uni-leipzig-open-access/json/acp-23-7015-2023

1 line
34 KiB
Plaintext

{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,1,16]],"date-time":"2024-01-16T15:19:33Z","timestamp":1705418373043},"reference-count":65,"publisher":"Copernicus GmbH","issue":"12","license":[{"start":{"date-parts":[[2023,6,23]],"date-time":"2023-06-23T00:00:00Z","timestamp":1687478400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","award":["268020496"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Atmos. Chem. Phys."],"abstract":"<jats:p>Abstract. This study analyses the cloud radiative effect (CRE) obtained from near-surface observations of three airborne campaigns in the Arctic north-west of Svalbard: Airborne measurements of radiative and turbulent FLUXes of energy and momentum in the Arctic boundary layer (AFLUX, March\/April 2019), Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD, May\/June 2017), and Multidisciplinary drifting Observatory for the Study of Arctic Climate\u00a0\u2013 Airborne observations in the Central Arctic (MOSAiC-ACA, August\/September 2020). The surface CRE quantifies the potential of clouds to modify the radiative energy budget at the surface and is calculated by combining broadband radiation measurements during low-level flight sections in mostly cloudy conditions with radiative transfer simulations of cloud-free conditions. The significance of surface albedo changes due to the presence of clouds is demonstrated, and this effect is considered in the cloud-free simulations. The observations are discussed with respect to differences of the CRE between sea ice and open-ocean surfaces and between the seasonally different campaigns. The results indicate that the CRE depends on cloud, illumination, surface, and thermodynamic properties. The solar and thermal-infrared (TIR) components of the CRE, CREsol and CRETIR, are analysed separately, as well as combined for the study of the total CRE (CREtot). The inter-campaign differences of CREsol are dominated by the seasonal cycle of the solar zenith angle, with the strongest cooling effect in summer. The lower surface albedo causes a stronger solar cooling effect over open ocean than over sea ice, which amounts to\u00a0\u2212259\u2009W\u2009m\u22122 (\u2212108\u2009W\u2009m\u22122) and\u00a0\u221265\u2009W\u2009m\u22122 (\u221217\u2009W\u2009m\u22122), respectively, during summer (spring). Independent of campaign and surface type, CRETIR is only weakly variable and shows values around\u00a075\u2009W\u2009m\u22122. In total, clouds show a negative CREtot over open ocean during all campaigns. In contrast, over sea ice, the positive CREtot suggests a warming effect of clouds at the surface, which neutralizes during mid-summer. Given the seasonal cycle of the sea ice distribution, these results imply that clouds in the Fram Strait region cool the surface during the sea ice minimum in late summer, while they warm the surface during the sea ice maximum in spring.<\/jats:p>","DOI":"10.5194\/acp-23-7015-2023","type":"journal-article","created":{"date-parts":[[2023,6,24]],"date-time":"2023-06-24T08:58:35Z","timestamp":1687597115000},"page":"7015-7031","source":"Crossref","is-referenced-by-count":1,"title":["Airborne observations of the surface cloud radiative effect during different seasons over sea ice and open ocean in the Fram Strait"],"prefix":"10.5194","volume":"23","author":[{"given":"Sebastian","family":"Becker","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0860-8216","authenticated-orcid":false,"given":"Andr\u00e9","family":"Ehrlich","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1896-1574","authenticated-orcid":false,"given":"Michael","family":"Sch\u00e4fer","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4652-5561","authenticated-orcid":false,"given":"Manfred","family":"Wendisch","sequence":"additional","affiliation":[]}],"member":"3145","published-online":{"date-parts":[[2023,6,23]]},"reference":[{"key":"ref1","doi-asserted-by":"crossref","unstructured":"Allan, R. P.: Combining satellite data and models to estimate cloud radiative effect at the surface and in the atmosphere, Meteorol. Appl., 18, 324\u2013333, https:\/\/doi.org\/10.1002\/met.285, 2011.