uni-leipzig-open-access/json/acp-23-15289-2023

1 line
36 KiB
Plaintext

{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,12,15]],"date-time":"2023-12-15T00:39:15Z","timestamp":1702600755121},"reference-count":63,"publisher":"Copernicus GmbH","issue":"24","license":[{"start":{"date-parts":[[2023,12,14]],"date-time":"2023-12-14T00:00:00Z","timestamp":1702512000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","award":["268020496 \u2013 TRR 172","428312742 \u2013 TRR 301","Priority Program SPP PROM VO 1504\/5-1"]},{"DOI":"10.13039\/501100008678","name":"Universit\u00e4t Leipzig","doi-asserted-by":"publisher","award":["NA"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Atmos. Chem. Phys."],"abstract":"<jats:p>Abstract. Due to their potential to either warm or cool the surface, liquid-phase clouds and their interaction with the ice-free and sea-ice-covered ocean largely determine the energy budget and surface temperature in the Arctic. Here, we use airborne measurements of solar spectral cloud reflectivity obtained during the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign in summer 2017 and the Arctic Amplification: FLUXes in the Cloudy Atmospheric Boundary Layer (AFLUX) campaign in spring 2019 in the vicinity of Svalbard to retrieve microphysical properties of liquid-phase clouds. The retrieval was tailored to provide consistent results over sea-ice and open-ocean surfaces. Clouds including ice crystals that significantly bias the retrieval results were filtered from the analysis. A comparison with in situ measurements shows good agreement with the retrieved effective radii and an overestimation of the liquid water path and reduced agreement for boundary-layer clouds with varying fractions of ice water content. Considering these limitations, retrieved microphysical properties of clouds observed over the ice-free ocean and sea ice in spring and early summer in the Arctic are compared. In early summer, the liquid-phase clouds have a larger median effective radius (9.5\u2009\u00b5m), optical thickness (11.8) and effective liquid water path (72.3\u2009g\u2009m\u22122) compared to spring conditions (8.7\u2009\u00b5m, 8.3 and 51.8\u2009g\u2009m\u22122, respectively). The results show larger cloud droplets over the ice-free Arctic Ocean compared to sea ice in spring and early summer caused mainly by the temperature differences in the surfaces and related convection processes. Due to their larger droplet sizes, the liquid clouds over the ice-free ocean have slightly reduced optical thicknesses and lower liquid water contents compared to the sea-ice surface conditions. The comprehensive dataset on microphysical properties of Arctic liquid-phase clouds is publicly available and could, e.g., help to constrain models or be used to investigate effects of liquid-phase clouds on the radiation budget.\n <\/jats:p>","DOI":"10.5194\/acp-23-15289-2023","type":"journal-article","created":{"date-parts":[[2023,12,14]],"date-time":"2023-12-14T14:41:38Z","timestamp":1702564898000},"page":"15289-15304","source":"Crossref","is-referenced-by-count":0,"title":["Variability and properties of liquid-dominated clouds over the ice-free and sea-ice-covered Arctic