uni-leipzig-open-access/json/acp-23-251-2023
2024-01-25 14:46:53 +01:00

1 line
No EOL
36 KiB
Text

{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,12,19]],"date-time":"2023-12-19T01:00:09Z","timestamp":1702947609262},"reference-count":57,"publisher":"Copernicus GmbH","issue":"1","license":[{"start":{"date-parts":[[2023,1,13]],"date-time":"2023-01-13T00:00:00Z","timestamp":1673568000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100004189","name":"Max-Planck-Gesellschaft","doi-asserted-by":"publisher","award":["Minerva Program"]},{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","award":["DFG Priority Program SPP 1294"]},{"DOI":"10.13039\/501100002946","name":"Deutsches Zentrum f\u00fcr Luft- und Raumfahrt","doi-asserted-by":"publisher","award":["n\/a"]},{"DOI":"10.13039\/501100001807","name":"Funda\u00e7\u00e3o de Amparo \u00e0 Pesquisa do Estado de S\u00e3o Paulo","doi-asserted-by":"publisher","award":["2009\/15235-8","2013\/05014-0","2017\/17047-0"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Atmos. Chem. Phys."],"abstract":"<jats:p>Abstract. Nucleation and condensation associated with biogenic\nvolatile organic compounds (BVOCs) are important aerosol formation pathways,\nyet their contribution to the upper-tropospheric aerosols remains\ninconclusive, hindering the understanding of aerosol climate effects. Here,\nwe develop new schemes describing these organic aerosol formation processes\nin the WRF-Chem model and investigate their impact on the abundance of cloud\ncondensation nuclei (CCN) in the upper troposphere (UT) over the Amazon\nBasin. We find that the new schemes significantly increase the simulated CCN\nnumber concentrations in the UT (e.g., up to \u223c\u2009400\u2009cm\u22123\nat 0.52\u2009% supersaturation) and greatly improve the agreement with the\naircraft observations. Organic condensation enhances the simulated CCN\nconcentration by 90\u2009% through promoting particle growth, while organic\nnucleation, by replenishing new particles, contributes an additional 14\u2009%.\nDeep convection determines the rate of these organic aerosol formation\nprocesses in the UT through controlling the upward transport of biogenic\nprecursors (i.e., BVOCs). This finding emphasizes the importance of the\nbiosphere\u2013atmosphere coupling in regulating upper-tropospheric aerosol\nconcentrations over the tropical forest and calls for attention to its\npotential role in anthropogenic climate change.\n <\/jats:p>","DOI":"10.5194\/acp-23-251-2023","type":"journal-article","created":{"date-parts":[[2023,1,13]],"date-time":"2023-01-13T07:02:04Z","timestamp":1673593324000},"page":"251-272","source":"Crossref","is-referenced-by-count":1,"title":["Strong particle production and condensational growth in the upper troposphere sustained by biogenic VOCs from the canopy of the Amazon Basin"],"prefix":"10.5194","volume":"23","author":[{"given":"Yunfan","family":"Liu","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4889-1669","authenticated-orcid":false,"given":"Hang","family":"Su","sequence":"additional","affiliation":[]},{"given":"Siwen","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Chao","family":"Wei","sequence":"additional","affiliation":[]},{"given":"Wei","family":"Tao","sequence":"additional","affiliation":[]},{"given":"Mira L.","family":"P\u00f6hlker","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6958-425X","authenticated-orcid":false,"given":"Christopher","family":"P\u00f6hlker","sequence":"additional","affiliation":[]},{"given":"Bruna A.","family":"Holanda","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3321-6655","authenticated-orcid":false,"given":"Ovid O.","family":"Kr\u00fcger","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0939-271X","authenticated-orcid":false,"given":"Thorsten","family":"Hoffmann","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4652-5561","authenticated-orcid":false,"given":"Manfred","family":"Wendisch","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7754-3036","authenticated-orcid":false,"given":"Paulo","family":"Artaxo","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1412-3557","authenticated-orcid":false,"given":"Ulrich","family":"P\u00f6schl","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1968-7925","authenticated-orcid":false,"given":"Meinrat