uni-leipzig-open-access/json/acp-23-9647-2023
2024-01-25 14:46:53 +01:00

1 line
No EOL
38 KiB
Text

{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,12,19]],"date-time":"2023-12-19T07:37:38Z","timestamp":1702971458790},"reference-count":73,"publisher":"Copernicus GmbH","issue":"17","license":[{"start":{"date-parts":[[2023,8,31]],"date-time":"2023-08-31T00:00:00Z","timestamp":1693440000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","award":["268020496"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Atmos. Chem. Phys."],"abstract":"<jats:p>Abstract. Low-level airborne observations of the Arctic surface radiative energy budget are discussed. We focus on the terrestrial part of the budget, quantified by the thermal-infrared net irradiance (TNI). The data were collected in cloudy and cloud-free conditions over and in the vicinity of the marginal sea ice zone (MIZ) close to Svalbard during two aircraft campaigns conducted in the spring of 2019 and in the early summer of 2017. The measurements, complemented by ground-based observations available from the literature and radiative transfer simulations, are used to evaluate the influence of surface type (sea ice, open ocean, MIZ), seasonal characteristics, and synoptically driven meridional air mass transports into and out of the Arctic on the near-surface TNI. The analysis reveals a typical four-mode structure of the frequency distribution of the TNI as a function of surface albedo, the sea ice fraction, and surface brightness temperature. Two modes prevail over sea ice and another two over open ocean, each representing cloud-free and cloudy radiative states. Characteristic shifts and modifications of the TNI modes during the transition from winter to spring and early summer conditions are discussed. Furthermore, the influence of warm air intrusions (WAIs) and marine cold-air outbreaks (MCAOs) on the near-surface downward thermal-infrared irradiances and the TNI is highlighted for several case studies. It is concluded that during WAIs the surface warming depends on cloud properties and evolution. Lifted clouds embedded in warmer air masses over a colder sea ice surface, decoupled from the ground by a surface-based temperature inversion, have the potential to warm the surface more strongly than near-surface fog or thin low-level boundary layer clouds because of a higher cloud base temperature. For MCAOs it is found that the thermodynamic profile of the southward-moving air mass adapts only slowly to the warmer ocean surface.\n <\/jats:p>","DOI":"10.5194\/acp-23-9647-2023","type":"journal-article","created":{"date-parts":[[2023,8,31]],"date-time":"2023-08-31T09:20:23Z","timestamp":1693473623000},"page":"9647-9667","source":"Crossref","is-referenced-by-count":3,"title":["Effects of variable ice\u2013ocean surface properties and air mass transformation on the Arctic radiative energy budget"],"prefix":"10.5194","volume":"23","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-4652-5561","authenticated-orcid":false,"given":"Manfred","family":"Wendisch","sequence":"first","affiliation":[]},{"given":"Johannes","family":"Stapf","sequence":"additional","affiliation":[]},{"given":"Sebastian","family":"Becker","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0860-8216","authenticated-orcid":false,"given":"Andr\u00e9","family":"Ehrlich","sequence":"additional","affiliation":[]},{"given":"Evelyn","family":"J\u00e4kel","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1544-6668","authenticated-orcid":false,"given":"Marcus","family":"Klingebiel","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6518-0717","authenticated-orcid":false,"given":"Christof","family":"L\u00fcpkes","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1896-1574","authenticated-orcid":false,"given":"Michael","family":"Sch\u00e4fer","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0973-9982","authenticated-orcid":false,"given":"Matthew D.","family":"Shupe","sequence":"additional","affiliation":[]}],"member":"3145","published-online":{"date-parts":[[2023,8,31]]},"reference":[{"key":"ref1","doi-asserted-by":"crossref","unstructured":"Achtert, P., O'Connor, E.\u00a0J., Brooks, I.\u00a0M., Sotiropoulou, G., Shupe, M.\u00a0D.,\nPospichal, B., Brooks, B.\u00a0J., and Tjernstr\u00f6m, M.: Properties of Arctic\nliquid and mixed-phase clouds from shipborne Cloudnet observations during\nACSE 2014, Atmos. Chem. Phys., 20, 14983\u201315002,\nhttps:\/\/doi.org\/10.5194\/acp-20-14983-2020, 2020.\u2002a","DOI":"10.5194\/acp-20-14983-2020"},{"key":"ref2","unstructured":"Becker, S., Ehrlich, A., Stapf, J., L\u00fcpkes, C., Mech, M.,\nCrewell, S., and Wendisch, M.: Meteorological measurements by dropsondes\nreleased from POLAR 5 during AFLUX 2019, PANGAEA [data set],\nhttps:\/\/doi.org\/10.1594\/PANGAEA.921996, 2020.