Ocean"],"prefix":"10.5194","volume":"23","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-1544-6668","authenticated-orcid":false,"given":"Marcus","family":"Klingebiel","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0860-8216","authenticated-orcid":false,"given":"Andr\u00e9","family":"Ehrlich","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6430-9734","authenticated-orcid":false,"given":"Elena","family":"Ruiz-Donoso","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7267-9353","authenticated-orcid":false,"given":"Nils","family":"Risse","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4438-3077","authenticated-orcid":false,"given":"Imke","family":"Schirmacher","sequence":"additional","affiliation":[]},{"given":"Evelyn","family":"J\u00e4kel","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1896-1574","authenticated-orcid":false,"given":"Michael","family":"Sch\u00e4fer","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8461-5261","authenticated-orcid":false,"given":"Kevin","family":"Wolf","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6229-9616","authenticated-orcid":false,"given":"Mario","family":"Mech","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8603-2756","authenticated-orcid":false,"given":"Manuel","family":"Moser","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8925-7731","authenticated-orcid":false,"given":"Christiane","family":"Voigt","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4652-5561","authenticated-orcid":false,"given":"Manfred","family":"Wendisch","sequence":"additional","affiliation":[]}],"member":"3145","published-online":{"date-parts":[[2023,12,14]]},"reference":[{"key":"ref1","doi-asserted-by":"crossref","unstructured":"Baumgardner, D., Jonsson, H., Dawson, W., O'Connor, D., and Newton, R.: The cloud, aerosol and precipitation spectrometer: a new instrument for cloud investigations, Atmos. Res., 59\u201360, 251\u2013264, https:\/\/doi.org\/10.1016\/s0169-8095(01)00119-3, 2001.\u2002a","DOI":"10.1016\/S0169-8095(01)00119-3"},{"key":"ref2","doi-asserted-by":"crossref","unstructured":"Baumgardner, D., Abel, S.\u00a0J., Axisa, D., Cotton, R., Crosier, J., Field, P., Gurganus, C., Heymsfield, A., Korolev, A., Kr\u00e4mer, M., Lawson, P., McFarquhar, G., Ulanowski, Z., and Um, J.: Cloud Ice Properties: In Situ Measurement Challenges, Meteor. Mon., 58, 9.1\u20139.23, https:\/\/doi.org\/10.1175\/amsmonographs-d-16-0011.1, 2017.\u2002a, b","DOI":"10.1175\/AMSMONOGRAPHS-D-16-0011.1"},{"key":"ref3","doi-asserted-by":"crossref","unstructured":"Bierwirth, E., Ehrlich, A., Wendisch, M., Gayet, J.-F., Gourbeyre, C., Dupuy, R., Herber, A., Neuber, R., and Lampert, A.: Optical thickness and effective radius of Arctic boundary-layer clouds retrieved from airborne nadir and imaging spectrometry, Atmos. Meas. Tech., 6, 1189\u20131200, https:\/\/doi.org\/10.5194\/amt-6-1189-2013, 2013.\u2002a","DOI":"10.5194\/amt-6-1189-2013"},{"key":"ref4","doi-asserted-by":"crossref","unstructured":"Coopman, Q., Hoose, C., and Stengel, M.: Detection of Mixed-Phase Convective Clouds by a Binary Phase Information From the Passive Geostationary Instrument SEVIRI, J. Geophys. Res.-Atmos., 124, 5045\u20135057, https:\/\/doi.org\/10.1029\/2018JD029772, 2019.\u2002a","DOI":"10.1029\/2018JD029772"},{"key":"ref5","doi-asserted-by":"crossref","unstructured":"Ehrlich, A., Bierwirth, E., Wendisch, M., Gayet, J.-F., Mioche, G., Lampert, A., and Heintzenberg, J.: Cloud phase identification of Arctic boundary-layer clouds from airborne spectral reflection measurements: test of three approaches, Atmos. Chem. Phys., 8, 7493\u20137505, https:\/\/doi.org\/10.5194\/acp-8-7493-2008, 2008.