\u2002a","DOI":"10.1002\/met.285"},{"key":"ref2","doi-asserted-by":"crossref","unstructured":"Bannehr, L. and Schwiesow, R.: A Technique to Account for the Misalignment of Pyranometers Installed on Aircraft, J.\u00a0Atmos.Ocean. Tech., 10, 774\u2013777, https:\/\/doi.org\/10.1175\/1520-0426(1993)010&amp;lt;0774:attaft&amp;gt;2.0.co;2, 1993.\u2002a","DOI":"10.1175\/1520-0426(1993)010<0774:ATTAFT>2.0.CO;2"},{"key":"ref3","doi-asserted-by":"crossref","unstructured":"Barrientos-Velasco, C., Deneke, H., H\u00fcnerbein, A., Griesche, H. J., Seifert, P., and Macke, A.: Radiative closure and cloud effects on the radiation budget based on satellite and shipborne observations during the Arctic summer research cruise, PS106, Atmos. Chem. Phys., 22, 9313\u20139348, https:\/\/doi.org\/10.5194\/acp-22-9313-2022, 2022.\u2002a","DOI":"10.5194\/acp-22-9313-2022"},{"key":"ref4","unstructured":"Becker, S., Ehrlich, A., Stapf, J., L\u00fcpkes, C., Mech, M., Crewell, S., and Wendisch, M.: Meteorological measurements by dropsondes released from POLAR\u00a05 during AFLUX 2019, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.921996, 2020.\u2002a"},{"key":"ref5","unstructured":"Becker, S., Ehrlich, A., Mech, M., L\u00fcpkes, C., and Wendisch, M.: Meteorological measurements by dropsondes released from POLAR\u00a05 during MOSAiC-ACA 2020, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.933581, 2021a.\u2002a"},{"key":"ref6","unstructured":"Becker, S., Stapf, J., Ehrlich, A., and Wendisch, M.: Aircraft measurements of broadband irradiance during the MOSAiC-ACA campaign in 2020, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.936232, 2021b.\u2002a"},{"key":"ref7","doi-asserted-by":"crossref","unstructured":"Becker, S., Ehrlich, A., J\u00e4kel, E., Carlsen, T., Sch\u00e4fer, M., and Wendisch, M.: Airborne measurements of directional reflectivity over the Arctic marginal sea ice zone, Atmos. Meas. Tech., 15, 2939\u20132953, https:\/\/doi.org\/10.5194\/amt-15-2939-2022, 2022. \u2002a, b, c","DOI":"10.5194\/amt-15-2939-2022"},{"key":"ref8","unstructured":"Becker, S., Ehrlich, A., Sch\u00e4fer, M., and Wendisch, M.: Cloud radiative forcing, LWP and cloud-free albedo derived from airborne broadband irradiance observations during the MOSAiC-ACA campaign, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.957759, 2023.\u2002a, b"},{"key":"ref9","doi-asserted-by":"crossref","unstructured":"Bennartz, R., Shupe, M. D., Turner, D. D., Walden, V. P., Steffen, K., Cox, C. J., Kulie, M. S., Miller, N. B., and Pettersen, C.: July 2012 Greenland melt extent enhanced by low-level liquid clouds, Nature, 496, 83\u201386, https:\/\/doi.org\/10.1038\/nature12002, 2013.\u2002a","DOI":"10.1038\/nature12002"},{"key":"ref10","doi-asserted-by":"crossref","unstructured":"Bohren, C. F. and Clothiaux, E. E.: Fundamentals of Atmospheric Radiation\u00a0\u2013 An Introduction with 400 Problems, Wiley-VCH Verlag, Weinheim, Germany, ISBN\u00a09783527405039, 2006.\u2002a","DOI":"10.1002\/9783527618620"},{"key":"ref11","doi-asserted-by":"crossref","unstructured":"Br\u00fcmmer, B.: Boundary-layer modification in wintertime cold-air outbreaks from the Arctic sea ice, Bound.-Lay. Meteorol., 80, 109\u2013125, https:\/\/doi.org\/10.1007\/bf00119014, 1996.\u2002a","DOI":"10.1007\/BF00119014"},{"key":"ref12","doi-asserted-by":"crossref","unstructured":"Ceppi, P., Hartmann, D. L., and Webb, M. J.: Mechanisms of the Negative Shortwave Cloud Feedback in Middle to High Latitudes, J.\u00a0Climate, 29, 139\u2013157, https:\/\/doi.org\/10.1175\/jcli-d-15-0327.1, 2015.\u2002a","DOI":"10.1175\/JCLI-D-15-0327.1"},{"key":"ref13","doi-asserted-by":"crossref","unstructured":"Choi, Y.-S., Hwang, J., Ok, J., Park, D.-S. R., Su, H., Jiang, J. H., Huang, L., and Limpasuvan, T.: Effect of Arctic clouds on the ice-albedo feedback in midsummer, Int. J. Climatol., 40, 4707\u20134714, https:\/\/doi.org\/10.1002\/joc.6469, 2020.\u2002a","DOI":"10.1002\/joc.6469"},{"key":"ref14","doi-asserted-by":"crossref","unstructured":"Cox, C. and Munk, W.: Measurement of the Roughness of the Sea Surface from Photographs of the Sun's Glitter, J.