\u2002a"},{"key":"ref3","doi-asserted-by":"crossref","unstructured":"Binder, H., Boettcher, M., Grams, C.\u00a0M., Joos, H., Pfahl, S., and Wernli, H.:\nExceptional air mass transport and dynamical drivers of an extreme wintertime\nArctic warm event, Geophys. Res. Lett., 44, 12028\u201312036,\nhttps:\/\/doi.org\/10.1002\/2017GL075841, 2017.\u2002a","DOI":"10.1002\/2017GL075841"},{"key":"ref4","doi-asserted-by":"crossref","unstructured":"Block, K., Schneider, F.\u00a0A., M\u00fclmenst\u00e4dt, J., Salzmann, M., and Quaas, J.:\nClimate models disagree on the sign of total radiative feedback in the\nArctic, Tellus A, 72, 1\u201314,\nhttps:\/\/doi.org\/10.1080\/16000870.2019.1696139, 2020.\u2002a","DOI":"10.1080\/16000870.2019.1696139"},{"key":"ref5","doi-asserted-by":"crossref","unstructured":"Br\u00fcmmer, B.: Boundary-layer modification in wintertime cold-air outbreaks\nfrom the Arctic sea ice, Bound.-Lay. Meteorol., 80, 109\u2013125,\nhttps:\/\/doi.org\/10.1007\/BF00119014, 1996.\u2002a, b, c","DOI":"10.1007\/BF00119014"},{"key":"ref6","doi-asserted-by":"crossref","unstructured":"Br\u00fcmmer, B.: Boundary layer mass, water, and heat budgets in wintertime\ncold-air outbreaks from the Arctic sea ice, Mon. Weather Rev., 125, 1824\u20131837,\nhttps:\/\/doi.org\/10.1175\/1520-0493(1997)125&amp;lt;1824:BLMWAH&amp;gt;2.0.CO;2, 1997.\u2002a, b","DOI":"10.1175\/1520-0493(1997)125<1824:BLMWAH>2.0.CO;2"},{"key":"ref7","doi-asserted-by":"crossref","unstructured":"Cesana, G., Kay, J.\u00a0E., Chepfer, H., English, J.\u00a0M., and de\u00a0Boer, G.:\nUbiquitous low-level liquid-containing Arctic clouds: New observations and\nclimate model constraints from CALIPSO-GOCCP, Geophys. Res. Lett., 39,\nL20804, https:\/\/doi.org\/10.1029\/2012GL053385, 2012.\u2002a","DOI":"10.1029\/2012GL053385"},{"key":"ref8","doi-asserted-by":"crossref","unstructured":"Chechin, D.\u00a0G. and L\u00fcpkes, C.: Boundary-layer development and low-level\nbaroclinicity during high-latitude cold-air outbreaks: A simple model,\nBound.-Lay. Meteorol., 162, 91\u2013116, https:\/\/doi.org\/10.1007\/s10546-016-0193-2, 2017.\u2002a","DOI":"10.1007\/s10546-016-0193-2"},{"key":"ref9","doi-asserted-by":"crossref","unstructured":"Chechin, D.\u00a0G., L\u00fcpkes, C., Repina, I.\u00a0A., and Gryanik, V.\u00a0M.: Idealized dry\nquasi 2-D mesoscale simulations of cold-air outbreaks over the marginal sea\nice zone with fine and coarse resolution, J. Geophys. Res., 118, 8787\u20138813,\nhttps:\/\/doi.org\/10.1002\/jgrd.50679, 2013.\u2002a","DOI":"10.1002\/jgrd.50679"},{"key":"ref10","doi-asserted-by":"crossref","unstructured":"Chechin, D.\u00a0G., L\u00fcpkes, C., Hartmann, J., Ehrlich, A., and Wendisch, M.:\nTurbulent structure of the Arctic boundary layer in early summer driven by\nstability, wind shear and cloud-top radiative cooling: ACLOUD airborne\nobservations, Atmos. Chem. Phys., 23, 4685\u20134707,\nhttps:\/\/doi.org\/10.5194\/acp-23-4685-2023, 2023.\u2002a, b","DOI":"10.5194\/acp-23-4685-2023"},{"key":"ref11","doi-asserted-by":"crossref","unstructured":"Cox, C.\u00a0J., Morris, S.\u00a0M., Uttal, T., Burgener, R., Hall, E., Kutchenreiter,\nM., McComiskey, A., Long, C.\u00a0N., Thomas, B.\u00a0D., and Wendell, J.: The De-Icing\nComparison Experiment (D-ICE): A study of broadband radiometric measurements\nunder icing conditions in the Arctic, Atmos. Meas. Tech., 14, 1205\u20131224,\nhttps:\/\/doi.org\/10.5194\/amt-14-1205-2021, 2021.\u2002a","DOI":"10.5194\/amt-14-1205-2021"},{"key":"ref12","doi-asserted-by":"crossref","unstructured":"Ehrlich, A. and Wendisch, M.: Reconstruction of high-resolution time series\nfrom slow-response broadband terrestrial irradiance measurements by\ndeconvolution, Atmos. Meas. Tech., 8, 3671\u20133684,\nhttps:\/\/doi.org\/10.5194\/amt-8-3671-2015, 2015.\u2002a","DOI":"10.5194\/amt-8-3671-2015"},{"key":"ref13","unstructured":"Ehrlich, A., Stapf, J., L\u00fcpkes, C., Mech, M., Crewell, S., and Wendisch, M.:\nMeteorological measurements by dropsondes released from POLAR 5 during ACLOUD\n2017, PANGAEA, https:\/\/doi.org\/10.1594\/PANGAEA.900204,\n2019a.\u2002a"},{"key":"ref14","doi-asserted-by":"crossref","unstructured":"Ehrlich, A., Wendisch, M., L\u00fcpkes, C., Buschmann, M., Bozem, H., Chechin, D.,\nClemen, H.-C., Dupuy, R., Eppers, O., Hartmann, J., Herber, A., J\u00e4kel, E.,\nJ\u00e4rvinen, E., Jourdan, O., K\u00e4stner, U., Kliesch, L.