\u2002a, b","DOI":"10.5194\/acp-8-7493-2008"},{"key":"ref6","doi-asserted-by":"crossref","unstructured":"Ehrlich, A., Bierwirth, E., Istomina, L., and Wendisch, M.: Combined retrieval of Arctic liquid water cloud and surface snow properties using airborne spectral solar remote sensing, Atmos. Meas. Tech., 10, 3215\u20133230, https:\/\/doi.org\/10.5194\/amt-10-3215-2017, 2017.\u2002a, b, c, d, e, f, g","DOI":"10.5194\/amt-10-3215-2017"},{"key":"ref7","unstructured":"Ehrlich, A., Wendisch, M., L\u00fcpkes, C., Crewell, S., and Mech, M.: Master tracks in different resolutions during POLAR\u00a05 campaign ACLOUD_2017, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.888173, 2018.\u2002a"},{"key":"ref8","doi-asserted-by":"crossref","unstructured":"Ehrlich, A., Wendisch, M., L\u00fcpkes, C., Buschmann, M., Bozem, H., Chechin, D., Clemen, H.-C., Dupuy, R., Eppers, O., Hartmann, J., Herber, A., J\u00e4kel, E., J\u00e4rvinen, E., Jourdan, O., K\u00e4stner, U., Kliesch, L.-L., K\u00f6llner, F., Mech, M., Mertes, S., Neuber, R., Ruiz-Donoso, E., Schnaiter, M., Schneider, J., Stapf, J., and Zanatta, M.: A comprehensive in situ and remote sensing data set from the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign, Earth Syst. Sci. Data, 11, 1853\u20131881, https:\/\/doi.org\/10.5194\/essd-11-1853-2019, 2019.\u2002a, b, c","DOI":"10.5194\/essd-11-1853-2019"},{"key":"ref9","doi-asserted-by":"crossref","unstructured":"Ehrlich, A., Z\u00f6ger, M., Giez, A., Nenakhov, V., Mallaun, C., Maser, R., R\u00f6schenthaler, T., Luebke, A. E., Wolf, K., Stevens, B., and Wendisch, M.: A new airborne broadband radiometer system and an efficient method to correct dynamic thermal offsets, Atmos. Meas. Tech., 16, 1563\u20131581, https:\/\/doi.org\/10.5194\/amt-16-1563-2023, 2023.\u2002a","DOI":"10.5194\/amt-16-1563-2023"},{"key":"ref10","doi-asserted-by":"crossref","unstructured":"Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U., Kylling, J., Richter, B., Pause, C., Dowling, T., and Bugliaro, L.: The libRadtran software package for radiative transfer calculations (version 2.0.1), Geosci. Model Dev., 9, 1647\u20131672, https:\/\/doi.org\/10.5194\/gmd-9-1647-2016, 2016. \u2002a, b","DOI":"10.5194\/gmd-9-1647-2016"},{"key":"ref11","doi-asserted-by":"crossref","unstructured":"Faber, S., French, J. R., and Jackson, R.: Laboratory and in-flight evaluation of measurement uncertainties from a commercial Cloud Droplet Probe (CDP), Atmos. Meas. Tech., 11, 3645\u20133659, https:\/\/doi.org\/10.5194\/amt-11-3645-2018, 2018.\u2002a","DOI":"10.5194\/amt-11-3645-2018"},{"key":"ref12","doi-asserted-by":"crossref","unstructured":"Fricke, C., Ehrlich, A., J\u00e4kel, E., Bohn, B., Wirth, M., and Wendisch, M.: Influence of local surface albedo variability and ice crystal shape on passive remote sensing of thin cirrus, Atmos. Chem. Phys., 14, 1943\u20131958, https:\/\/doi.org\/10.5194\/acp-14-1943-2014, 2014.\u2002a","DOI":"10.5194\/acp-14-1943-2014"},{"key":"ref13","doi-asserted-by":"crossref","unstructured":"Gurganus, C. and Lawson, P.: Laboratory and Flight Tests of 2D Imaging Probes: Toward a Better Understanding of Instrument Performance and the Impact on Archived Data, J. Atmos. Ocean. Tech., 35, 1533\u20131553, https:\/\/doi.org\/10.1175\/jtech-d-17-0202.1, 2018.\u2002a","DOI":"10.1175\/JTECH-D-17-0202.1"},{"key":"ref14","doi-asserted-by":"crossref","unstructured":"Heymsfield, A.\u00a0J., Schmitt, C., Bansemer, A., and Twohy, C.\u00a0H.: Improved Representation of Ice Particle Masses Based on Observations in Natural Clouds, J. Atmos. Sci., 67, 3303\u20133318, https:\/\/doi.org\/10.1175\/2010jas3507.1, 2010.