\u00a0Opt. Soc. Am., 44, 838\u2013850, https:\/\/doi.org\/10.1364\/josa.44.000838, 1954.\u2002a","DOI":"10.1364\/JOSA.44.000838"},{"key":"ref15","doi-asserted-by":"crossref","unstructured":"Cox, C. J., Walden, V. P., Rowe, P. M., and Shupe, M. D.: Humidity trends imply increased sensitivity to clouds in a warming Arctic, Nat. Commun., 6, 10117, https:\/\/doi.org\/10.1038\/ncomms10117, 2015.\u2002a","DOI":"10.1038\/ncomms10117"},{"key":"ref16","doi-asserted-by":"crossref","unstructured":"Curry, J. A., Schramm, J. L., Rossow, W. B., and Randall, D.: Overview of Arctic Cloud and Radiation Characteristics, J.\u00a0Climate, 9, 1731\u20131764, https:\/\/doi.org\/10.1175\/1520-0442(1996)009&amp;lt;1731:OOACAR&amp;gt;2.0.CO;2, 1996.\u2002a","DOI":"10.1175\/1520-0442(1996)009<1731:OOACAR>2.0.CO;2"},{"key":"ref17","doi-asserted-by":"crossref","unstructured":"Dong, X., Xi, B., Crosby, K., Long, C. N., Stone, R. S., and Shupe, M. D.: A 10\u00a0year climatology of Arctic cloud fraction and radiative forcing at Barrow, Alaska, J.\u00a0Geophys. Res., 115, D17212, https:\/\/doi.org\/10.1029\/2009jd013489, 2010.\u2002a, b, c, d","DOI":"10.1029\/2009JD013489"},{"key":"ref18","unstructured":"Dupuy, R., Jourdan, O., Mioche, G., Gourbeyre, C., Leroy, D., and Schwarzenb\u00f6ck, A.: CDP, CIP and PIP In-situ arctic cloud microphysical properties observed during ACLOUD-AC3 campaign in June 2017, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.899074, 2019.\u2002a"},{"key":"ref19","doi-asserted-by":"crossref","unstructured":"Ebell, K., Nomokonova, T., Maturilli, M., and Ritter, C.: Radiative Effect of Clouds at Ny-\u00c5lesund, Svalbard, as Inferred from Ground-Based Remote Sensing Observations, J.\u00a0Appl. Meteorol. Clim., 59, 3\u201322, https:\/\/doi.org\/10.1175\/jamc-d-19-0080.1, 2020.\u2002a, b, c, d, e","DOI":"10.1175\/JAMC-D-19-0080.1"},{"key":"ref20","doi-asserted-by":"crossref","unstructured":"Ehrlich, A. and Wendisch, M.: Reconstruction of high-resolution time series from slow-response broadband terrestrial irradiance measurements by deconvolution, Atmos. Meas. Tech., 8, 3671\u20133684, https:\/\/doi.org\/10.5194\/amt-8-3671-2015, 2015.\u2002a","DOI":"10.5194\/amt-8-3671-2015"},{"key":"ref21","unstructured":"Ehrlich, A., Stapf, J., L\u00fcpkes, C., Mech, M., Crewell, S., and Wendisch, M.: Meteorological measurements by dropsondes released from POLAR\u00a05 during ACLOUD 2017, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.900204, 2019a.\u2002a"},{"key":"ref22","doi-asserted-by":"crossref","unstructured":"Ehrlich, A., Wendisch, M., L\u00fcpkes, C., Buschmann, M., Bozem, H., Chechin, D., Clemen, H.-C., Dupuy, R., Eppers, O., Hartmann, J., Herber, A., J\u00e4kel, E., J\u00e4rvinen, E., Jourdan, O., K\u00e4stner, U., Kliesch, L.-L., K\u00f6llner, F., Mech, M., Mertes, S., Neuber, R., Ruiz-Donoso, E., Schnaiter, M., Schneider, J., Stapf, J., and Zanatta, M.: A comprehensive in situ and remote sensing data set from the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign, Earth Syst. Sci. Data, 11, 1853\u20131881, https:\/\/doi.org\/10.5194\/essd-11-1853-2019, 2019b.\u2002a","DOI":"10.5194\/essd-11-1853-2019"},{"key":"ref23","doi-asserted-by":"crossref","unstructured":"Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U., Kylling, J., Richter, B., Pause, C., Dowling, T., and Bugliaro, L.: The libRadtran software package for radiative transfer calculations (version 2.0.1), Geosci. Model Dev., 9, 1647\u20131672, https:\/\/doi.org\/10.5194\/gmd-9-1647-2016, 2016.\u2002a","DOI":"10.5194\/gmd-9-1647-2016"},{"key":"ref24","doi-asserted-by":"crossref","unstructured":"Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.-L., Frame, D., Lunt, D., Mauritsen, T., Palmer, M., Watanabe, M., Wild, M., and Zhan, H.: The Earth's Energy Budget, Climate Feedbacks, and Climate Sensitivity, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group\u00a0I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., P\u00e9an, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J., Maycock, T., Waterfield, T., Yelek\u00e7i, O., Yu, R., and Zhou, B., book section\u00a09, pp. 923\u20131054, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https:\/\/doi.org\/10.1017\/9781009157896.009, 2021.