-L., K\u00f6llner, F.,\nMech, M., Mertes, S., Neuber, R., Ruiz-Donoso, E., Schnaiter, M., Schneider,\nJ., Stapf, J., and Zanatta, M.: A comprehensive in situ and remote sensing\ndata set from the Arctic CLoud Observations Using airborne\nmeasurements during polar Day (ACLOUD) campaign, Earth Syst. Sci. Data,\n11, 1853\u20131881, https:\/\/doi.org\/10.5194\/essd-11-1853-2019, 2019b.\u2002a, b","DOI":"10.5194\/essd-11-1853-2019"},{"key":"ref15","doi-asserted-by":"crossref","unstructured":"Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U.,\nKylling, J., Richter, B., Pause, C., Dowling, T., and Bugliaro, L.: The\nlibRadtran software package for radiative transfer calculations (version\n2.0.1), Geosci. Model Dev., 9, 1647\u20131672, https:\/\/doi.org\/10.5194\/gmd-9-1647-2016,\n2016.\u2002a","DOI":"10.5194\/gmd-9-1647-2016"},{"key":"ref16","doi-asserted-by":"crossref","unstructured":"Gardner, A.\u00a0S. and Sharp, M.\u00a0J.: A review of snow and ice albedo and the\ndevelopment of a new physically based broadband albedo parameterization, J.\nGeophys. Res., 115, F01009, https:\/\/doi.org\/10.1029\/2009JF001444, 2010.\u2002a","DOI":"10.1029\/2009JF001444"},{"key":"ref17","doi-asserted-by":"crossref","unstructured":"Geerts, B., Giangrande, S.\u00a0E., McFarquhar, G.\u00a0M., Xue, L., Abel, S.\u00a0J.,\nComstock, J.\u00a0M., Crewell, S., DeMott, P.\u00a0J., Ebell, K., Field, P., Hill, T.\nC.\u00a0J., Hunzinger, A., Jensen, M.\u00a0P., Johnson, K.\u00a0L., Juliano, T.\u00a0W., Kollias,\nP., Kosovic, B., Lackner, C., Luke, E., L\u00fcpkes, C., Matthews, A.\u00a0A.,\nNeggers, R., Ovchinnikov, M., Powers, H., Shupe, M., Spengler, T., Swanson,\nB.\u00a0E., Tjernstr\u00f6m, M., Theisen, A.\u00a0K., Wales, N.\u00a0A., Wang, Y., Wendisch, M.,\nand Wu, P.: The COMBLE campaign: A study of marine boundary-layer clouds in\nArctic cold-air outbreaks, Bull. Am. Meteorol. Soc., 103, E1371\u2013E1389,\nhttps:\/\/doi.org\/10.1175\/BAMS-D-21-0044.1, 2022.\u2002a","DOI":"10.1175\/BAMS-D-21-0044.1"},{"key":"ref18","doi-asserted-by":"crossref","unstructured":"Goosse, H., Kay, J.\u00a0E., Armour, K.\u00a0C., Bodas-Salcedo, A., Chepfer, H.,\nDocquier, D., Jonko, A., Kushner, P.\u00a0J., Lecomte, O., Massonnet, F., Park,\nH.\u00a0S., Pithan, F., Svensson, G., and Vancoppenolle, M.: Quantifying climate\nfeedbacks in polar regions, Nat. Commun., 9, 1919,\nhttps:\/\/doi.org\/10.1038\/s41467-018-04173-0, 2018.\u2002a","DOI":"10.1038\/s41467-018-04173-0"},{"key":"ref19","doi-asserted-by":"crossref","unstructured":"Graham, R.\u00a0M., Rinke, A., Cohen, L., Hudson, S.\u00a0R., Walden, V.\u00a0P., Granskog,\nM.\u00a0A., Dorn, W., Kayser, M., and Maturilli, M.: A comparison of the two\nArctic atmospheric winter states observed during N-ICE2015 and SHEBA,\nJ. Geophys. Res., 122, 5716\u20135737, https:\/\/doi.org\/10.1002\/2016JD025475, 2017.\u2002a, b","DOI":"10.1002\/2016JD025475"},{"key":"ref20","doi-asserted-by":"crossref","unstructured":"Graham, R.\u00a0M., Cohen, L., Ritzhaupt, N., Segger, B., Graversen, R.\u00a0G., Rinke,\nA., Walden, V., Granskog, M.\u00a0A., and Hudson, S.\u00a0R.: Evaluation of six\natmospheric reanalyses over Arctic sea ice from winter to early summer, J.\nClim., 32, 4121\u20134143, https:\/\/doi.org\/10.1175\/JCLI-D-18-0643.1, 2019.\u2002a","DOI":"10.1175\/JCLI-D-18-0643.1"},{"key":"ref21","unstructured":"Hartmann, J., Kottmeier, C., and Wamser, C.: Radiation and Eddy Flux Experiment\n1991 (REFLEX I), (Reports on Polar Research), Bremerhaven, Alfred Wegener\nInstitute for Polar and Marine Research, 105, 72 pp.,\nhttps:\/\/doi.org\/10.2312\/BzP_0105_1992, 1992.\u2002a"},{"key":"ref22","unstructured":"Hartmann, J., L\u00fcpkes, C., and Chechin, D.: High resolution aircraft\nmeasurements of wind and temperature during the ACLOUD campaign in 2017,\nPANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.900880, 2019.\u2002a"},{"key":"ref23","unstructured":"Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Hor\u00e1nyi, A., Mu\u00f1oz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Th\u00e9paut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https:\/\/doi.org\/10.24381\/cds.adbb2d47, 2018a.\u2002a"},{"key":"ref24","unstructured":"Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Hor\u00e1nyi, A., Mu\u00f1oz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Th\u00e9paut, J.-N.: ERA5 hourly data on pressure levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https:\/\/doi.org\/10.24381\/cds.bd0915c6, 2018b.\u2002a"},{"key":"ref25","doi-asserted-by":"crossref","unstructured":"Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Hor\u00e1nyi, A.,\nMu\u00f1oz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,\nSimmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,\nBiavati, G., Bidlot, J., Bonavita, M., De\u00a0Chiara, G., Dahlgren, P., Dee, D.,\nDiamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,\nA., Haimberger, L., Healy, S., Hogan, R.