\u2002a","DOI":"10.1175\/2010JAS3507.1"},{"key":"ref15","doi-asserted-by":"crossref","unstructured":"Hogan, R.\u00a0J., Tian, L., Brown, P. R.\u00a0A., Westbrook, C.\u00a0D., Heymsfield, A.\u00a0J., and Eastment, J.\u00a0D.: Radar Scattering from Ice Aggregates Using the Horizontally Aligned Oblate Spheroid Approximation, J. Appl. Meteorol. Clim., 51, 655\u2013671, https:\/\/doi.org\/10.1175\/jamc-d-11-074.1, 2012.\u2002a","DOI":"10.1175\/JAMC-D-11-074.1"},{"key":"ref16","doi-asserted-by":"crossref","unstructured":"Horv\u00e1th, A., Seethala, C., and Deneke, H.: View angle dependence of MODIS liquid water path retrievals in warm oceanic clouds, J. Geophys. Res.-Atmos., 119, 8304\u20138328, https:\/\/doi.org\/10.1002\/2013JD021355, 2014.\u2002a","DOI":"10.1002\/2013JD021355"},{"key":"ref17","unstructured":"J\u00e4kel, E., Ehrlich, A., Sch\u00e4fer, M., and Wendisch, M.: Aircraft measurements of spectral solar up- and downward irradiances in the Arctic during the ACLOUD campaign 2017, Universit\u00e4t Leipzig, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.899177, 2019a.\u2002a"},{"key":"ref18","doi-asserted-by":"crossref","unstructured":"J\u00e4kel, E., Stapf, J., Wendisch, M., Nicolaus, M., Dorn, W., and Rinke, A.: Validation of the sea ice surface albedo scheme of the regional climate model HIRHAM\u2013NAOSIM using aircraft measurements during the ACLOUD\/PASCAL campaigns, The Cryosphere, 13, 1695\u20131708, https:\/\/doi.org\/10.5194\/tc-13-1695-2019, 2019b.\u2002a","DOI":"10.5194\/tc-13-1695-2019"},{"key":"ref19","doi-asserted-by":"crossref","unstructured":"J\u00e4kel, E., Carlsen, T., Ehrlich, A., Wendisch, M., Sch\u00e4fer, M., Rosenburg, S., Nakoudi, K., Zanatta, M., Birnbaum, G., Helm, V., Herber, A., Istomina, L., Mei, L., and Rohde, A.: Measurements and Modeling of Optical-Equivalent Snow Grain Sizes under Arctic Low-Sun Conditions, Remote Sens., 13, 4904, https:\/\/doi.org\/10.3390\/rs13234904, 2021.\u2002a","DOI":"10.3390\/rs13234904"},{"key":"ref20","doi-asserted-by":"crossref","unstructured":"Kleine, J., Voigt, C., Sauer, D., Schlager, H., Scheibe, M., Jurkat-Witschas, T., Kaufmann, S., K\u00e4rcher, B., and Anderson, B. E.: In situ observations of ice particle losses in a young persistent contrail, Geophysical Research Lett., 45, 13553\u201313561, https:\/\/doi.org\/10.1029\/2018GL079390, 2018.\u2002a","DOI":"10.1029\/2018GL079390"},{"key":"ref21","unstructured":"Kliesch, L.-L. and Mech, M.: Airborne radar reflectivity and brightness temperature measurements with POLAR 5 during ACLOUD in May and June 2017, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.899565, 2019.\u2002a"},{"key":"ref22","doi-asserted-by":"crossref","unstructured":"Klingebiel, M., de Lozar, A., Molleker, S., Weigel, R., Roth, A., Schmidt, L., Meyer, J., Ehrlich, A., Neuber, R., Wendisch, M., and Borrmann, S.: Arctic low-level boundary layer clouds: in situ measurements and simulations of mono- and bimodal supercooled droplet size distributions at the top layer of liquid phase clouds, Atmos. Chem. Phys., 15, 617\u2013631, https:\/\/doi.org\/10.5194\/acp-15-617-2015, 2015.\u2002a, b, c","DOI":"10.5194\/acp-15-617-2015"},{"key":"ref23","doi-asserted-by":"crossref","unstructured":"Klingebiel, M., Ehrlich, A., J\u00e4kel, E., Sch\u00e4fer, M., Ruiz-Donoso, E., Wolf, K., and Wendisch, M.: Properties of liquid-dominated clouds over the ice-free and sea-ice-covered Arctic Ocean during ACLOUD, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.960907, 2023a.