteorol. Soc., 102, E123\u2013E147, https:\/\/doi.org\/10.1175\/BAMS-D-19-0191.1, 2021.\u2002a","DOI":"10.1175\/BAMS-D-19-0191.1"},{"key":"ref44","doi-asserted-by":"crossref","unstructured":"Simpfendoerfer, L.\u00a0F., Verlinde, J., Harrington, J.\u00a0Y., Shupe, M.\u00a0D., Chen, Y.-S., Clothiaux, E.\u00a0E., and Golaz, J.-C.: Formation of Arctic Stratocumuli Through Atmospheric Radiative Cooling, J. Geophys. Res.-Atmos., 124, 9644\u20139664, https:\/\/doi.org\/10.1029\/2018JD030189, 2019.\u2002a","DOI":"10.1029\/2018JD030189"},{"key":"ref45","doi-asserted-by":"crossref","unstructured":"Stapf, J., Ehrlich, A., J\u00e4kel, E., L\u00fcpkes, C., and Wendisch, M.: Reassessment of shortwave surface cloud radiative forcing in the Arctic: consideration of surface-albedo\u2013cloud interactions, Atmos. Chem. Phys., 20, 9895\u20139914, https:\/\/doi.org\/10.5194\/acp-20-9895-2020, 2020.\u2002a, b","DOI":"10.5194\/acp-20-9895-2020"},{"key":"ref46","doi-asserted-by":"crossref","unstructured":"Stapf, J., Ehrlich, A., and Wendisch, M.: Influence of Thermodynamic State Changes on Surface Cloud Radiative Forcing in the Arctic: A Comparison of Two\nApproaches Using Data From AFLUX and SHEBA, J. Geophys. Res., 126,\ne2020JD033589, https:\/\/doi.org\/10.1029\/2020JD033589, 2021.\u2002a","DOI":"10.1029\/2020JD033589"},{"key":"ref47","doi-asserted-by":"crossref","unstructured":"Stephan, C. C., Schnitt, S., Schulz, H., Bellenger, H., de Szoeke, S. P., Acquistapace, C., Baier, K., Dauhut, T., Laxenaire, R., Morfa-Avalos, Y., Person, R., Qui\u00f1ones Mel\u00e9ndez, E., Bagheri, G., B\u00f6ck, T., Daley, A., G\u00fcttler, J., Helfer, K. C., Los, S. A., Neuberger, A., R\u00f6ttenbacher, J., Raeke, A., Ringel, M., Ritschel, M., Sadoulet, P., Schirmacher, I., Stolla, M. K., Wright, E., Charpentier, B., Doerenbecher, A., Wilson, R., Jansen, F., Kinne, S., Reverdin, G., Speich, S., Bony, S., and Stevens, B.: Ship- and island-based atmospheric soundings from the 2020 EUREC4A field campaign, Earth Syst. Sci. Data, 13, 491\u2013514, https:\/\/doi.org\/10.5194\/essd-13-491-2021, 2021.\u2002a","DOI":"10.5194\/essd-13-491-2021"},{"key":"ref48","doi-asserted-by":"crossref","unstructured":"Stevens, B., Farrell, D., Hirsch, L., Jansen, F., Nuijens, L., Serikov, I., Br\u00fcgmann, B., Forde, M., Linne, H., Lonitz, K., and Prospero, J.\u00a0M.: The\nBarbados Cloud Observatory: Anchoring Investigations of Clouds and\nCirculation on the Edge of the ITCZ, B. Am. Meteorol. Soc., 97, 787\u2013801,\nhttps:\/\/doi.org\/10.1175\/BAMS-D-14-00247.1, 2016.\u2002a","DOI":"10.1175\/BAMS-D-14-00247.1"},{"key":"ref49","doi-asserted-by":"crossref","unstructured":"Stevens, B., Bony, S., Farrell, D., Ament, F., Blyth, A., Fairall, C., Karstensen, J., Quinn, P. K., Speich, S., Acquistapace, C., Aemisegger, F., Albright, A. L., Bellenger, H., Bodenschatz, E., Caesar, K.-A., Chewitt-Lucas, R., de Boer, G., Delano\u00eb, J., Denby, L., Ewald, F., Fildier, B., Forde, M., George, G., Gross, S., Hagen, M., Hausold, A., Heywood, K. J., Hirsch, L., Jacob, M., Jansen, F., Kinne, S., Klocke, D., K\u00f6lling, T., Konow, H., Lothon, M., Mohr, W., Naumann, A. K., Nuijens, L., Olivier, L., Pincus, R., P\u00f6hlker, M., Reverdin, G., Roberts, G., Schnitt, S., Schulz, H., Siebesma, A. P., Stephan, C. C., Sullivan, P., Touz\u00e9-Peiffer, L., Vial, J., Vogel, R., Zuidema, P., Alexander, N., Alves, L., Arixi, S., Asmath, H., Bagheri, G., Baier, K., Bailey, A., Baranowski, D., Baron, A., Barrau, S., Barrett, P. A., Batier, F., Behrendt, A., Bendinger, A., Beucher, F., Bigorre, S., Blades, E., Blossey, P., Bock, O., B\u00f6ing, S., Bosser, P., Bourras, D., Bouruet-Aubertot, P., Bower, K., Branellec, P., Branger, H., Brennek, M., Brewer, A., Brilouet , P.