\u00a0J., Holm, E., Janiskova, M., Keeley,\nS., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de\u00a0Rosnay, P., Rozum, I.,\nVamborg, F., Villaume, S., and Th\u00e9paut, J.\u00a0N.: The ERA5 global\nreanalysis, Q. J. Roy. Meteor. Soc., 146, 1999\u20132049,\nhttps:\/\/doi.org\/10.1002\/qj.3803, 2020.\u2002a","DOI":"10.1002\/qj.3803"},{"key":"ref26","unstructured":"Hudson, S.\u00a0R., Cohen, L., and Walden, V.\u00a0P.: N-ICE2015 surface broadband\nradiation data, Norwegian Polar Institute [data set],\nhttps:\/\/doi.org\/10.21334\/npolar.2016.a89cb766, 2016.\u2002a"},{"key":"ref27","unstructured":"Hudson, S.\u00a0R., Cohen, L., Kayser, M., Maturilli, M., Kim, J.-H., Park, S.-J.,\nMoon, W., and Granskog, M.\u00a0A.: N-ICE2015 atmospheric profiles from\nradiosondes, Norwegian Polar Institute [data set],\nhttps:\/\/doi.org\/10.21334\/npolar.2017.216df9b3, 2017.\u2002a"},{"key":"ref28","unstructured":"IPCC: Climate Change 2021: The Physical Science Basis, Contribution of Working\nGroup I to the Sixth Assessment Report of the Intergovernmental Panel on\nClimate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L.,\nP\u00e9an, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M.,\nLeitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T.,\nYelek\u00e7i, O., Yu, R., and Zhou, B., Cambridge University Press,\nCambridge, United Kingdom and New York, NY, US, in press,\nhttps:\/\/www.ipcc.ch\/report\/ar6\/wg1\/downloads\/report\/IPCC_AR6_WGI_FrontMatter.pdf (last access: 25 August 2023),\n2021.\u2002a"},{"key":"ref29","doi-asserted-by":"crossref","unstructured":"J\u00e4kel, E., Stapf, J., Wendisch, M., Nicolaus, M., Dorn, W., and Rinke, A.:\nValidation of the sea ice surface albedo scheme of the regional climate model\nHIRHAM-NAOSIM using aircraft measurements during the ACLOUD\/PASCAL campaigns,\nThe Cryosphere, 13, 1695\u20131708, https:\/\/doi.org\/10.5194\/tc-13-1695-2019, 2019.\u2002a","DOI":"10.5194\/tc-13-1695-2019"},{"key":"ref30","doi-asserted-by":"crossref","unstructured":"Jeffries, M.\u00a0O., Overland, J.\u00a0E., and Perovich, D.\u00a0K.: The Arctic shifts to a\nnew normal, Phys. Today, 66, 35\u201340,\nhttps:\/\/physicstoday.scitation.org\/doi\/10.1063\/PT.3.2147 (last access: 25 August 2023),\n2013.\u2002a","DOI":"10.1063\/PT.3.2147"},{"key":"ref31","doi-asserted-by":"crossref","unstructured":"Knudsen, E.\u00a0M., Heinold, B., Dahlke, S., Bozem, H., Crewell, S., Gorodetskaya,\nI.\u00a0V., Heygster, G., Kunkel, D., Maturilli, M., Mech, M., Viceto, C., Rinke,\nA., Schmith\u00fcsen, H., Ehrlich, A., Macke, A., L\u00fcpkes, C., and Wendisch,\nM.: Meteorological conditions during the ACLOUD\/PASCAL field campaign near\nSvalbard in early summer 2017, Atmos. Chem. Phys., 18, 17995\u201318022,\nhttps:\/\/doi.org\/10.5194\/acp-18-17995-2018, 2018.\u2002a, b, c","DOI":"10.5194\/acp-18-17995-2018"},{"key":"ref32","doi-asserted-by":"crossref","unstructured":"Koenigk, T., Key, J., and Vihma, T.: Climate Change in the Arctic,\n673\u2013705, Springer International Publishing, Cham,\nhttps:\/\/doi.org\/10.1007\/978-3-030-33566-3_11, 2020.\u2002a","DOI":"10.1007\/978-3-030-33566-3_11"},{"key":"ref33","doi-asserted-by":"crossref","unstructured":"Lampert, A., Maturilli, M., Ritter, C., Hoffmann, A.,&lt;span id=&quot;page9666&quot;\/&gt; Stock, M., Herber, A.,\nBirnbaum, G., Neuber, R., Dethloff, K., Orgis, T., Stone, R., Brauner, R.,\nKassbohrer, J., Haas, C., Makshtas, A., Sokolov, V., and Liu, P.: The\nspring-time boundary layer in the central Arctic observed during PAMARCMiP\n2009, Atmos.-Basel, 3, 320\u2013351, https:\/\/doi.org\/10.3390\/atmos3030320, 2012.\u2002a","DOI":"10.3390\/atmos3030320"},{"key":"ref34","unstructured":"Maturilli, M.: High resolution radiosonde measurements from station Ny-\u00c5lesund (2017-04 et seq), Alfred Wegener Institute \u2013 Research Unit Potsdam, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.914973,\n2020.\u2002a"},{"key":"ref35","doi-asserted-by":"crossref","unstructured":"Mech, M., Ehrlich, A., Herber, A., L\u00fcpkes, C., Wendisch, M., Crewell, S.,\nBecker, S., Boose, Y., Chechin, D., Dupuy, R., Gourbeyre, C., Hartmann, J.,\nJ\u00e4kel, E., Jourdan, O., Kliesch, L.-L., Kulla, B.\u00a0S., Mioche, G., Moser, M.,\nRisse, N., Sch\u00e4fer, M., Klingebiel, M., Stapf, J., and Voigt, C.:\nMOSAiC-ACA and AFLUX: Arctic airborne campaigns characterizing the exit area\nof MOSAiC, Sci. Data, 9, 790, https:\/\/doi.org\/10.1038\/s41597-022-01900-7, 2022.