O.","family":"Andreae","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4912-9879","authenticated-orcid":false,"given":"Yafang","family":"Cheng","sequence":"additional","affiliation":[]}],"member":"3145","published-online":{"date-parts":[[2023,1,13]]},"reference":[{"key":"ref1","doi-asserted-by":"crossref","unstructured":"Andreae, M. O.: Emission of trace gases and aerosols from biomass burning \u2013 an updated assessment, Atmos. Chem. Phys., 19, 8523\u20138546, https:\/\/doi.org\/10.5194\/acp-19-8523-2019, 2019.","DOI":"10.5194\/acp-19-8523-2019"},{"key":"ref2","doi-asserted-by":"crossref","unstructured":"Andreae, M. O. and Andreae, T. W.: The cycle of biogenic sulfur compounds\nover the Amazon Basin: 1. Dry season, J. Geophys. Res.-Atmos., 93,\n1487\u20131497, https:\/\/doi.org\/10.1029\/JD093iD02p01487, 1988.","DOI":"10.1029\/JD093iD02p01487"},{"key":"ref3","doi-asserted-by":"crossref","unstructured":"Andreae, M. O., Acevedo, O. C., Ara\u00f9jo, A., Artaxo, P., Barbosa, C. G. G., Barbosa, H. M. J., Brito, J., Carbone, S., Chi, X., Cintra, B. B. L., da Silva, N. F., Dias, N. L., Dias-J\u00fanior, C. Q., Ditas, F., Ditz, R., Godoi, A. F. L., Godoi, R. H. M., Heimann, M., Hoffmann, T., Kesselmeier, J., K\u00f6nemann, T., Kr\u00fcger, M. L., Lavric, J. V., Manzi, A. O., Lopes, A. P., Martins, D. L., Mikhailov, E. F., Moran-Zuloaga, D., Nelson, B. W., N\u00f6lscher, A. C., Santos Nogueira, D., Piedade, M. T. F., P\u00f6hlker, C., P\u00f6schl, U., Quesada, C. A., Rizzo, L. V., Ro, C.-U., Ruckteschler, N., S\u00e1, L. D. A., de Oliveira S\u00e1, M., Sales, C. B., dos Santos, R. M. N., Saturno, J., Sch\u00f6ngart, J., S\u00f6rgel, M., de Souza, C. M., de Souza, R. A. F., Su, H., Targhetta, N., T\u00f3ta, J., Trebs, I., Trumbore, S., van Eijck, A., Walter, D., Wang, Z., Weber, B., Williams, J., Winderlich, J., Wittmann, F., Wolff, S., and Y\u00e1\u00f1ez-Serrano, A. M.: The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols, Atmos. Chem. Phys., 15, 10723\u201310776, https:\/\/doi.org\/10.5194\/acp-15-10723-2015, 2015.","DOI":"10.5194\/acp-15-10723-2015"},{"key":"ref4","doi-asserted-by":"crossref","unstructured":"Andreae, M. O., Afchine, A., Albrecht, R., Holanda, B. A., Artaxo, P., Barbosa, H. M. J., Borrmann, S., Cecchini, M. A., Costa, A., Dollner, M., F\u00fctterer, D., J\u00e4rvinen, E., Jurkat, T., Klimach, T., Konemann, T., Knote, C., Kr\u00e4mer, M., Krisna, T., Machado, L. A. T., Mertes, S., Minikin, A., P\u00f6hlker, C., P\u00f6hlker, M. L., P\u00f6schl, U., Rosenfeld, D., Sauer, D., Schlager, H., Schnaiter, M., Schneider, J., Schulz, C., Spanu, A., Sperling, V. B., Voigt, C., Walser, A., Wang, J., Weinzierl, B., Wendisch, M., and Ziereis, H.: Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin, Atmos. Chem. Phys., 18, 921\u2013961, https:\/\/doi.org\/10.5194\/acp-18-921-2018, 2018.","DOI":"10.5194\/acp-18-921-2018"},{"key":"ref5","doi-asserted-by":"crossref","unstructured":"Archer-Nicholls, S., Lowe, D., Utembe, S., Allan, J., Zaveri, R. A., Fast, J. D., Hodnebrog, \u00d8., Denier van der Gon, H., and McFiggans, G.: Gaseous chemistry and aerosol mechanism developments for version 3.5.1 of the online regional model, WRF-Chem, Geosci. Model Dev., 7, 2557\u20132579, https:\/\/doi.org\/10.5194\/gmd-7-2557-2014, 2014.","DOI":"10.5194\/gmd-7-2557-2014"},{"key":"ref6","doi-asserted-by":"crossref","unstructured":"Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II \u2013 gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625\u20134055, https:\/\/doi.org\/10.5194\/acp-6-3625-2006, 2006.","DOI":"10.5194\/acp-6-3625-2006"},{"key":"ref7","doi-asserted-by":"crossref","unstructured":"Burkholder, J. B., Baynard, T., Ravishankara, A. R., and Lovejoy, E. R.:\nParticle nucleation following the O3 and OH initiated oxidation of \u03b1-pinene and \u03b2-pinene between 278 and 320\u2009K, J. Geophys.\nRes.