-E., Br\u00fcgmann, B., Buehler, S. A., Burke, E., Burton, R., Calmer, R., Canonici, J.-C., Carton, X., Cato Jr., G., Charles, J. A., Chazette, P., Chen, Y., Chilinski, M. T., Choularton, T., Chuang, P., Clarke, S., Coe, H., Cornet, C., Coutris, P., Couvreux, F., Crewell, S., Cronin, T., Cui, Z., Cuypers, Y., Daley, A., Damerell, G. M., Dauhut, T., Deneke, H., Desbios, J.-P., D\u00f6rner, S., Donner, S., Douet, V., Drushka, K., D\u00fctsch, M., Ehrlich, A., Emanuel, K., Emmanouilidis, A., Etienne, J.-C., Etienne-Leblanc, S., Faure, G., Feingold, G., Ferrero, L., Fix, A., Flamant, C., Flatau, P. J., Foltz, G. R., Forster, L., Furtuna, I., Gadian, A., Galewsky, J., Gallagher, M., Gallimore, P., Gaston, C., Gentemann, C., Geyskens, N., Giez, A., Gollop, J., Gouirand, I., Gourbeyre, C., de Graaf, D., de Groot, G. E., Grosz, R., G\u00fcttler, J., Gutleben, M., Hall, K., Harris, G., Helfer, K. C., Henze, D., Herbert, C., Holanda, B., Ibanez-Landeta, A., Intrieri, J., Iyer, S., Julien, F., Kalesse, H., Kazil, J., Kellman, A., Kidane, A. T., Kirchner, U., Klingebiel, M., K\u00f6rner, M., Kremper, L. A., Kretzschmar, J., Kr\u00fcger, O., Kumala, W., Kurz, A., L'H\u00e9garet, P., Labaste, M., Lachlan-Cope, T., Laing, A., Landsch\u00fctzer, P., Lang, T., Lange, D., Lange, I., Laplace, C., Lavik, G., Laxenaire, R., Le Bihan, C., Leandro, M., Lefevre, N., Lena, M., Lenschow, D., Li, Q., Lloyd, G., Los, S., Losi, N., Lovell, O., Luneau, C., Makuch, P., Malinowski, S., Manta, G., Marinou, E., Marsden, N., Masson, S., Maury, N., Mayer, B., Mayers-Als, M., Mazel, C., McGeary, W., McWilliams, J. C., Mech, M., Mehlmann, M., Meroni, A. N., Mieslinger, T., Minikin, A., Minnett, P., M\u00f6ller, G., Morfa Avalos, Y., Muller, C., Musat, I., Napoli, A., Neuberger, A., Noisel, C., Noone, D., Nordsiek, F., Nowak, J. L., Oswald, L., Parker, D. J., Peck, C., Person, R., Philippi, M., Plueddemann, A., P\u00f6hlker, C., P\u00f6rtge, V., P\u00f6schl, U., Pologne, L., Posyniak, M., Prange, M., Qui\u00f1ones Mel\u00e9ndez, E., Radtke, J., Ramage, K., Reimann, J., Renault, L., Reus, K., Reyes, A., Ribbe, J., Ringel, M., Ritschel, M., Rocha, C. B., Rochetin, N., R\u00f6ttenbacher, J., Rollo, C., Royer, H., Sadoulet, P., Saffin, L., Sandiford, S., Sandu, I., Sch\u00e4fer, M., Schemann, V., Schirmacher, I., Schlenczek, O., Schmidt, J., Schr\u00f6der, M., Schwarzenboeck, A., Sealy, A., Senff, C. J., Serikov, I., Shohan, S., Siddle, E., Smirnov, A., Sp\u00e4th, F., Spooner, B., Stolla, M. K., Szk&lt;span id=&quot;page1581&quot;\/&gt;\u00f3\u0142ka, W., de Szoeke, S. P., Tarot, S., Tetoni, E., Thompson, E., Thomson, J., Tomassini, L., Totems, J., Ubele, A. A., Villiger, L., von Arx, J., Wagner, T., Walther, A., Webber, B., Wendisch, M., Whitehall, S., Wiltshire, A., Wing, A. A., Wirth, M., Wiskandt, J., Wolf, K., Worbes, L., Wright, E., Wulfmeyer, V., Young, S., Zhang, C., Zhang, D., Ziemen, F., Zinner, T., and Z\u00f6ger, M.: EUREC4A, Earth Syst. Sci. Data, 13, 4067\u20134119, https:\/\/doi.org\/10.5194\/essd-13-4067-2021, 2021.