\u2002a","DOI":"10.1038\/s41597-022-01900-7"},{"key":"ref36","doi-asserted-by":"crossref","unstructured":"Meier, W.\u00a0N., Hovelsrud, G.\u00a0K., van Oort, B.\u00a0E., Key, J.\u00a0R., Kovacs, K.\u00a0M.,\nMichel, C., Haas, C., Granskog, M.\u00a0A., Gerland, S., Perovich, D.\u00a0K.,\nMakshtas, A., and Reist, J.\u00a0D.: Arctic sea ice in transformation: A review of\nrecent observed changes and impacts on biology and human activity, Rev.\nGeophys., 52, 185\u2013217, https:\/\/doi.org\/10.1002\/2013RG000431, 2013RG000431, 2014.\u2002a","DOI":"10.1002\/2013RG000431"},{"key":"ref37","doi-asserted-by":"crossref","unstructured":"Mewes, D. and Jacobi, C.: Heat transport pathways into the Arctic and their\nconnections to surface air temperatures, Atmos. Chem. Phys., 19, 3927\u20133937,\nhttps:\/\/doi.org\/10.5194\/acp-19-3927-2019, 2019.\u2002a","DOI":"10.5194\/acp-19-3927-2019"},{"key":"ref38","unstructured":"MODIS Characterization Support Team: MODIS 250m Calibrated Radiances Product,\nNASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA, Level-1 and Atmosphere Archive &amp;amp; Distribution System,\nDistributed Active Archive Center,\nhttps:\/\/doi.org\/10.5067\/MODIS\/MYD02QKM.061, 2017.\u2002a, b"},{"key":"ref39","unstructured":"Moritz, R.: Soundings, Ice Camp NCAR\/GLAS raobs, (ASCII), Version\n2.0, UCAR\/NCAR \u2013 Earth Observing Laboratory [data set],\nhttps:\/\/doi.org\/10.5065\/D6FQ9V0Z, 2017.\u2002a"},{"key":"ref40","doi-asserted-by":"crossref","unstructured":"Papritz, L. and Spengler, T.: A Lagrangian climatology of wintertime cold air\noutbreaks in the Irminger and Nordic Seas and their role in shaping air-sea\nheat fluxes, J. Clim., 30, 2717\u20132737, https:\/\/doi.org\/10.1175\/JCLI-D-16-0605.1,\n2017.\u2002a, b, c","DOI":"10.1175\/JCLI-D-16-0605.1"},{"key":"ref41","unstructured":"Persson, P. O.\u00a0G.: SHEBA Composite Data Observations, Version 1.0,\nUCAR\/NCAR \u2013 Earth Observing Laboratory [data set],\nhttps:\/\/doi.org\/10.5065\/D6PN93R6, 2011.\u2002a"},{"key":"ref42","doi-asserted-by":"crossref","unstructured":"Persson, P. O.\u00a0G., Shupe, M.\u00a0D., Perovich, D., and Solomon, A.: Linking\natmospheric synoptic transport, cloud phase, surface energy fluxes, and\nsea-ice growth: Observations of midwinter SHEBA conditions, Clim. Dynam.,\n49, 1341\u20131364, https:\/\/doi.org\/10.1007\/s00382-016-3383-1, 2017.\u2002a","DOI":"10.1007\/s00382-016-3383-1"},{"key":"ref43","doi-asserted-by":"crossref","unstructured":"Pithan, F. and Mauritsen, T.: Arctic amplification dominated by temperature\nfeedbacks in contemporary climate models, Nature, 7, 181\u2013184,\nhttps:\/\/doi.org\/10.1038\/ngeo2071, 2014.\u2002a, b","DOI":"10.1038\/ngeo2071"},{"key":"ref44","doi-asserted-by":"crossref","unstructured":"Pithan, F., Medeiros, B., and Mauritsen, T.: Mixed-phase clouds cause climate\nmodel biases in Arctic wintertime temperature inversions, Clim. Dynam., 43,\n289\u2013303, https:\/\/doi.org\/10.1007\/s00382-013-1964-9, 2014.\u2002a, b","DOI":"10.1007\/s00382-013-1964-9"},{"key":"ref45","doi-asserted-by":"crossref","unstructured":"Pithan, F., Svensson, G., Caballero, R., Chechin, D., Cronin, T.\u00a0W., Ekman, A.\nM.\u00a0L., Neggers, R., Shupe, M.\u00a0D., Solomon, A., Tjernstr\u00f6m, M., and\nWendisch, M.: Role of air-mass transformations in exchange between the Arctic\nand mid-latitudes, Nat. Geosci., 11, 805\u2013812,\nhttps:\/\/doi.org\/10.1038\/s41561-018-0234-1, 2018.\u2002a, b","DOI":"10.1038\/s41561-018-0234-1"},{"key":"ref46","doi-asserted-by":"crossref","unstructured":"Rantanen, M., Karpechko, A.Y.and\u00a0Lipponen, A., Nordling, K., Hyv\u00e4rinen, O.,\nRuosteenoja, K., T., V., and Laaksonen, A.: The Arctic has warmed nearly four\ntimes faster than the globe since 1979, Commun. Earth Environ., 3, 168,\nhttps:\/\/doi.org\/10.1038\/s43247-022-00498-3, 2022.\u2002a","DOI":"10.1038\/s43247-022-00498-3"},{"key":"ref47","unstructured":"Schmith\u00fcsen, H.: Upper air soundings during POLARSTERN cruise PS106\/1 (ARK-XXXI\/1.1), Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.882736, 2017.\u2002a"},{"key":"ref48","doi-asserted-by":"crossref","unstructured":"Screen, J.\u00a0A.: An ice-free Arctic: What could it mean for European weather?,\nWeather, 76, 327\u2013328, https:\/\/doi.org\/10.1002\/wea.4069, 2021.\u2002a","DOI":"10.1002\/wea.4069"},{"key":"ref49","doi-asserted-by":"crossref","unstructured":"Sedlar, J., Tjernstrom, M., Rinke, A., Orr, A., Cassano, J., Fettweis, X.,\nHeinemann, G., Seefeldt, M., Solomon, A., Matthes, H., Phillips, T., and\nWebster, S.: Confronting Arctic troposphere, clouds, and surface energy\nbudget representations in regional climate models with observations, J.