-Atmos., 112, D10216, https:\/\/doi.org\/10.1029\/2006jd007783, 2007.","DOI":"10.1029\/2006JD007783"},{"key":"ref8","doi-asserted-by":"crossref","unstructured":"Chapman, E. G., Gustafson Jr., W. I., Easter, R. C., Barnard, J. C., Ghan, S. J., Pekour, M. S., and Fast, J. D.: Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the radiative impact of elevated point sources, Atmos. Chem. Phys., 9, 945\u2013964, https:\/\/doi.org\/10.5194\/acp-9-945-2009, 2009.","DOI":"10.5194\/acp-9-945-2009"},{"key":"ref9","doi-asserted-by":"crossref","unstructured":"Cui, Y. Y., Hodzic, A., Smith, J. N., Ortega, J., Brioude, J., Matsui, H., Levin, E. J. T., Turnipseed, A., Winkler, P., and de Foy, B.: Modeling ultrafine particle growth at a pine forest site influenced by anthropogenic pollution during BEACHON-RoMBAS 2011, Atmos. Chem. Phys., 14, 11011\u201311029, https:\/\/doi.org\/10.5194\/acp-14-11011-2014, 2014.","DOI":"10.5194\/acp-14-11011-2014"},{"key":"ref10","doi-asserted-by":"crossref","unstructured":"D'Andrea, S. D., H\u00e4kkinen, S. A. K., Westervelt, D. M., Kuang, C., Levin, E. J. T., Kanawade, V. P., Leaitch, W. R., Spracklen, D. V., Riipinen, I., and Pierce, J. R.: Understanding global secondary organic aerosol amount and size-resolved condensational behavior, Atmos. Chem. Phys., 13, 11519\u201311534, https:\/\/doi.org\/10.5194\/acp-13-11519-2013, 2013.","DOI":"10.5194\/acp-13-11519-2013"},{"key":"ref11","doi-asserted-by":"crossref","unstructured":"Dunne, E. M., Gordon, H., Kurten, A., Almeida, J., Duplissy, J., Williamson,\nC., Ortega, I. K., Pringle, K. J., Adamov, A., Baltensperger, U., Barmet,\nP., Benduhn, F., Bianchi, F., Breitenlechner, M., Clarke, A., Curtius, J.,\nDommen, J., Donahue, N. M., Ehrhart, S., Flagan, R. C., Franchin, A., Guida,\nR., Hakala, J., Hansel, A., Heinritzi, M., Jokinen, T., Kangasluoma, J.,\nKirkby, J., Kulmala, M., Kupc, A., Lawler, M. J., Lehtipalo, K., Makhmutov,\nV., Mann, G., Mathot, S., Merikanto, J., Miettinen, P., Nenes, A., Onnela,\nA., Rap, A., Reddington, C. L., Riccobono, F., Richards, N. A., Rissanen, M.\nP., Rondo, L., Sarnela, N., Schobesberger, S., Sengupta, K., Simon, M.,\nSipila, M., Smith, J. N., Stozkhov, Y., Tome, A., Trostl, J., Wagner, P. E.,\nWimmer, D., Winkler, P. M., Worsnop, D. R., and Carslaw, K. S.: Global\natmospheric particle formation from CERN CLOUD measurements, Science, 354,\n1119\u20131124, https:\/\/doi.org\/10.1126\/science.aaf2649, 2016.","DOI":"10.1126\/science.aaf2649"},{"key":"ref12","doi-asserted-by":"crossref","unstructured":"Easter, R. C., Ghan, S. J., Zhang, Y., Saylor, R. D., Chapman, E. G.,\nLaulainen, N. S., Abdul-Razzak, H., Leung, L. R., Bian, X. D., and Zaveri,\nR. A.: MIRAGE: Model description and evaluation of aerosols and trace gases,\nJ. Geophys. Res.-Atmos., 109, D20210, https:\/\/doi.org\/10.1029\/2004jd004571, 2004.","DOI":"10.1029\/2004JD004571"},{"key":"ref13","doi-asserted-by":"crossref","unstructured":"Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43\u201367, https:\/\/doi.org\/10.5194\/gmd-3-43-2010, 2010.","DOI":"10.5194\/gmd-3-43-2010"},{"key":"ref14","doi-asserted-by":"crossref","unstructured":"Fan, J., Rosenfeld, D., Zhang, Y., Giangrande, S. E., Li, Z., Machado, L. A.\nT., Martin, S. T., Yang, Y., Wang, J., Artaxo, P., Barbosa, H. M. J., Braga,\nR. C., Comstock, J. M., Feng, Z., Gao, W., Gomes, H. B., Mei, F.,\nP\u00f6hlker, C., P\u00f6hlker, M. L., P\u00f6schl, U., and de Souza, R. A. F.:\nSubstantial convection and precipitation enhancements by ultrafine aerosol\nparticles, Science, 359, 411\u2013418, https:\/\/doi.org\/10.1126\/science.aan8461, 2018.","DOI":"10.1126\/science.aan8461"},{"key":"ref15","doi-asserted-by":"crossref","unstructured":"Fast, J. D., Gustafson, W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C.,\nChapman, E. G., Grell, G. A., and Peckham, S. E.: Evolution of ozone,\nparticulates, and aerosol direct radiative forcing in the vicinity of\nHouston using a fully coupled meteorology-chemistry-aerosol model, J.\nGeophys. Res., 111, D21305, https:\/\/doi.org\/10.1029\/2005jd006721, 2006.","DOI":"10.1029\/2005JD006721"},{"key":"ref16","doi-asserted-by":"crossref","unstructured":"Freitas, S. R., Longo, K. M., Chatfield, R., Latham, D., Silva Dias, M. A. F., Andreae, M. O., Prins, E., Santos, J. C., Gielow, R., and Carvalho Jr., J. A.: Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models, Atmos. Chem. Phys., 7, 3385\u20133398, https:\/\/doi.org\/10.5194\/acp-7-3385-2007, 