\u2002a","DOI":"10.1017\/9781009157896.009"},{"key":"ref25","doi-asserted-by":"crossref","unstructured":"Gardner, A. S. and Sharp, M. J.: A review of snow and ice albedo and the development of a new physically based broadband albedo parameterization, J.\u00a0Geophys. Res., 115, F01009, https:\/\/doi.org\/10.1029\/2009jf001444, 2010.\u2002a, b","DOI":"10.1029\/2009JF001444"},{"key":"ref26","unstructured":"Hartmann, J., L\u00fcpkes, C., and Chechin, D.: 1\u2009Hz resolution aircraft measurements of wind and temperature during the ACLOUD campaign in 2017, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.902849, 2019.\u2002a"},{"key":"ref27","unstructured":"Hartmann, J., L\u00fcpkes, C., Michaelis, J., and Herber, A.: High resolution aircraft measurements of wind and temperature during the MOSAIC-ACA campaign in 2020, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.947787, 2022.\u2002a"},{"key":"ref28","doi-asserted-by":"crossref","unstructured":"Intrieri, J. M., Shupe, M. D., Uttal, T., and McCarthy, B. J.: An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA, J.\u00a0Geophys. Res., 107, 8030, https:\/\/doi.org\/10.1029\/2000jc000423, 2002.\u2002a, b, c, d, e","DOI":"10.1029\/2000JC000423"},{"key":"ref29","doi-asserted-by":"crossref","unstructured":"Jin, Z., Charlock, T. P., Smith, W. L., and Rutledge, K.: A parameterization of ocean surface albedo, J.\u00a0Geophys. Res., 31, 26429\u201326443, https:\/\/doi.org\/10.1029\/2004gl021180, 2004.\u2002a","DOI":"10.1029\/2004GL021180"},{"key":"ref30","doi-asserted-by":"crossref","unstructured":"Jin, Z., Qiao, Y., Wang, Y., Fang, Y., and Yi, W.: A new parameterization of spectral and broadband ocean surface albedo, Opt. Express, 19, 26429\u201326443, https:\/\/doi.org\/10.1364\/oe.19.026429, 2011.\u2002a, b","DOI":"10.1364\/OE.19.026429"},{"key":"ref31","doi-asserted-by":"crossref","unstructured":"Kay, J. E. and L'Ecuyer, T.: Observational constraints on Arctic Ocean clouds and radiative fluxes during the early 21st\u00a0century, J.\u00a0Geophys. Res.-Atmos., 118, 7219\u20137236, https:\/\/doi.org\/10.1002\/jgrd.50489, 2013.\u2002a","DOI":"10.1002\/jgrd.50489"},{"key":"ref32","doi-asserted-by":"crossref","unstructured":"Kay, J. E., Holland, M. M., Bitz, C. M., Blanchard-Wrigglesworth, E., Gettelman, A., Conley, A., and Bailey, D.: The Influence of Local Feedbacks and Northward Heat Transport on the Equilibrium Arctic Climate Response to Increased Greenhouse Gas Forcing, J.\u00a0Climate, 25, 5433\u20135450, https:\/\/doi.org\/10.1175\/jcli-d-11-00622.1, 2012.\u2002a","DOI":"10.1175\/JCLI-D-11-00622.1"},{"key":"ref33","doi-asserted-by":"crossref","unstructured":"Kay, J. E., L'Ecuyer, T., Chepfer, H., Loeb, N., Morrison, A., and Cesana, G.: Recent Advances in Arctic Cloud and Climate Research, Curr. Clim. Change Rep., 2, 159\u2013169, https:\/\/doi.org\/10.1007\/s40641-016-0051-9, 2016.\u2002a","DOI":"10.1007\/s40641-016-0051-9"},{"key":"ref34","doi-asserted-by":"crossref","unstructured":"Konda, M., Imasato, N., Nishi, K., and Toda, T.: Measurement of the sea surface emissivity, J.\u00a0Oceanogr., 50, 17\u201330, https:\/\/doi.org\/10.1007\/bf02233853, 1994.\u2002a","DOI":"10.1007\/BF02233853"},{"key":"ref35","unstructured":"L\u00fcpkes, C., Hartmann, J., Chechin, D., and Michaelis, J.: High resolution aircraft measurements of wind and temperature during the AFLUX campaign in 2019, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.945844, 2022.\u2002a"},{"key":"ref36","unstructured":"Maturilli, M.: High resolution radiosonde measurements from station Ny-\u00c5lesund (2017-04 et seq), PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.914973, 2020.\u2002a"},{"key":"ref37","doi-asserted-by":"crossref","unstructured":"Mech, M., Ehrlich, A., Herber, A., L\u00fcpkes, C., Wendisch, M., Becker, S., Boose, Y., Chechin, D., Crewell, S., Dupuy, R., Gourbeyre, C., Hartmann, J., J\u00e4kel, E., Jourdan, O., Kliesch, L.