\nGeophys. Res., 125, e2019JD031783, https:\/\/doi.org\/10.1029\/2019JD031783, 2020.\u2002a","DOI":"10.1029\/2019JD031783"},{"key":"ref50","doi-asserted-by":"crossref","unstructured":"Serreze, M.\u00a0C. and Barry, R.\u00a0G.: Processes and impacts of Arctic\namplification: A research synthesis, Glob. Planet. Change, 77,\n85\u201396, https:\/\/doi.org\/10.1016\/j.gloplacha.2011.03.004, 2011.\u2002a","DOI":"10.1016\/j.gloplacha.2011.03.004"},{"key":"ref51","doi-asserted-by":"crossref","unstructured":"Shupe, M.\u00a0D. and Intrieri, J.\u00a0M.: Cloud radiative forcing of the Arctic\nsurface: The influence of cloud properties, surface albedo, and solar zenith\nangle, J. Clim., 17, 616\u2013628,\nhttps:\/\/doi.org\/10.1175\/1520-0442(2004)017&amp;lt;0616:CRFOTA&amp;gt;2.0.CO;2, 2004.\u2002a","DOI":"10.1175\/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2"},{"key":"ref52","doi-asserted-by":"crossref","unstructured":"Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using\nAMSR-E 89-GHz channels, J. Geophys. Res., 113, C02S03,\nhttps:\/\/doi.org\/10.1029\/2005JC003384, 2008.\u2002a, b","DOI":"10.1029\/2005JC003384"},{"key":"ref53","unstructured":"Stapf, J.: Influence of Surface and Atmospheric Thermodynamic Properties on\nthe Cloud Radiative Forcing and Radiative Energy Budget in the Arctic, Ph.D.\nthesis, Leipzig University, 2021.\u2002a"},{"key":"ref54","unstructured":"Stapf, J., Ehrlich, A., J\u00e4kel, E., and Wendisch, M.: Aircraft measurements of\nbroadband irradiance during the ACLOUD campaign in 2017, PANGAEA [data set],\nhttps:\/\/doi.org\/10.1594\/PANGAEA.900442, 2019.\u2002a, b"},{"key":"ref55","doi-asserted-by":"crossref","unstructured":"Stapf, J., Ehrlich, A., J\u00e4kel, E., L\u00fcpkes, C., and Wendisch, M.:\nReassessment of shortwave surface cloud radiative forcing in the Arctic:\nConsideration of surface-albedo\u2013cloud interactions, Atmos. Chem.\nPhys., 20, 9895\u20139914, https:\/\/doi.org\/10.5194\/acp-20-9895-2020, 2020.\u2002a, b","DOI":"10.5194\/acp-20-9895-2020"},{"key":"ref56","doi-asserted-by":"crossref","unstructured":"Stapf, J., Ehrlich, A., and Wendisch, M.: Influence of thermodynamic state\nchanges on surface cloud radiative forcing in the Arctic: A comparison of two\napproaches using data from AFLUX and SHEBA, J. Geophys. Res., 126,\ne2020JD033589, https:\/\/doi.org\/10.1029\/2020JD033589, 2021a.\u2002a, b, c, d","DOI":"10.1029\/2020JD033589"},{"key":"ref57","unstructured":"Stapf, J., Ehrlich, A., and Wendisch, M.: Aircraft measurements of broadband\nirradiance during the AFLUX campaign in 2019, PANGAEA [data set],\nhttps:\/\/doi.org\/10.1594\/PANGAEA.932020,\n2021b.\u2002a, b"},{"key":"ref58","doi-asserted-by":"crossref","unstructured":"Stramler, K., Del\u00a0Genio, A.\u00a0D., and Rossow, W.\u00a0B.: Synoptically driven Arctic\nwinter states, J. Clim., 24, 1747\u20131762, https:\/\/doi.org\/10.1175\/2010JCLI3817.1,\n2011.\u2002a, b","DOI":"10.1175\/2010JCLI3817.1"},{"key":"ref59","doi-asserted-by":"crossref","unstructured":"Stroeve, J. and Notz, D.: Changing state of Arctic sea ice across all seasons,\nEnviron. Res. Lett., 13, 103001, https:\/\/doi.org\/10.1088\/1748-9326\/aade56, 2018.\u2002a","DOI":"10.1088\/1748-9326\/aade56"},{"key":"ref60","doi-asserted-by":"crossref","unstructured":"Tetzlaff, A., L\u00fcpkes, C., and Hartmann, J.: Aircraft-based observations of\natmospheric boundary-layer modification over Arctic leads, Q. J. Roy.\nMeteor. Soc., 141, 2839\u20132856, https:\/\/doi.org\/10.1002\/qj.2568, 2015.\u2002a","DOI":"10.1002\/qj.2568"},{"key":"ref61","unstructured":"Thoman, R.\u00a0L., Richter-Menge, J., and Druckenmiller, M.\u00a0L.: Executive\nSummary, in: Arctic Report Card 2020,\nhttps:\/\/doi.org\/10.25923\/mn5p-t549, 2020.\u2002a"},{"key":"ref62","doi-asserted-by":"crossref","unstructured":"Tjernstr\u00f6m, M., Shupe, M.\u00a0D., Brooks, I.\u00a0M., Persson, P. O.\u00a0G., Prytherch,\nJ., Salisbury, D.\u00a0J., Sedlar, J., Achtert, P., Brooks, B.\u00a0J., Johnston,\nP.\u00a0E., Sotiropoulou, G., and Wolfe, D.: Warm-air advection, air mass\ntransformation and fog causes rapid ice melt, Geophys. Res. Lett., 42,\n5594\u20135602, https:\/\/doi.org\/10.1002\/2015GL064373, 2015.\u2002a","DOI":"10.1002\/2015GL064373"},{"key":"ref63","doi-asserted-by":"crossref","unstructured":"Tjernstr\u00f6m, M., Shupe, M.\u00a0D., Brooks, I.\u00a0M., Achtert, P., Prytherch, J.,\nand Sedlar, J.: Arctic summer airmass transformation, surface inversions, and\nthe surface energy budget, J. Clim., 32, 769\u2013789,\nhttps:\/\/doi.org\/10.1175\/JCLI-D-18-0216.1, 2019.\u2002a","DOI":"10.1175\/JCLI-D-18-0216.1"},{"key":"ref64","doi-asserted-by":"crossref","unstructured":"Uttal, T., Curry, J.