2007.","DOI":"10.5194\/acp-7-3385-2007"},{"key":"ref17","doi-asserted-by":"crossref","unstructured":"Gordon, H., Sengupta, K., Rap, A., Duplissy, J., Frege, C., Williamson, C.,\nHeinritzi, M., Simon, M., Yan, C., Almeida, J., Trostl, J., Nieminen, T.,\nOrtega, I. K., Wagner, R., Dunne, E. M., Adamov, A., Amorim, A., Bernhammer,\nA. K., Bianchi, F., Breitenlechner, M., Brilke, S., Chen, X., Craven, J. S.,\nDias, A., Ehrhart, S., Fischer, L., Flagan, R. C., Franchin, A., Fuchs, C.,\nGuida, R., Hakala, J., Hoyle, C. R., Jokinen, T., Junninen, H., Kangasluoma,\nJ., Kim, J., Kirkby, J., Krapf, M., Kurten, A., Laaksonen, A., Lehtipalo,\nK., Makhmutov, V., Mathot, S., Molteni, U., Monks, S. A., Onnela, A.,\nPerakyla, O., Piel, F., Petaja, T., Praplan, A. P., Pringle, K. J.,\nRichards, N. A., Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S.,\nScott, C. E., Seinfeld, J. H., Sharma, S., Sipila, M., Steiner, G.,\nStozhkov, Y., Stratmann, F., Tome, A., Virtanen, A., Vogel, A. L., Wagner,\nA. C., Wagner, P. E., Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P.,\nZhang, X., Hansel, A., Dommen, J., Donahue, N. M., Worsnop, D. R.,\nBaltensperger, U., Kulmala, M., Curtius, J., and Carslaw, K. S.: Reduced\nanthropogenic aerosol radiative forcing caused by biogenic new particle\nformation, P. Natl. Acad. Sci. USA, 113, 12053\u201312058,\nhttps:\/\/doi.org\/10.1073\/pnas.1602360113, 2016.","DOI":"10.1073\/pnas.1602360113"},{"key":"ref18","doi-asserted-by":"crossref","unstructured":"Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G.,\nSkamarock, W. C., and Eder, B.: Fully coupled \u201conline\u201d chemistry within\nthe WRF model, Atmos. Environ., 39, 6957\u20136975,\nhttps:\/\/doi.org\/10.1016\/j.atmosenv.2005.04.027, 2005.","DOI":"10.1016\/j.atmosenv.2005.04.027"},{"key":"ref19","doi-asserted-by":"crossref","unstructured":"Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471\u20131492, https:\/\/doi.org\/10.5194\/gmd-5-1471-2012, 2012.","DOI":"10.5194\/gmd-5-1471-2012"},{"key":"ref20","doi-asserted-by":"crossref","unstructured":"Hardacre, C., Mulcahy, J. P., Pope, R. J., Jones, C. G., Rumbold, S. T., Li, C., Johnson, C., and Turnock, S. T.: Evaluation of SO2, SO42\u2212 and an updated SO2 dry deposition parameterization in the United Kingdom Earth System Model, Atmos. Chem. Phys., 21, 18465\u201318497, https:\/\/doi.org\/10.5194\/acp-21-18465-2021, 2021.","DOI":"10.5194\/acp-21-18465-2021"},{"key":"ref21","doi-asserted-by":"crossref","unstructured":"Heald, C. L., Coe, H., Jimenez, J. L., Weber, R. J., Bahreini, R., Middlebrook, A. M., Russell, L. M., Jolleys, M., Fu, T.-M., Allan, J. D., Bower, K. N., Capes, G., Crosier, J., Morgan, W. T., Robinson, N. H., Williams, P. I., Cubison, M. J., DeCarlo, P. F., and Dunlea, E. J.: Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model, Atmos. Chem. Phys., 11, 12673\u201312696, https:\/\/doi.org\/10.5194\/acp-11-12673-2011, 2011.","DOI":"10.5194\/acp-11-12673-2011"},{"key":"ref22","doi-asserted-by":"crossref","unstructured":"H\u00f5rrak, U., Aalto, P. P., Salm, J., Komsaare, K., Tammet, H., M\u00e4kel\u00e4, J. M., Laakso, L., and Kulmala, M.: Variation and balance of positive air ion concentrations in a boreal forest, Atmos. Chem. Phys., 8, 655\u2013675, https:\/\/doi.org\/10.5194\/acp-8-655-2008, 2008.","DOI":"10.5194\/acp-8-655-2008"},{"key":"ref23","doi-asserted-by":"crossref","unstructured":"Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankm\u00fcller, R., Denier van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li, M.: HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution, Atmos. Chem. Phys., 15, 11411\u201311432, https:\/\/doi.org\/10.5194\/acp-15-11411-2015, 2015.","DOI":"10.5194\/acp-15-11411-2015"},{"key":"ref24","doi-asserted-by":"crossref","unstructured":"Jenkin, M. E., Watson, L. A., Utembe, S. R., and Shallcross, D. E.: A Common\nRepresentative Intermediates (CRI) mechanism for VOC degradation. Part 1:\nGas phase mechanism development, Atmos. Environ., 42, 7185\u20137195,\nhttps:\/\/doi.org\/10.1016\/j.atmosenv.2008.07.028, 2008.","DOI":"10.1016\/j.atmosenv.2008.07.028"},{"key":"ref25","doi-asserted-by":"crossref","unstructured":"Kerminen, V.