-L., Klingebiel, M., Kulla, B. S., Mioche, G., Moser, M., Risse, N., Ruiz-Donoso, E., Sch\u00e4fer, M., Stapf, J., and Voigt, C.: MOSAiC-ACA and AFLUX\u00a0\u2013 Arctic airborne campaigns characterizing the exit area of MOSAiC, Sci. Data, 9, 790, https:\/\/doi.org\/10.1038\/s41597-022-01900-7, 2022.\u2002a, b","DOI":"10.1038\/s41597-022-01900-7"},{"key":"ref38","doi-asserted-by":"crossref","unstructured":"Miller, N. B., Shupe, M. D., Cox, C. J., Walden, V. P., Turner, D. D., and Steffen, K.: Cloud Radiative Forcing at Summit, Greenland, J.\u00a0Climate, 28, 6267\u20136280, https:\/\/doi.org\/10.1175\/jcli-d-15-0076.1, 2015.\u2002a, b, c, d","DOI":"10.1175\/JCLI-D-15-0076.1"},{"key":"ref39","doi-asserted-by":"crossref","unstructured":"Mol, W. B., van Stratum, B. J. H., Knap, W. H., and van Heerwaarden, C. C.: Reconciling Observations of Solar Irradiance Variability With Cloud Size Distributions, J.\u00a0Geophys. Res.-Atmos., 128, e2022JD037894, https:\/\/doi.org\/10.1029\/2022jd037894, 2023.\u2002a","DOI":"10.1029\/2022JD037894"},{"key":"ref40","doi-asserted-by":"crossref","unstructured":"Morrison, A. L., Kay, J. E., Frey, W. R., Chepfer, H., and Guzman, R.: Cloud Response to Arctic Sea Ice Loss and Implications for Future Feedback in the CESM1 Climate Model, J.\u00a0Geophys. Res.-Atmos., 124, 1003\u20131020, https:\/\/doi.org\/10.1029\/2018jd029142, 2019.\u2002a","DOI":"10.1029\/2018JD029142"},{"key":"ref41","unstructured":"Moser, M. and Voigt, C.: DLR in-situ cloud measurements during AFLUX Arctic airborne campaign, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.940564, 2022.\u2002a"},{"key":"ref42","unstructured":"Moser, M., Voigt, C., and Hahn, V.: DLR in-situ cloud measurements during MOSAiC-ACA Arctic airborne campaign, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.940557, 2022.\u2002a"},{"key":"ref43","unstructured":"Nixdorf, U., Dethloff, K., Rex, M., Shupe, M., Sommerfeld, A., Perovich, D. K., Nicolaus, M., Heuz\u00e9, C., Rabe, B., Loose, B., Damm, E., Gradinger, R., Fong, A., Maslowski, W., Rinke, A., Kwok, R., Spreen, G., Wendisch, M., Herber, A., Hirsekorn, M., Mohaupt, V., Frickenhaus, S., Immerz, A., Weiss-Tuider, K., K\u00f6nig, B., Mengedoht, D., Regnery, J., Gerchow, P., Ransby, D., Krumpen, T., Morgenstern, A., Haas, C., Kanzow, T., Rack, F. R., Saitzev, V., Sokolov, V., Makarov, A., Schwarze, S., Wunderlich, T., Wurr, K., and Boetius, A.: MOSAiC Extended Acknowledgement, Zenodo, https:\/\/doi.org\/10.5281\/ZENODO.5541624, 2021.\u2002a"},{"key":"ref44","doi-asserted-by":"crossref","unstructured":"Polavarapu, R. J.: Measurement of Net Radiation from Shipboard Sensors, J.\u00a0Appl. Meteorol. (1962\u20131982), 17, 1062\u20131067, http:\/\/www.jstor.org\/stable\/26178571 (last access: 21\u00a0June\u00a02023), 1978.\u2002a","DOI":"10.1175\/1520-0450(1978)017<1062:MONRFS>2.0.CO;2"},{"key":"ref45","doi-asserted-by":"crossref","unstructured":"Protat, A., Schulz, E., Rikus, L., Sun, Z., Xiao, Y., and Keywood, M.: Shipborne observations of the radiative effect of Southern Ocean clouds, J.\u00a0Geophys. Res.-Atmos., 122, 318\u2013328, https:\/\/doi.org\/10.1002\/2016jd026061, 2017.\u2002a","DOI":"10.1002\/2016JD026061"},{"key":"ref46","doi-asserted-by":"crossref","unstructured":"Ramanathan, V., Cess, R. D., Harrison, E. F., Minnis, P., Barkstrom, B. R., Ahmad, E., and Hartmann, D.: Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget Experiment, Science, 243, 57\u201363, https:\/\/doi.org\/10.1126\/science.243.4887.57, 1989.\u2002a","DOI":"10.1126\/science.243.4887.57"},{"key":"ref47","doi-asserted-by":"crossref","unstructured":"Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic amplification: A research synthesis, Global Planet. Change, 77, 85\u201396, https:\/\/doi.org\/10.1016\/j.gloplacha.2011.03.004, 2011.\u2002a","DOI":"10.1016\/j.gloplacha.2011.03.004"},{"key":"ref48","doi-asserted-by":"crossref","unstructured":"Shupe, M. D. and Intrieri, J. M.: Cloud Radiative Forcing of the Arctic Surface: The Influence of Cloud Properties, Surface Albedo, and Solar Zenith Angle, J.\u00a0Climate, 17, 616\u2013628, https:\/\/doi.org\/10.1175\/1520-0442(2004)017&amp;lt;0616:crfota&amp;gt;2.0.co;2, 2004.