\u00a0A., McPhee, M.\u00a0G., Perovich, D.\u00a0K., Moritz, R.\u00a0E.,\nMaslanik, J.\u00a0A., Guest, P.\u00a0S., Stern, H.\u00a0L., Moore, J.\u00a0A., Turenne, R.,\nHeiberg, A., Serreze, M.\u00a0C., Wylie, D.\u00a0P., Persson, O.\u00a0G., Paulson, C.\u00a0A.,\nHalle, C., Morison, J.\u00a0H., Wheeler, P.\u00a0A., Makshtas, A., Welch, H., Shupe,\nM.\u00a0D., Intrieri, J.\u00a0M., Stamnes, K., Lindsey, R.\u00a0W., Pinkel, R., Pegau,\nW.\u00a0S., Stanton, T.\u00a0P., and Grenfeld, T.\u00a0C.: Surface heat budget of the\nArctic Ocean, Bull. Am. Meteorol. Soc., 83, 255\u2013275,\nhttps:\/\/doi.org\/10.1175\/1520-0477(2002)083&amp;lt;0255:SHBOTA&amp;gt;2.3.CO;2, 2002.\u2002a","DOI":"10.1175\/1520-0477(2002)083<0255:SHBOTA>2.3.CO;2"},{"key":"ref65","doi-asserted-by":"crossref","unstructured":"Vihma, T., Pirazzini, R., Fer, I., Renfrew, I.\u00a0A., Sedlar, J., Tjernstr\u00f6m,\nM., L\u00fcpkes, C., Nyg\u00e5rd, T., Notz, D., Weiss, J., Marsan, D., Cheng, B.,\nBirnbaum, G., Gerland, S., Chechin, D., and Gascard, J.\u00a0C.: Advances in\nunderstanding and parameterization of small-scale physical processes in the\nmarine Arctic climate system: A review, Atmos. Chem. Phys., 14, 9403\u20139450,\nhttps:\/\/doi.org\/10.5194\/acp-14-9403-2014, 2014.\u2002a","DOI":"10.5194\/acp-14-9403-2014"},{"key":"ref66","doi-asserted-by":"crossref","unstructured":"Walden, V.\u00a0P., Hudson, S.\u00a0R., Cohen, L., Murphy, S.\u00a0Y., and Granskog, M.\u00a0A.:\nAtmospheric components of the surface energy budget over young sea ice:\nResults from the N-ICE2015 campaign, J. Geophys. Res., 122, 8427\u20138446,\nhttps:\/\/doi.org\/10.1002\/2016JD026091, 2017.\u2002a, b","DOI":"10.1002\/2016JD026091"},{"key":"ref67","doi-asserted-by":"crossref","unstructured":"Wendisch, M., M\u00fcller, D., Schell, D., and Heintzenberg, J.: An airborne\nspectral albedometer with active horizontal stabilization, J. Atmos. Ocean.\nTechnol., 18, 1856\u20131866,\nhttps:\/\/doi.org\/10.1175\/1520-0426(2001)018&amp;lt;1856:AASAWA&amp;gt;2.0.CO;2, 2001.\u2002a","DOI":"10.1175\/1520-0426(2001)018<1856:AASAWA>2.0.CO;2"},{"key":"ref68","doi-asserted-by":"crossref","unstructured":"Wendisch, M., Pilewskie, P., J\u00e4kel, E., Schmidt, S., Pommier, J., Howard, S.,\nJonsson, H.\u00a0H., Guan, H., Schr\u00f6der, M., and Mayer, B.: Airborne\nmeasurements of areal spectral surface albedo over different sea and land\nsurfaces, J. Geophys. Res., 109, D08203,\nhttps:\/\/doi.org\/10.1029\/2003JD004392, 2004.\u2002a","DOI":"10.1029\/2003JD004392"},{"key":"ref69","doi-asserted-by":"crossref","unstructured":"Wendisch, M., Macke, A., Ehrlich, A., L\u00fcpkes, C., Mech, M., Chechin, D.,\nBarrientos, C., Bozem, H., Br\u00fcckner, M., Clemen, H.-C., Crewell, S., Donth,\nT., Dupuy, R., Ebell, K., Egerer, U., Engelmann, R., Engler, C., Eppers, O.,\nGehrmann, M., Gong, X., Gottschalk, M., Gourbeyre, C., Griesche, H.,\nHartmann, J., Hartmann, M., Herber, A., Herrmann, H., Heygster, G., Hoor, P.,\nJafariserajehlou, S., J\u00e4kel, E., J\u00e4rvinen, E., Jourdan, O., K\u00e4stner,\nU., Kecorius, S., Knudsen, E.\u00a0M., K\u00f6llner, F., Kretzschmar, J., Lelli, L.,\nLeroy, D., Maturilli, M., Mei, L., Mertes, S., Mioche, G., Neuber, R.,\nNicolaus, M., Nomokonova, T., Notholt, J., Palm, M., van Pinxteren, M.,\nQuaas, J., Richter, P., Ruiz-Donoso, E., Sch\u00e4fer, M., Schmieder, K.,\nSchnaiter, M., Schneider, J., Schwarzenb\u00f6ck, A., Seifert, P., Shupe, M.\u00a0D.,\nSiebert, H., Spreen, G., Stapf, J., Stratmann, F., Vogl, T., Welti, A., Wex,\nH., Wiedensohler, A., Zanatta, M., and Zeppenfeld, S.: The Arctic cloud\npuzzle: Using ACLOUD\/PASCAL multi-platform observations to unravel the\nrole of clouds and aerosol particles in Arctic amplification, Bull. Am.\nMeteorol. Soc., 100, 841\u2013871, https:\/\/doi.org\/10.1175\/BAMS-D-18-0072.1, 2019.\u2002a, b, c","DOI":"10.1175\/BAMS-D-18-0072.1"},{"key":"ref70","doi-asserted-by":"crossref","unstructured":"Wendisch, M., Br\u00fcckner, M., Crewell, S., Ehrlich, A., Notholt, J., L\u00fcpkes,\nC., Macke, A., Burrows, J.\u00a0P., Rinke, A., Quaas, J., Maturilli, M., Schemann,\nV., Shupe, M.\u00a0D., Akansu, E.\u00a0F., Barrientos-Velasco, C., B\u00e4rfuss, K.,\nBlechschmidt, A.-M., Block, K., Bougoudis, I., Bozem, H., B\u00f6ckmann, C.,\nBracher, A., Bresson, H., Bretschneider, L., Buschmann, M., Chechin, D.\u00a0G.,\nChylik, J., Dahlke, S., Deneke, H., Dethloff, K., Donth, T., Dorn, W., Dupuy,\nR., Ebell, K., Egerer, U., Engelmann, R., Eppers, O., Gerdes, R., Gierens,\nR., Gorodetskaya, I.\u00a0V., Gottschalk, M., Griesche, H., Gryanik, V.