\u2002a, b, c, d","DOI":"10.5194\/essd-13-4067-2021"},{"key":"ref50","doi-asserted-by":"crossref","unstructured":"Su, W., Dutton, E., Charlock, T.\u00a0P., and Wiscombe, W.: Performance of Commercial Radiometers in Very Low Temperature and Pressure Environments Typical of Polar Regions and of the Stratosphere: A Laboratory Study, J. Atmos. Ocean. Tech., 25, 558\u2013569, https:\/\/doi.org\/10.1175\/2007JTECHA1005.1, 2008.\u2002a, b","DOI":"10.1175\/2007JTECHA1005.1"},{"key":"ref51","doi-asserted-by":"crossref","unstructured":"Wendisch, M. and Brenguier, J.-L.: Airborne Measurements for Environmental\nResearch \u2013 Methods and Instruments, Wiley\u2013VCH Verlag GmbH &amp;amp; Co. KGaA,\nWeinheim, Germany, Weinheim, Germany, ISBN\u00a0978-3-527-40996-9, https:\/\/doi.org\/10.1002\/9783527653218, 2013.\n\u2002a","DOI":"10.1002\/9783527653218"},{"key":"ref52","doi-asserted-by":"crossref","unstructured":"Wendisch, M., M\u00fcller, D., Schell, D., and Heintzenberg, J.: An airborne spectral albedometer with active horizontal stabilization, J. Atmos. Ocean. Tech., 18, 1856\u20131866, https:\/\/doi.org\/10.1175\/1520-0426(2001)018&amp;lt;1856:AASAWA&amp;gt;2.0.CO;2, 2001.\u2002a, b, c, d","DOI":"10.1175\/1520-0426(2001)018<1856:AASAWA>2.0.CO;2"},{"key":"ref53","doi-asserted-by":"crossref","unstructured":"Wendisch, M., Hellmuth, O., Ansmann, A., J.\u00a0Heintzenberg, J., Engelmann, R.,\nAlthausen, D., Eichler, H., M\u00fcller, D., Hu, M., Zhang, Y., and Mao, J.:\nRadiative and dynamic effects of absorbing aerosol particles over the Pearl\nRiver Delta, China, Atmos. Environ., 42, 6405\u20136416,\nhttps:\/\/doi.org\/10.1016\/j.atmosenv.2008.02.033\u200b\u200b\u200b\u200b\u200b\u200b\u200b, 2008.\u2002a","DOI":"10.1016\/j.atmosenv.2008.02.033"}],"container-title":["Atmospheric Measurement Techniques"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/amt.copernicus.org\/articles\/16\/1563\/2023\/amt-16-1563-2023.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,27]],"date-time":"2023-03-27T09:58:58Z","timestamp":1679911138000},"score":1,"resource":{"primary":{"URL":"https:\/\/amt.copernicus.org\/articles\/16\/1563\/2023\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3,27]]},"references-count":53,"journal-issue":{"issue":"6","published-online":{"date-parts":[[2023]]}},"URL":"http:\/\/dx.doi.org\/10.5194\/amt-16-1563-2023","relation":{"has-preprint":[{"id-type":"doi","id":"10.5194\/amt-2022-259","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/amt-2022-259","asserted-by":"object"}],"has-review":[{"id-type":"doi","id":"10.5194\/amt-2022-259-RC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/amt-2022-259-AC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/amt-2022-259-RC2","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/amt-2022-259-AC2","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/amt-2022-259-AC1","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/amt-2022-259-AC2","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/amt-2022-259-RC1","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/amt-2022-259-RC2","asserted-by":"object"}],"is-part-of":[{"id-type":"doi","id":"10.25326\/160","asserted-by":"subject"}]},"ISSN":["1867-8548"],"issn-type":[{"value":"1867-8548","type":"electronic"}],"subject":["Atmospheric Science"],"published":{"date-parts":[[2023,3,27]]}}}