\u2002a, b","DOI":"10.5194\/acp-2022-848"},{"key":"ref24","doi-asserted-by":"crossref","unstructured":"Klingebiel, M., Ehrlich, A., J\u00e4kel, E., Sch\u00e4fer, M., Ruiz-Donoso, E., Wolf, K., and Wendisch, M.: Properties of liquid-dominated clouds over the ice-free and sea-ice-covered Arctic Ocean during AFLUX, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.960906, 2023b.\u2002a, b","DOI":"10.5194\/acp-2022-848"},{"key":"ref25","doi-asserted-by":"crossref","unstructured":"Korolev, A., McFarquhar, G., Field, P.\u00a0R., Franklin, C., Lawson, P., Wang, Z., Williams, E., Abel, S.\u00a0J., Axisa, D., Borrmann, S., Crosier, J., Fugal, J., Kr\u00e4mer, M., Lohmann, U., Schlenczek, O., Schnaiter, M., and Wendisch, M.: Mixed-Phase Clouds: Progress and Challenges, Meteor. Mon., 58, 5.1\u20135.50, https:\/\/doi.org\/10.1175\/amsmonographs-d-17-0001.1, 2017.\u2002a","DOI":"10.1175\/AMSMONOGRAPHS-D-17-0001.1"},{"key":"ref26","doi-asserted-by":"crossref","unstructured":"Light, B., Smith, M.\u00a0M., Perovich, D.\u00a0K., Webster, M.\u00a0A., Holland, M.\u00a0M., Linhardt, F., Raphael, I.\u00a0A., Clemens-Sewall, D., Macfarlane, A.\u00a0R., Anhaus, P., and Bailey, D.\u00a0A.: Arctic sea ice albedo: Spectral composition, spatial heterogeneity, and temporal evolution observed during the MOSAiC drift, Elem. Sci. Anth., 10, 000103, https:\/\/doi.org\/10.1525\/elementa.2021.000103, 2022.\u2002a","DOI":"10.1525\/elementa.2021.000103"},{"key":"ref27","doi-asserted-by":"crossref","unstructured":"Liu, Y., Ackerman, S.\u00a0A., Maddux, B.\u00a0C., Key, J.\u00a0R., and Frey, R.\u00a0A.: Errors in Cloud Detection over the Arctic Using a Satellite Imager and Implications for Observing Feedback Mechanisms, J. Climate, 23, 1894\u20131907, https:\/\/doi.org\/10.1175\/2009JCLI3386.1, 2010.\u2002a","DOI":"10.1175\/2009JCLI3386.1"},{"key":"ref28","unstructured":"L\u00fcpkes, C., Ehrlich, A., Wendisch, M., Crewell, S., and Mech, M.: Master tracks in different resolutions during POLAR\u00a05 campaign AFLUX 2019, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.902876, 2019.\u2002a"},{"key":"ref29","doi-asserted-by":"crossref","unstructured":"Mayer, B. and Kylling, A.: Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use, Atmos. Chem. Phys., 5, 1855\u20131877, https:\/\/doi.org\/10.5194\/acp-5-1855-2005, 2005.\u2002a, b","DOI":"10.5194\/acp-5-1855-2005"},{"key":"ref30","doi-asserted-by":"crossref","unstructured":"McFarquhar, G.\u00a0M., Zhang, G., Poellot, M.\u00a0R., Kok, G.\u00a0L., McCoy, R., Tooman, T., Fridlind, A., and Heymsfield, A.\u00a0J.: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 1.\u00a0Observations, J. Geophys. Res., 112, D24201, https:\/\/doi.org\/10.1029\/2007jd008633, 2007.\u2002a","DOI":"10.1029\/2007JD008633"},{"key":"ref31","doi-asserted-by":"crossref","unstructured":"Mech, M., Kliesch, L.-L., Anh\u00e4user, A., Rose, T., Kollias, P., and Crewell, S.: Microwave Radar\/radiometer for Arctic Clouds (MiRAC): first insights from the ACLOUD campaign, Atmos. Meas. Tech., 12, 5019\u20135037, https:\/\/doi.org\/10.5194\/amt-12-5019-2019, 2019.\u2002a","DOI":"10.5194\/amt-12-5019-2019"},{"key":"ref32","doi-asserted-by":"crossref","unstructured":"Mech, M., Ehrlich, A., Herber, A., L\u00fcpkes, C., Wendisch, M., Becker, S., Boose, Y., Chechin, D., Crewell, S., Dupuy, R., Gourbeyre, C., Hartmann, J., J\u00e4kel, E., Jourdan, O., Kliesch, L.-L., Klingebiel, M., Kulla, B.\u00a0S., Mioche, G., Moser, M., Risse, N., Donoso, E.