\u00a0M.,\nHandorf, D., Harm-Altst\u00e4dter, B., Hartmann, J., Hartmann, M., Heinold, B.,\nHerber, A., Herrmann, H., Heygster, G., H\u00f6schel, I., Hofmann, Z., H\u00f6lemann,\nJ., H\u00fcnerbein, A., Jafariserajehlou, S., J\u00e4kel, E., Jacobi, C., Janout, M.,\nJansen, F., Jourdan, O., Jur\u00e1nyi, Z., Kalesse-Los, H., Kanzow, T., K\u00e4thner,\nR., Kliesch, L.\u00a0L., Klingebiel, M., Knudsen, E.\u00a0M., Kov\u00e1cs, T., K\u00f6rtke, W.,\nKrampe, D., Kretzschmar, J., Kreyling, D., Kulla, B., Kunkel, D., Lampert,\nA., Lauer, M., Lelli, L., von Lerber, A., Linke, O., L\u00f6hnert, U., Lonardi,\nM., Losa, S.\u00a0N., Losch, M., Maahn, M., Mech, M., Mei, L., Mertes, S.,\nMetzner, E., Mewes, D., Michaelis, J., Mioche, G., Moser, M., Nakoudi, K.,\nNeggers, R., Neuber, R., Nomokonova, T., Oelker, J.,\nPapakonstantinou-Presvelou, I., P\u00e4tzold, F., Pefanis, V., Pohl, C., van\nPinxteren, M., Radovan, A., Rhein, M., Rex, M., Richter, A., Risse, N.,\nRitter, C., Rostosky, P., Rozanov, V.\u00a0V., Donoso, E.\u00a0R., Saavedra-Garfias,\nP., Salzmann, M., Schacht, J., Sch\u00e4fer, M., Schneider, J., Schnierstein, N.,\nSeifert, P., Seo, S., Siebert, H., Soppa, M.\u00a0A., Spreen, G., Stachlewska,\nI.\u00a0S., Stapf, J., Stratmann, F., Tegen, I., Viceto, C., Voigt, C., Vountas,\nM., Walbr\u00f6l, A., Walter, M., Wehner, B., Wex, H., Willmes, S., Zanatta, M.,\nand Zeppenfeld, S.: Atmospheric and surface processes, and feedback\nmechanisms determining Arctic amplification: A review of first results and\nprospects of the (AC)3 project, Bull. Am. Meteorol. Soc., 104, E208\u2013E242,\nhttps:\/\/doi.org\/10.1175\/BAMS-D-21-0218.1, 2023.\u2002a, b, c","DOI":"10.1175\/BAMS-D-21-0218.1"},{"key":"ref71","doi-asserted-by":"crossref","unstructured":"Wesche, C., Steinhage, D., and Nixdorf, U.: Polar aircraft Polar 5 and Polar 6\noperated by the Alfred Wegener Institute, J. Large-Scale Res. Facil., 2, A87,\nhttps:\/\/doi.org\/10.17815\/jlsrf-2-153, 2016.\u2002a","DOI":"10.17815\/jlsrf-2-153"},{"key":"ref72","doi-asserted-by":"crossref","unstructured":"Yamanouchi, T.: Arctic warming by cloud radiation enhanced by moist air\nintrusion observed at Ny-\u00c5lesund, Svalbard, Polar Sci., 21,\n110\u2013116, https:\/\/doi.org\/10.1016\/j.polar.2018.10.009, 2019.\u2002a","DOI":"10.1016\/j.polar.2018.10.009"},{"key":"ref73","doi-asserted-by":"crossref","unstructured":"Zygmuntowska, M., Mauritsen, T., Quaas, J., and Kaleschke, L.: Arctic clouds\nand surface radiation \u2013 A critical comparison of satellite retrievals and the\nERA-interim reanalysis, Atmos. Chem. Phys., 12, 6667\u20136677,\nhttps:\/\/doi.org\/10.5194\/acp-12-6667-2012, 2012.\u2002a","DOI":"10.5194\/acp-12-6667-2012"}],"container-title":["Atmospheric Chemistry and Physics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/acp.copernicus.org\/articles\/23\/9647\/2023\/acp-23-9647-2023.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,31]],"date-time":"2023-08-31T09:21:17Z","timestamp":1693473677000},"score":1,"resource":{"primary":{"URL":"https:\/\/acp.copernicus.org\/articles\/23\/9647\/2023\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,8,31]]},"references-count":73,"journal-issue":{"issue":"17","published-online":{"date-parts":[[2023]]}},"URL":"http:\/\/dx.doi.org\/10.5194\/acp-23-9647-2023","relation":{"has-preprint":[{"id-type":"doi","id":"10.5194\/acp-2022-614","asserted-by":"subject"}],"has-review":[{"id-type":"doi","id":"10.5194\/acp-2022-614-RC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2022-614-AC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2022-614-RC2","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2022-614-AC2","asserted-by":"subject"}],"is-part-of":[{"id-type":"doi","id":"10.1594\/PANGAEA.900442","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.932020","asserted-by":"subject"},{"id-type":"doi","id":"10.21334\/npolar.2016.a89cb766","asserted-by":"subject"},{"id-type":"doi","id":"10.21334\/npolar.2017.216df9b3","asserted-by":"subject"},{"id-type":"doi","id":"10.5065\/D6FQ9V0Z","asserted-by":"subject"},{"id-type":"doi","id":"10.5065\/D6PN93R6","asserted-by":"subject"},{"id-type":"doi","id":"10.24381\/cds.adbb2d47","asserted-by":"subject"},{"id-type":"doi","id":"10.24381\/cds.bd0915c6","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.900880","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.900204","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.921996","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.914973","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.882736","asserted-by":"subject"}]},"ISSN":["1680-7324"],"issn-type":[{"value":"1680-7324","type":"electronic"}],"subject":["Atmospheric Science"],"published":{"date-parts":[[2023,8,31]]}}}