-M., Anttila, T., Lehtinen, K., and Kulmala, M.:\nParameterization for Atmospheric New-Particle Formation: Application to a\nSystem Involving Sulfuric Acid and Condensable Water-Soluble Organic Vapors,\nAerosol Sci. Tech., 38, 1001\u20131008, https:\/\/doi.org\/10.1080\/027868290519085,\n2004.","DOI":"10.1080\/027868290519085"},{"key":"ref26","doi-asserted-by":"crossref","unstructured":"Kirkby, J., Duplissy, J., Sengupta, K., Frege, C., Gordon, H., Williamson,\nC., Heinritzi, M., Simon, M., Yan, C., Almeida, J., Trostl, J., Nieminen,\nT., Ortega, I. K., Wagner, R., Adamov, A., Amorim, A., Bernhammer, A. K.,\nBianchi, F., Breitenlechner, M., Brilke, S., Chen, X., Craven, J., Dias, A.,\nEhrhart, S., Flagan, R. C., Franchin, A., Fuchs, C., Guida, R., Hakala, J.,\nHoyle, C. R., Jokinen, T., Junninen, H., Kangasluoma, J., Kim, J., Krapf,\nM., Kurten, A., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Mathot, S.,\nMolteni, U., Onnela, A., Perakyla, O., Piel, F., Petaja, T., Praplan, A. P.,\nPringle, K., Rap, A., Richards, N. A., Riipinen, I., Rissanen, M. P., Rondo,\nL., Sarnela, N., Schobesberger, S., Scott, C. E., Seinfeld, J. H., Sipila,\nM., Steiner, G., Stozhkov, Y., Stratmann, F., Tome, A., Virtanen, A., Vogel,\nA. L., Wagner, A. C., Wagner, P. E., Weingartner, E., Wimmer, D., Winkler,\nP. M., Ye, P., Zhang, X., Hansel, A., Dommen, J., Donahue, N. M., Worsnop,\nD. R., Baltensperger, U., Kulmala, M., Carslaw, K. S., and Curtius, J.:\nIon-induced nucleation of pure biogenic particles, Nature, 533, 521\u2013526,\nhttps:\/\/doi.org\/10.1038\/nature17953, 2016.","DOI":"10.1038\/nature17953"},{"key":"ref27","doi-asserted-by":"crossref","unstructured":"Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C., and Seinfeld, J. H.:\nSecondary organic aerosol formation from isoprene photooxidation under\nhigh-NOx conditions, Geophys. Res. Lett., 32, L18808,\nhttps:\/\/doi.org\/10.1029\/2005gl023637, 2005.","DOI":"10.1029\/2005GL023637"},{"key":"ref28","doi-asserted-by":"crossref","unstructured":"Kuhn, U., Ganzeveld, L., Thielmann, A., Dindorf, T., Schebeske, G., Welling, M., Sciare, J., Roberts, G., Meixner, F. X., Kesselmeier, J., Lelieveld, J., Kolle, O., Ciccioli, P., Lloyd, J., Trentmann, J., Artaxo, P., and Andreae, M. O.: Impact of Manaus City on the Amazon Green Ocean atmosphere: ozone production, precursor sensitivity and aerosol load, Atmos. Chem. Phys., 10, 9251\u20139282, https:\/\/doi.org\/10.5194\/acp-10-9251-2010, 2010.","DOI":"10.5194\/acp-10-9251-2010"},{"key":"ref29","doi-asserted-by":"crossref","unstructured":"Kulmala, M.: How particles nucleate and grow, Science, 302, 1000\u20131001,\nhttps:\/\/doi.org\/10.1126\/science.1090848, 2003.","DOI":"10.1126\/science.1090848"},{"key":"ref30","doi-asserted-by":"crossref","unstructured":"Liu, Y.: Data for \u201cStrong particle production and condensational\ngrowth in the upper troposphere sustained by biogenic VOCs from the canopy of the Amazon Basin\u201d, Edmond\n[data set], https:\/\/doi.org\/10.17617\/3.3ISOYC, 2022.","DOI":"10.5194\/acp-2022-530"},{"key":"ref31","doi-asserted-by":"crossref","unstructured":"Mann, G. W., Carslaw, K. S., Spracklen, D. V., Ridley, D. A., Manktelow, P. T., Chipperfield, M. P., Pickering, S. J., and Johnson, C. E.: Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model, Geosci. Model Dev., 3, 519\u2013551, https:\/\/doi.org\/10.5194\/gmd-3-519-2010, 2010.","DOI":"10.5194\/gmd-3-519-2010"},{"key":"ref32","doi-asserted-by":"crossref","unstructured":"Minikin, A., Petzold, A., Str\u00f6m, J., Krejci, R., Seifert, M., van\u00a0Velthoven,\nP., Schlager, H., and Schumann, U.: Aircraft observations of the upper\ntropospheric fine particle aerosol in the Northern and Southern Hemispheres\nat midlatitudes, Geophys. Res. Lett., 30, 1503,\nhttps:\/\/doi.org\/10.1029\/2002gl016458, 2003.","DOI":"10.1029\/2002GL016458"},{"key":"ref33","doi-asserted-by":"crossref","unstructured":"Napari, I., Noppel, M., Vehkamaki, H., and Kulmala, M.: Parametrization of ternary\nnucleation rates for H2SO4-NH3-H2O vapors, J. Geophys. Res., 107, 4381, https:\/\/doi.org\/10.1029\/2002JD002132,\n2002.","DOI":"10.1029\/2002JD002132"},{"key":"ref34","doi-asserted-by":"crossref","unstructured":"Paluch, I. R. and Knight, C. A.: Mixing and the evolution of cloud droplet\nsize spectra in a vigorous continental cumulus, J. Atmos. Sci., 41,\n1801\u20131815, 1984.","DOI":"10.1175\/1520-0469(1984)041<1801:MATEOC>2.0.CO;2"},{"key":"ref35","doi-asserted-by":"crossref","unstructured":"Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961\u20131971, https:\/\/doi.org\/10.5194\/acp-7-1961-2007, 2007.","DOI":"10.5194\/acp-7-1961-2007"},{"key":"ref36","doi-asserted-by":"crossref","unstructured":"Ramsay, R., Di