\u00a0R., Sch\u00e4fer, M., Stapf, J., and Voigt, C.: MOSAiC-ACA and AFLUX \u2013 Arctic airborne campaigns characterizing the exit area of MOSAiC, Sci. Data, 9, 790, https:\/\/doi.org\/10.1038\/s41597-022-01900-7, 2022a.\u2002a","DOI":"10.1038\/s41597-022-01900-7"},{"key":"ref33","unstructured":"Mech, M., Risse, N., Crewell, S., and Kliesch, L.-L.: Radar reflectivities at 94\u2009GHz and microwave brightness temperature measurements at 89\u2009GHz during the AFLUX Arctic airborne campaign in spring 2019 out of Svalbard, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.944506, 2022b.\u2002a, b"},{"key":"ref34","doi-asserted-by":"crossref","unstructured":"Mioche, G., Jourdan, O., Ceccaldi, M., and Delano\u00eb, J.: Variability of mixed-phase clouds in the Arctic with a focus on the Svalbard region: a study based on spaceborne active remote sensing, Atmos. Chem. Phys., 15, 2445\u20132461, https:\/\/doi.org\/10.5194\/acp-15-2445-2015, 2015.\u2002a","DOI":"10.5194\/acp-15-2445-2015"},{"key":"ref35","unstructured":"Moser, M. and Voigt, C.: DLR in-situ cloud measurements during AFLUX Arctic airborne campaign, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.940564, 2022.\u2002a"},{"key":"ref36","doi-asserted-by":"crossref","unstructured":"Moser, M., Voigt, C., Jurkat-Witschas, T., Hahn, V., Mioche, G., Jourdan, O., Dupuy, R., Gourbeyre, C., Schwarzenboeck, A., Lucke, J., Boose, Y., Mech, M., Borrmann, S., Ehrlich, A., Herber, A., L\u00fcpkes, C., and Wendisch, M.: Microphysical and thermodynamic phase analyses of Arctic low-level clouds measured above the sea ice and the open ocean in spring and summer, Atmos. Chem. Phys., 23, 7257\u20137280, https:\/\/doi.org\/10.5194\/acp-23-7257-2023, 2023.\u2002a","DOI":"10.5194\/acp-23-7257-2023"},{"key":"ref37","doi-asserted-by":"crossref","unstructured":"Nakajima, T. and King, M.\u00a0D.: Determination of the Optical Thickness and Effective Particle Radius of Clouds from Reflected Solar Radiation Measurements. Part I: Theory, J. Atmos. Sci., 47, 1878\u20131893, https:\/\/doi.org\/10.1175\/1520-0469(1990)047&amp;lt;1878:DOTOTA&amp;gt;2.0.CO;2, 1990.\u2002a","DOI":"10.1175\/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2"},{"key":"ref38","doi-asserted-by":"crossref","unstructured":"Platnick, S.: Vertical photon transport in cloud remote sensing problems, J. Geophys. Res.-Atmos., 105, 22919\u201322935, https:\/\/doi.org\/10.1029\/2000JD900333, 2000.\u2002a","DOI":"10.1029\/2000JD900333"},{"key":"ref39","doi-asserted-by":"crossref","unstructured":"Platnick, S.: Approximations for horizontal photon transport in cloud remote sensing problems, J. Quant. Spectrosc. Ra., 68, 75\u201399, https:\/\/doi.org\/10.1016\/S0022-4073(00)00016-9, 2001.\u2002a, b","DOI":"10.1016\/S0022-4073(00)00016-9"},{"key":"ref40","doi-asserted-by":"crossref","unstructured":"Platnick, S., Meyer, K.\u00a0G., King, M.\u00a0D., Wind, G., Amarasinghe, N., Marchant, B., Arnold, G.\u00a0T., Zhang, Z., Hubanks, P.\u00a0A., Holz, R.\u00a0E., Yang, P., Ridgway, W.\u00a0L., and Riedi, J.: The MODIS cloud optical and microphysical products: Collection\u00a06 updates and examples from Terra and Aqua, IEEE T. Geosci. Remote, 55, 502\u2013525, 2016.\u2002a","DOI":"10.1109\/TGRS.2016.2610522"},{"key":"#cr-split#-ref41.1","unstructured":"Rantanen, M., Karpechko, A.