\u2002a, b, c","DOI":"10.1175\/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2"},{"key":"ref49","doi-asserted-by":"crossref","unstructured":"Shupe, M. D., Rex, M., Blomquist, B., Persson, P. O. G., Schmale, J., Uttal, T., Althausen, D., Angot, H., Archer, S., Bariteau, L., Beck, I., Bilberry, J., Bucci, S., Buck, C., Boyer, M., Brasseur, Z., Brooks, I. M., Calmer, R., Cassano, J., Castro, V., Chu, D., Costa, D., Cox, C. J., Creamean, J., Crewell, S., Dahlke, S., Damm, E., de Boer, G., Deckelmann, H., Dethloff, K., D\u00fctsch, M., Ebell, K., Ehrlich, A., Ellis, J., Engelmann, R., Fong, A. A., Frey, M. M., Gallagher, M. R., Ganzeveld, L., Gradinger, R., Graeser, J., Greenamyer, V., Griesche, H., Griffiths, S., Hamilton, J., Heinemann, G., Helmig, D., Herber, A., Heuz\u00e9, C., Hofer, J., Houchens, T., Howard, D., Inoue, J., Jacobi, H.-W., Jaiser, R., Jokinen, T., Jourdan, O., Jozef, G., King, W., Kirchgaessner, A., Klingebiel, M., Krassovski, M., Krumpen, T., Lampert, A., Landing, W., Laurila, T., Lawrence, D., Lonardi, M., Loose, B., L\u00fcpkes, C., Maahn, M., Macke, A., Maslowski, W., Marsay, C., Maturilli, M., Mech, M., Morris, S., Moser, M., Nicolaus, M., Ortega, P., Osborn, J., P\u00e4tzold, F., Perovich, D. K., Pet\u00e4j\u00e4, T., Pilz, C., Pirazzini, R., Posman, K., Powers, H., Pratt, K. A., Preu\u00dfer, A., Qu\u00e9l\u00e9ver, L., Radenz, M., Rabe, B., Rinke, A., Sachs, T., Schulz, A., Siebert, H., Silva, T., Solomon, A., Sommerfeld, A., Spreen, G., Stephens, M., Stohl, A., Svensson, G., Uin, J., Viegas, J., Voigt, C., von der Gathen, P., Wehner, B., Welker, J. M., Wendisch, M., Werner, M., Xie, Z., and Yue, F.: Overview of the MOSAiC expedition: Atmosphere, Elem. Sci. Anth., 10, 00060, https:\/\/doi.org\/10.1525\/elementa.2021.00060, 2022.\u2002a","DOI":"10.1525\/elementa.2021.00060"},{"key":"ref50","doi-asserted-by":"crossref","unstructured":"Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using AMSR-E 89-GHz channels, J.\u00a0Geophys. Res., 113, C02S03, https:\/\/doi.org\/10.1029\/2005jc003384, 2008.\u2002a, b, c","DOI":"10.1029\/2005JC003384"},{"key":"ref51","doi-asserted-by":"crossref","unstructured":"Stamnes, K., Tsay, S.-C., Wiscombe, W., and Jayaweera, K.: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Optics, 27, 2502\u20132509, https:\/\/doi.org\/10.1364\/ao.27.002502, 1988.\u2002a","DOI":"10.1364\/AO.27.002502"},{"key":"ref52","unstructured":"Stapf, J., Ehrlich, A., J\u00e4kel, E., and Wendisch, M.: Aircraft measurements of broadband irradiance during the ACLOUD campaign in 2017, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.900442, 2019.\u2002a"},{"key":"ref53","doi-asserted-by":"crossref","unstructured":"Stapf, J., Ehrlich, A., J\u00e4kel, E., L\u00fcpkes, C., and Wendisch, M.: Reassessment of shortwave surface cloud radiative forcing in the Arctic: consideration of surface-albedo\u2013cloud interactions, Atmos. Chem. Phys., 20, 9895\u20139914, https:\/\/doi.org\/10.5194\/acp-20-9895-2020, 2020.\u2002a, b, c, d, e, f, g, h, i, j, k, l","DOI":"10.5194\/acp-20-9895-2020"},{"key":"ref54","doi-asserted-by":"crossref","unstructured":"Stapf, J., Ehrlich, A., and Wendisch, M.: Influence of Thermodynamic State Changes on Surface Cloud Radiative Forcing in the Arctic: A Comparison of Two Approaches Using Data From AFLUX and SHEBA, J.\u00a0Geophys. Res.-Atmos., 126, e2020JD033589, https:\/\/doi.org\/10.1029\/2020jd033589, 2021a.\u2002a, b","DOI":"10.1029\/2020JD033589"},{"key":"ref55","unstructured":"Stapf, J., Ehrlich, A., and Wendisch, M.: Aircraft measurements of broadband irradiance during the AFLUX campaign in 2019, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.932020, 2021b.\u2002a"},{"key":"ref56","unstructured":"Stapf, J., Ehrlich, A., and Wendisch, M.: Cloud radiative forcing, LWP and cloud-free albedo derived from airborne broadband irradiance observations during the AFLUX and ACLOUD campaign, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.932010, 2021c.\u2002a, b"},{"key":"ref57","doi-asserted-by":"crossref","unstructured":"Strong, C. and Rigor, I. G.: Arctic marginal ice zone trending wider in summer and narrower in winter, Geophys. Res. Lett., 40, 4864\u20134868, https:\/\/doi.org\/10.1002\/grl.50928, 2013.