Marco, C. F., S\u00f6rgel, M., Heal, M. R., Carbone, S., Artaxo, P., de Ara\u00f9jo, A. C., S\u00e1, M., P\u00f6hlker, C., Lavric, J., Andreae, M. O., and Nemitz, E.: Concentrations and biosphere\u2013atmosphere fluxes of inorganic trace gases and associated ionic aerosol counterparts over the Amazon rainforest, Atmos. Chem. Phys., 20, 15551\u201315584, https:\/\/doi.org\/10.5194\/acp-20-15551-2020, 2020.","DOI":"10.5194\/acp-20-15551-2020"},{"key":"ref37","doi-asserted-by":"crossref","unstructured":"Riccobono, F., Schobesberger, S., Scott, C. E., Dommen, J., Ortega, I. K.,\nRondo, L., Almeida, J., Amorim, A., Bianchi, F., Breitenlechner, M., David,\nA., Downard, A., Dunne, E. M., Duplissy, J., Ehrhart, S., Flagan, R. C.,\nFranchin, A., Hansel, A., Junninen, H., Kajos, M., Keskinen, H., Kupc, A.,\nKurten, A., Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Makhmutov, V.,\nMathot, S., Nieminen, T., Onnela, A., Petaja, T., Praplan, A. P., Santos, F.\nD., Schallhart, S., Seinfeld, J. H., Sipila, M., Spracklen, D. V., Stozhkov,\nY., Stratmann, F., Tome, A., Tsagkogeorgas, G., Vaattovaara, P., Viisanen,\nY., Vrtala, A., Wagner, P. E., Weingartner, E., Wex, H., Wimmer, D.,\nCarslaw, K. S., Curtius, J., Donahue, N. M., Kirkby, J., Kulmala, M.,\nWorsnop, D. R., and Baltensperger, U.: Oxidation products of biogenic\nemissions contribute to nucleation of atmospheric particles, Science, 344,\n717\u2013721, https:\/\/doi.org\/10.1126\/science.1243527, 2014.","DOI":"10.1126\/science.1243527"},{"key":"ref38","doi-asserted-by":"crossref","unstructured":"Saathoff, H., Naumann, K.-H., M\u00f6hler, O., Jonsson, \u00c5. M., Hallquist, M., Kiendler-Scharr, A., Mentel, Th. F., Tillmann, R., and Schurath, U.: Temperature dependence of yields of secondary organic aerosols from the ozonolysis of \u03b1-pinene and limonene, Atmos. Chem. Phys., 9, 1551\u20131577, https:\/\/doi.org\/10.5194\/acp-9-1551-2009, 2009.","DOI":"10.5194\/acp-9-1551-2009"},{"key":"ref39","doi-asserted-by":"crossref","unstructured":"Schulz, C., Schneider, J., Amorim Holanda, B., Appel, O., Costa, A., de S\u00e1, S. S., Dreiling, V., F\u00fctterer, D., Jurkat-Witschas, T., Klimach, T., Knote, C., Kr\u00e4mer, M., Martin, S. T., Mertes, S., P\u00f6hlker, M. L., Sauer, D., Voigt, C., Walser, A., Weinzierl, B., Ziereis, H., Z\u00f6ger, M., Andreae, M. O., Artaxo, P., Machado, L. A. T., P\u00f6schl, U., Wendisch, M., and Borrmann, S.: Aircraft-based observations of isoprene-epoxydiol-derived secondary organic aerosol (IEPOX-SOA) in the tropical upper troposphere over the Amazon region, Atmos. Chem. Phys., 18, 14979\u201315001, https:\/\/doi.org\/10.5194\/acp-18-14979-2018, 2018.","DOI":"10.5194\/acp-18-14979-2018"},{"key":"ref40","doi-asserted-by":"crossref","unstructured":"Scott, C. E., Rap, A., Spracklen, D. V., Forster, P. M., Carslaw, K. S., Mann, G. W., Pringle, K. J., Kivek\u00e4s, N., Kulmala, M., Lihavainen, H., and Tunved, P.: The direct and indirect radiative effects of biogenic secondary organic aerosol, Atmos. Chem. Phys., 14, 447\u2013470, https:\/\/doi.org\/10.5194\/acp-14-447-2014, 2014.","DOI":"10.5194\/acp-14-447-2014"},{"key":"ref41","doi-asserted-by":"crossref","unstructured":"Su, H., Rose, D., Cheng, Y. F., Gunthe, S. S., Massling, A., Stock, M., Wiedensohler, A., Andreae, M. O., and P\u00f6schl, U.: Hygroscopicity distribution concept for measurement data analysis and modeling of aerosol particle mixing state with regard to hygroscopic growth and CCN activation, Atmos. Chem. Phys., 10, 7489\u20137503, https:\/\/doi.org\/10.5194\/acp-10-7489-2010, 2010.","DOI":"10.5194\/acp-10-7489-2010"},{"key":"ref42","doi-asserted-by":"crossref","unstructured":"Tr\u00f6stl, J., Chuang, W. K., Gordon, H., Heinritzi, M., Yan, C., Molteni,\nU., Ahlm, L., Frege, C., Bianchi, F., Wagner, R., Simon, M., Lehtipalo, K.,\nWilliamson, C., Craven, J. S., Duplissy, J., Adamov, A., Almeida, J.,\nBernhammer, A. K., Breitenlechner, M., Brilke, S., Dias, A., Ehrhart, S.,\nFlagan, R. C., Franchin, A., Fuchs, C., Guida, R., Gysel, M., Hansel, A.,\nHoyle, C. R., Jokinen, T., Junninen, H., Kangasluoma, J., Keskinen, H., Kim,\nJ., Krapf, M., Kurten, A., Laaksonen, A., Lawler, M., Leiminger, M., Mathot,\nS., Mohler, O., Nieminen, T., Onnela, A., Petaja, T., Piel, F. M.,\nMiettinen, P., Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S.,\nSengupta, K., Sipila, M., Smith, J. N., Steiner, G., Tome, A., Virtanen, A.,\nWagner, A. C., Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P., Carslaw,\nK. S., Curtius, J., Dommen, J., Kirkby, J., Kulmala, M., Riipinen, I.,\nWorsnop, D. R., Donahue, N. M., and