\u00a0Y., Lipponen, A., Nordling, K., Hyv\u00e4rinen, O., Ruosteenoja, K., Vihma, T., and Laaksonen, A.: The Arctic has warmed nearly four times faster than the globe since 1979, Communications Earth &amp;amp"},{"key":"#cr-split#-ref41.2","doi-asserted-by":"crossref","unstructured":"Environment, 3, 168, https:\/\/doi.org\/10.1038\/s43247-022-00498-3, 2022.\u2002a","DOI":"10.1038\/s43247-022-00498-3"},{"key":"ref42","doi-asserted-by":"crossref","unstructured":"Rosenburg, S., Lange, C., J\u00e4kel, E., Sch\u00e4fer, M., Ehrlich, A., and Wendisch, M.: Retrieval of snow layer and melt pond properties on Arctic sea ice from airborne imaging spectrometer observations, Atmos. Meas. Tech., 16, 3915\u20133930, https:\/\/doi.org\/10.5194\/amt-16-3915-2023, 2023.\u2002a","DOI":"10.5194\/amt-16-3915-2023"},{"key":"ref43","unstructured":"Ruiz-Donoso, E., Ehrlich, A., Sch\u00e4fer, M., J\u00e4kel, E., and Wendisch, M.: Spectral solar cloud top radiance measured by airborne spectral imaging during the ACLOUD campaign in 2017, Leipzig Institute for Meteorology, University of Leipzig, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.902150, 2019.\u2002a"},{"key":"ref44","doi-asserted-by":"crossref","unstructured":"Ruiz-Donoso, E., Ehrlich, A., Sch\u00e4fer, M., J\u00e4kel, E., Schemann, V., Crewell, S., Mech, M., Kulla, B. S., Kliesch, L.-L., Neuber, R., and Wendisch, M.: Small-scale structure of thermodynamic phase in Arctic mixed-phase clouds observed by airborne remote sensing during a cold air outbreak and a warm air advection event, Atmos. Chem. Phys., 20, 5487\u20135511, https:\/\/doi.org\/10.5194\/acp-20-5487-2020, 2020.\u2002a, b, c, d, e, f, g, h, i, j","DOI":"10.5194\/acp-20-5487-2020"},{"key":"ref45","doi-asserted-by":"crossref","unstructured":"Sch\u00e4fer, M., Bierwirth, E., Ehrlich, A., Heyner, F., and Wendisch, M.: Retrieval of cirrus optical thickness and assessment of ice crystal shape from ground-based imaging spectrometry, Atmos. Meas. Tech., 6, 1855\u20131868, https:\/\/doi.org\/10.5194\/amt-6-1855-2013, 2013.\u2002a","DOI":"10.5194\/amt-6-1855-2013"},{"key":"ref46","unstructured":"Sch\u00e4fer, M., Ruiz-Donoso, E., Ehrlich, A., and Wendisch, M.: Spectral solar cloud top and surface radiance measured by airborne spectral imaging during the AFLUX campaign in 2019, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.930932, 2021.\u2002a"},{"key":"ref47","doi-asserted-by":"crossref","unstructured":"Serreze, M.\u00a0C. and Barry, R.\u00a0G.: Processes and impacts of Arctic amplification: A research synthesis, Global Planet. Change, 77, 85\u201396, https:\/\/doi.org\/10.1016\/j.gloplacha.2011.03.004, 2011.\u2002a, b","DOI":"10.1016\/j.gloplacha.2011.03.004"},{"key":"ref48","doi-asserted-by":"crossref","unstructured":"Serreze, M.\u00a0C. and Francis, J.\u00a0A.: The Arctic Amplification debate, Climatic Change, 76, 241\u2013264, https:\/\/doi.org\/10.1007\/s10584-005-9017-y, 2006.\u2002a","DOI":"10.1007\/s10584-005-9017-y"},{"key":"ref49","doi-asserted-by":"crossref","unstructured":"Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using AMSR-E 89-GHz channels, J. Geophys. Res.-Oceans, 113, C02S03, https:\/\/doi.org\/10.1029\/2005JC003384, 2008.\u2002a","DOI":"10.1029\/2005JC003384"},{"key":"ref50","unstructured":"Stamnes, K., Tsay, S.-C., Wiscombe, W., and Laszlo, I.: DISORT, a General-Purpose Fortran Program for Discrete-Ordinate-Method Radiative Transfer in Scattering and Emitting Layered Media: Documentation of Methodology, Tech. rep., Dept. of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, NJ 07030, http:\/\/www.libradtran.org\/lib\/exe\/fetch.php?media=disortreport1.1.pdf (last access: 9\u00a0December 2023), 2000.