\u2002a, b, c","DOI":"10.1002\/grl.50928"},{"key":"ref58","doi-asserted-by":"crossref","unstructured":"Walsh, J. E. and Chapman, W. L.: Arctic Cloud\u2013Radiation\u2013Temperature Associations in Observational Data and Atmospheric Reanalyses, J.\u00a0Climate, 11, 3030\u20133045, https:\/\/doi.org\/10.1175\/1520-0442(1998)011&amp;lt;3030:acrtai&amp;gt;2.0.co;2, 1998.\u2002a","DOI":"10.1175\/1520-0442(1998)011<3030:ACRTAI>2.0.CO;2"},{"key":"ref59","doi-asserted-by":"crossref","unstructured":"Warren, S. G.: Optical properties of snow, Rev. Geophys., 20, 67\u201389, https:\/\/doi.org\/10.1029\/rg020i001p00067, 1982.\u2002a","DOI":"10.1029\/RG020i001p00067"},{"key":"ref60","doi-asserted-by":"crossref","unstructured":"Wendisch, M., Br\u00fcckner, M., Burrows, J., Crewell, S., Dethloff, K., Ebell, K., L\u00fcpkes, C., Macke, A., Notholt, J., Quaas, J., Rinke, A., and Tegen, I.: Understanding Causes and Effects of Rapid Warming in the Arctic, Eos, 98, 22\u201326, https:\/\/doi.org\/10.1029\/2017eo064803, 2017.\u2002a","DOI":"10.1029\/2017EO064803"},{"key":"ref61","doi-asserted-by":"crossref","unstructured":"Wendisch, M., Macke, A., Ehrlich, A., L\u00fcpkes, C., Mech, M., Chechin, D., Dethloff, K., Velasco, C. B., Bozem, H., Br\u00fcckner, M., Clemen, H.-C., Crewell, S., Donth, T., Dupuy, R., Ebell, K., Egerer, U., Engelmann, R., Engler, C., Eppers, O., Gehrmann, M., Gong, X., Gottschalk, M., Gourbeyre, C., Griesche, H., Hartmann, J., Hartmann, M., Heinold, B., Herber, A., Herrmann, H., Heygster, G., Hoor, P., Jafariserajehlou, S., J\u00e4kel, E., J\u00e4rvinen, E., Jourdan, O., K\u00e4stner, U., Kecorius, S., Knudsen, E. M., K\u00f6llner, F., Kretzschmar, J., Lelli, L., Leroy, D., Maturilli, M., Mei, L., Mertes, S., Mioche, G., Neuber, R., Nicolaus, M., Nomokonova, T., Notholt, J., Palm, M., van Pinxteren, M., Quaas, J., Richter, P., Ruiz-Donoso, E., Sch\u00e4fer, M., Schmieder, K., Schnaiter, M., Schneider, J., Schwarzenb\u00f6ck, A., Seifert, P., Shupe, M. D., Siebert, H., Spreen, G., Stapf, J., Stratmann, F., Vogl, T., Welti, A., Wex, H., Wiedensohler, A., Zanatta, M., and Zeppenfeld, S.: The Arctic Cloud Puzzle: Using ACLOUD\/PASCAL Multiplatform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification, B.\u00a0Am. Meteorol. Soc., 100, 841\u2013871, https:\/\/doi.org\/10.1175\/bams-d-18-0072.1, 2019. \u2002a","DOI":"10.1175\/BAMS-D-18-0072.1"},{"key":"ref62","doi-asserted-by":"crossref","unstructured":"Wendisch, M., Br\u00fcckner, M., Crewell, S., Ehrlich, A., Notholt, J., L\u00fcpkes, C., Macke, A., Burrows, J. P., Rinke, A., Quaas, J., Maturilli, M., Schemann, V., Shupe, M. D., Akansu, E. F., Barrientos-Velasco, C., B\u00e4rfuss, K., Blechschmidt, A.-M., Block, K., Bougoudis, I., Bozem, H., B\u00f6ckmann, C., Bracher, A., Bresson, H., Bretschneider, L., Buschmann, M., Chechin, D. G., Chylik, J., Dahlke, S., Deneke, H., Dethloff, K., Donth, T., Dorn, W., Dupuy, R., Ebell, K., Egerer, U., Engelmann, R., Eppers, O., Gerdes, R., Gierens, R., Gorodetskaya, I. V., Gottschalk, M., Griesche, H., Gryanik, V. M., Handorf, D., Harm-Altst\u00e4dter, B., Hartmann, J., Hartmann, M., Heinold, B., Herber, A., Herrmann, H., Heygster, G., H\u00f6schel, I., Hofmann, Z., H\u00f6lemann, J., H\u00fcnerbein, A., Jafariserajehlou, S., J\u00e4kel, E., Jacobi, C., Janout, M., Jansen, F., Jourdan, O., Jur\u00e1nyi, Z., Kalesse-Los, H., Kanzow, T., K\u00e4thner, R., Kliesch, L. L., Klingebiel, M., Knudsen, E. M., Kov\u00e1cs, T., K\u00f6rtke, W., Krampe, D., Kretzschmar, J., Kreyling, D., Kulla, B., Kunkel, D., Lampert, A., Lauer, M., Lelli, L., von Lerber, A., Linke, O., L\u00f6hnert, U., Lonardi, M., Losa, S. N., Losch, M., Maahn, M., Mech, M., Mei, L., Mertes, S., Metzner, E., Mewes, D., Michaelis, J., Mioche, G., Moser, M., Nakoudi, K., Neggers, R., Neuber, R., Nomokonova, T., Oelker, J., Papakonstantinou-Presvelou, I., P\u00e4tzold, F., Pefanis, V., Pohl, C., van Pinxteren, M., Radovan, A., Rhein, M., Rex, M., Richter, A., Risse, N., Ritter, C., Rostosky, P., Rozanov, V. V., Donoso, E. R., Saavedra-Garfias, P., Salzmann, M., Schacht, J., Sch\u00e4fer, M., Schneider, J., Schnierstein, N., Seifert, P., Seo, S., Siebert, H., Soppa, M. A., Spreen, G., Stachlewska, I. S., Stapf, J., Stratmann, F., Tegen, I., Viceto, C., Voigt, C., Vountas, M., Walbr\u00f6l, A., Walter, M., Wehner, B., Wex, H., Willmes, S., Zanatta, M., and Zeppenfeld, S.: Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)3\u00a0Project, B.