Baltensperger, U.: The role of\nlow-volatility organic compounds in initial particle growth in the\natmosphere, Nature, 533, 527\u2013531, https:\/\/doi.org\/10.1038\/nature18271, 2016.","DOI":"10.1038\/nature18271"},{"key":"ref43","doi-asserted-by":"crossref","unstructured":"Wang, J., Krejci, R., Giangrande, S., Kuang, C., Barbosa, H. M., Brito, J.,\nCarbone, S., Chi, X., Comstock, J., Ditas, F., Lavric, J., Manninen, H. E.,\nMei, F., Moran-Zuloaga, D., Pohlker, C., Pohlker, M. L., Saturno, J.,\nSchmid, B., Souza, R. A., Springston, S. R., Tomlinson, J. M., Toto, T.,\nWalter, D., Wimmer, D., Smith, J. N., Kulmala, M., Machado, L. A., Artaxo,\nP., Andreae, M. O., Petaja, T., and Martin, S. T.: Amazon boundary layer\naerosol concentration sustained by vertical transport during rainfall,\nNature, 539, 416\u2013419, https:\/\/doi.org\/10.1038\/nature19819, 2016.","DOI":"10.1038\/nature19819"},{"key":"ref44","doi-asserted-by":"crossref","unstructured":"Wang, Q., Saturno, J., Chi, X., Walter, D., Lavric, J. V., Moran-Zuloaga, D., Ditas, F., P\u00f6hlker, C., Brito, J., Carbone, S., Artaxo, P., and Andreae, M. O.: Modeling investigation of light-absorbing aerosols in the Amazon Basin during the wet season, Atmos. Chem. Phys., 16, 14775\u201314794, https:\/\/doi.org\/10.5194\/acp-16-14775-2016, 2016.","DOI":"10.5194\/acp-16-14775-2016"},{"key":"ref45","doi-asserted-by":"crossref","unstructured":"Watson, L. A., Shallcross, D. E., Utembe, S. R., and Jenkin, M. E.: A Common\nRepresentative Intermediates (CRI) mechanism for VOC degradation. Part 2:\nGas phase mechanism reduction, Atmos. Environ., 42, 7196\u20137204,\nhttps:\/\/doi.org\/10.1016\/j.atmosenv.2008.07.034, 2008.","DOI":"10.1016\/j.atmosenv.2008.07.034"},{"key":"ref46","doi-asserted-by":"crossref","unstructured":"Watson-Parris, D., Schutgens, N., Reddington, C., Pringle, K. J., Liu, D., Allan, J. D., Coe, H., Carslaw, K. S., and Stier, P.: In situ constraints on the vertical distribution of global aerosol, Atmos. Chem. Phys., 19, 11765\u201311790, https:\/\/doi.org\/10.5194\/acp-19-11765-2019, 2019.","DOI":"10.5194\/acp-19-11765-2019"},{"key":"ref47","doi-asserted-by":"crossref","unstructured":"Wendisch, M., P\u00f6schl, U., Andreae, M. O., Machado, L. A. T., Albrecht,\nR., Schlager, H., Rosenfeld, D., Martin, S. T., Abdelmonem, A., Afchine, A.,\nAra\u00f9jo, A. C., Artaxo, P., Aufmhoff, H., Barbosa, H. M. J., Borrmann,\nS., Braga, R., Buchholz, B., Cecchini, M. A., Costa, A., Curtius, J.,\nDollner, M., Dorf, M., Dreiling, V., Ebert, V., Ehrlich, A., Ewald, F.,\nFisch, G., Fix, A., Frank, F., F\u00fctterer, D., Heckl, C., Heidelberg, F.,\nH\u00fcneke, T., J\u00e4kel, E., J\u00e4rvinen, E., Jurkat, T., Kanter, S.,\nK\u00e4stner, U., Kenntner, M., Kesselmeier, J., Klimach, T., Knecht, M.,\nKohl, R., K\u00f6lling, T., Kr\u00e4mer, M., Kr\u00fcger, M., Krisna, T. C.,\nLavric, J. V., Longo, K., Mahnke, C., Manzi, A. O., Mayer, B., Mertes, S.,\nMinikin, A., Molleker, S., M\u00fcnch, S., Nillius, B., Pfeilsticker, K.,\nP\u00f6hlker, C., Roiger, A., Rose, D., Rosenow, D., Sauer, D., Schnaiter,\nM., Schneider, J., Schulz, C., de Souza, R. A. F., Spanu, A., Stock, P.,\nVila, D., Voigt, C., Walser, A., Walter, D., Weigel, R., Weinzierl, B.,\nWerner, F., Yamasoe, M. A., Ziereis, H., Zinner, T., and Z\u00f6ger, M.:\nACRIDICON\u2013CHUVA Campaign: Studying Tropical Deep Convective Clouds and\nPrecipitation over Amazonia Using the New German Research Aircraft HALO,\nB. Am. Meteorol. Soc., 97, 1885\u20131908,\nhttps:\/\/doi.org\/10.1175\/bams-d-14-00255.1, 2016.","DOI":"10.1175\/BAMS-D-14-00255.1"},{"key":"ref48","doi-asserted-by":"crossref","unstructured":"Wesely, M. L.: Parameterization of surface resistances to gaseous dry\ndeposition in regional-scale numerical models, Atmos. Environ.,\n23, 1293\u20131304, https:\/\/doi.org\/10.1016\/0004-6981(89)90153-4, 1989.","DOI":"10.1016\/0004-6981(89)90153-4"},{"key":"ref49","doi-asserted-by":"crossref","unstructured":"Wexler, A. S., Lurmann, F. W., and Seinfeld, J. H.: Modelling urban and\nregional aerosols \u2013 I. model development, Atmos. Environ., 28,\n531\u2013546, https:\/\/doi.org\/10.1016\/1352-2310(94)90129-5, 1994.","DOI":"10.1016\/1352-2310(94)90129-5"},{"key":"ref50","doi-asserted-by":"crossref","unstructured":"Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and Soja, A. J.: The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning, Geosci. Model Dev., 4, 625\u2013641, https:\/\/doi.org\/10.5194\/gmd-4-625-2011, 2011.","DOI":"10.5194\/gmd-4-625-2011"},{"key":"ref51","doi-asserted-by":"crossref","unstructured":"Williamson, C. J., Kupc, A., Axisa, D., Bilsback, K. R., Bui, T.,\nCampuzano-Jost, P., Dollner, M., Froyd, K. D., Hodshire, A. L., Jimenez, J.\nL., Kodros, J. K., Luo, G., Murphy, D. M., Nault, B. A., Ray, E. A.,\nWeinzierl, B., Wilson, J. C., Yu, F., Yu, P., Pierce, J. R., and Brock, C.\nA.: A large source of cloud condensation nuclei from new particle formation\nin the tropics, Nature, 574, 399\u2013403, https:\/\/doi.org\/10.1038\/s41586-019-1638-9, 2019.","DOI":"10.1038\/s41586-019-1638-9"},{"key":"ref52","doi-asserted-by":"crossref","unstructured":"Yu, F., Wang, Z., Luo, G., and Turco, R.: Ion-mediated nucleation as an important global source of tropospheric aerosols, Atmos. Chem. Phys., 8, 2537\u20132554, https:\/\/doi.org\/10.5194\/acp-8-2537-2008, 2008.","DOI":"10.5194\/acp-8-2537-2008"},{"key":"ref53","doi-asserted-by":"crossref","unstructured":"Yu, F., Luo, G., Nadykto, A. B., and Herb, J.: Impact of temperature dependence on the possible contribution of organics to new particle formation in the atmosphere, Atmos. Chem. Phys., 17, 4997\u20135005, https:\/\/doi.org\/10.5194\/acp-17-4997-2017, 2017.","DOI":"10.5194\/acp-17-4997-2017"},{"key":"ref54","doi-asserted-by":"crossref","unstructured":"Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for\nSimulating Aerosol Interactions and Chemistry (MOSAIC), J. Geophys.\nRes.-Atmos., 113, D13204, https:\/\/doi.org\/10.1029\/2007jd008782, 2008.","DOI":"10.1029\/2007JD008782"},{"key":"ref55","doi-asserted-by":"crossref","unstructured":"Zhao, B., Shrivastava, M., Donahue, N. M., Gordon, H., Schervish, M.,\nShilling, J. E., Zaveri, R. A., Wang, J., Andreae, M. O., Zhao, C., Gaudet,\nB., Liu, Y., Fan, J., and Fast, J. D.: High concentration of ultrafine\nparticles in the Amazon free troposphere produced by organic new particle\nformation, P. Natl. Acad. Sci. USA, 117, 25344,\nhttps:\/\/doi.org\/10.1073\/pnas.2006716117, 2020.","DOI":"10.1073\/pnas.2006716117"},{"key":"ref56","doi-asserted-by":"crossref","unstructured":"Zhu, J. L. and Penner, J. E.: Global Modeling of Secondary Organic Aerosol\nWith Organic Nucleation, J. Geophys. Res.-Atmos., 124, 8260\u20138286,\nhttps:\/\/doi.org\/10.1029\/2019jd030414, 2019.","DOI":"10.1029\/2019JD030414"},{"key":"ref57","doi-asserted-by":"crossref","unstructured":"Zhu, J. L., Penner, J. E., Yu, F. Q., Sillman, S., Andreae, M. O., and Coe,\nH.: Decrease in radiative forcing by organic aerosol nucleation, climate,\nand land use change, Nat. Commun., 10, 423, https:\/\/doi.org\/10.1038\/s41467-019-08407-7,\n2019.","DOI":"10.1038\/s41467-019-08407-7"}],"container-title":["Atmospheric Chemistry and Physics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/acp.copernicus.org\/articles\/23\/251\/2023\/acp-23-251-2023.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,13]],"date-time":"2023-01-13T07:02:32Z","timestamp":1673593352000},"score":1,"resource":{"primary":{"URL":"https:\/\/acp.copernicus.org\/articles\/23\/251\/2023\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,1,13]]},"references-count":57,"journal-issue":{"issue":"1","published-online":{"date-parts":[[2023]]}},"URL":"http:\/\/dx.doi.org\/10.5194\/acp-23-251-2023","relation":{"has-review":[{"id-type":"doi","id":"10.5194\/acp-2022-530-RC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2022-530-AC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2022-530-RC2","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2022-530-AC2","asserted-by":"subject"}],"is-part-of":[{"id-type":"doi","id":"10.17617\/3.3ISOYC","asserted-by":"subject"}],"has-preprint":[{"id-type":"doi","id":"10.5194\/acp-2022-530","asserted-by":"subject"}]},"ISSN":["1680-7324"],"issn-type":[{"value":"1680-7324","type":"electronic"}],"subject":["Atmospheric Science"],"published":{"date-parts":[[2023,1,13]]}}}