\u00a0Am. Meteorol. Soc., (published online ahead of print 2022), https:\/\/doi.org\/10.1175\/bams-d-21-0218.1, 2022a.\u2002a","DOI":"10.1175\/BAMS-D-21-0218.1"},{"key":"ref63","doi-asserted-by":"crossref","unstructured":"Wendisch, M., Stapf, J., Becker, S., Ehrlich, A., J\u00e4kel, E., Klingebiel, M., L\u00fcpkes, C., Sch\u00e4fer, M., and Shupe, M. D.: Effects of variable, ice-ocean surface properties and air mass transformation on the Arctic radiative energy budget, Atmos. Chem. Phys. Discuss. [preprint], https:\/\/doi.org\/10.5194\/acp-2022-614, in review, 2022b.\u2002a, b","DOI":"10.5194\/acp-2022-614"},{"key":"ref64","doi-asserted-by":"crossref","unstructured":"Wesche, C., Steinhage, D., and Nixdorf, U.: Polar aircraft Polar5 and Polar6 operated by the Alfred Wegener Institute, Journal of Large-scale Research Facilities JLSRF, 2, A87, https:\/\/doi.org\/10.17815\/jlsrf-2-153, 2016.\u2002a","DOI":"10.17815\/jlsrf-2-153"},{"key":"ref65","doi-asserted-by":"crossref","unstructured":"Zelinka, M. D., Klein, S. A., and Hartmann, D. L.: Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part\u00a0II: Attribution to Changes in Cloud Amount, Altitude, and Optical Depth, J.\u00a0Climate, 25, 3736\u20133754, https:\/\/doi.org\/10.1175\/jcli-d-11-00249.1, 2012.\u2002a","DOI":"10.1175\/JCLI-D-11-00249.1"}],"container-title":["Atmospheric Chemistry and Physics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/acp.copernicus.org\/articles\/23\/7015\/2023\/acp-23-7015-2023.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,15]],"date-time":"2023-12-15T16:01:30Z","timestamp":1702656090000},"score":1,"resource":{"primary":{"URL":"https:\/\/acp.copernicus.org\/articles\/23\/7015\/2023\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,6,23]]},"references-count":65,"journal-issue":{"issue":"12","published-online":{"date-parts":[[2023]]}},"URL":"http:\/\/dx.doi.org\/10.5194\/acp-23-7015-2023","relation":{"has-preprint":[{"id-type":"doi","id":"10.5194\/acp-2022-849","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2022-849","asserted-by":"object"}],"has-review":[{"id-type":"doi","id":"10.5194\/acp-2022-849-RC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2022-849-AC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2022-849-RC2","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2022-849-AC2","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2022-849-AC1","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/acp-2022-849-RC1","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/acp-2022-849-AC2","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/acp-2022-849-RC2","asserted-by":"object"}],"is-part-of":[{"id-type":"doi","id":"10.1594\/PANGAEA.900442","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.932020","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.932010","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.936232","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.902849","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.945844","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.947787","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.900204","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.921996","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.933581","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.914973","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.899074","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.940564","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.940557","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.957759","asserted-by":"subject"}]},"ISSN":["1680-7324"],"issn-type":[{"value":"1680-7324","type":"electronic"}],"subject":["Atmospheric Science"],"published":{"date-parts":[[2023,6,23]]}}}