\u2002a, b"},{"key":"ref51","doi-asserted-by":"crossref","unstructured":"Stroeve, J., Serreze, M., Holland, M., Kay, J., Malanik, J., and Barrett, A.: The Arctic's rapidly shrinking sea ice cover: A research synthesis, Climatic Change, 110, 1005\u20131027, https:\/\/doi.org\/10.1007\/s10584-011-0101-1, 2012.\u2002a","DOI":"10.1007\/s10584-011-0101-1"},{"key":"ref52","doi-asserted-by":"crossref","unstructured":"Tan, I. and Storelvmo, T.: Evidence of Strong Contributions From Mixed-Phase Clouds to Arctic Climate Change, Geophys. Res. Lett., 46, 2894\u20132902, https:\/\/doi.org\/10.1029\/2018GL081871, 2019.\u2002a","DOI":"10.1029\/2018GL081871"},{"key":"ref53","doi-asserted-by":"crossref","unstructured":"Voigt, C., Schumann, U., Minikin, A., Abdelmonem, A., Afchine, A., Borrmann, S., Boettcher, M., Buchholz, B., Bugliaro, L., Costa, A., Curtius, J., Dollner, M., D\u00f6rnbrack, A., Dreiling, V., Ebert, V., Ehrlich, A., Fix, A., Forster, L., Frank, F., F\u00fctterer, D., Giez, A., Graf, K., Groo\u00df, J.-U., Gro\u00df, S., Heimerl, K., Heinold, B., H\u00fcneke, T., J\u00e4rvinen, E., Jurkat, T., Kaufmann, S., Kenntner, M., Klingebiel, M., Klimach, T., Kohl, R., Kr\u00e4mer, M., Krisna, T.\u00a0C., Luebke, A., Mayer, B., Mertes, S., Molleker, S., Petzold, A., Pfeilsticker, K., Port, M., Rapp, M., Reutter, P., Rolf, C., Rose, D., Sauer, D., Sch\u00e4fler, A., Schlage, R., Schnaiter, M., Schneider, J., Spelten, N., Spichtinger, P., Stock, P., Walser, A., Weigel, R., Weinzierl, B., Wendisch, M., Werner, F., Wernli, H., Wirth, M., Zahn, A., Ziereis, H., and Z\u00f6ger, M.: ML-CIRRUS: The Airborne Experiment on Natural Cirrus and Contrail Cirrus with the High-Altitude Long-Range Research Aircraft HALO, B. Am. Meteorol. Soc., 98, 271\u2013288, https:\/\/doi.org\/10.1175\/bams-d-15-00213.1, 2017.\u2002a","DOI":"10.1175\/BAMS-D-15-00213.1"},{"key":"ref54","doi-asserted-by":"crossref","unstructured":"Voigt, C., Lelieveld, J., Schlager, H., Schneider, J., Curtius, J., Meerk\u00f6tter, R., Sauer, D., Bugliaro, L., Bohn, B., Crowley, J.\u00a0N., Erbertseder, T., Gro\u00df, S., Hahn, V., Li, Q., Mertens, M., P\u00f6hlker, M.\u00a0L., Pozzer, A., Schumann, U., Tomsche, L., Williams, J., Zahn, A., Andreae, M., Borrmann, S., Br\u00e4uer, T., D\u00f6rich, R., D\u00f6rnbrack, A., Edtbauer, A., Ernle, L., Fischer, H., Giez, A., Granzin, M., Grewe, V., Harder, H., Heinritzi, M., Holanda, B.\u00a0A., J\u00f6ckel, P., Kaiser, K., Kr\u00fcger, O.\u00a0O., Lucke, J., Marsing, A., Martin, A., Matthes, S., P\u00f6hlker, C., P\u00f6schl, U., Reifenberg, S., Ringsdorf, A., Scheibe, M., Tadic, I., Zauner-Wieczorek, M., Henke, R., and Rapp, M.: Cleaner Skies during the COVID-19 Lockdown, B. Am. Meteorol. Soc., 103, E1796\u2013E1827, https:\/\/doi.org\/10.1175\/bams-d-21-0012.1, 2022.\u2002a","DOI":"10.1175\/BAMS-D-21-0012.1"},{"key":"ref55","unstructured":"Wendisch, M. and Brenguier, J.-L.: Airborne Measurements for Environmental Research \u2013 Methods and Instruments, vol.\u00a01, John Wiley &amp;amp; Sons, Ltd, ISBN\u00a0978-3-527-40996-9, 2013.\u2002a"},{"key":"ref56","doi-asserted-by":"crossref","unstructured":"Wendisch, M., Br\u00fcckner, M., Burrows, J.\u00a0P., Crewell, S., Dethloff, K., Ebell, K., L\u00fcpkes, C., Macke, A., Notholt, J., Quaas, J., Rinke, A., and Tegen, I.: Understanding Causes and Effects of Rapid Warming in the Arctic, EOS, 98, https:\/\/doi.org\/10.1029\/2017EO064803, 2017.\u2002a, b","DOI":"10.1029\/2017EO064803"},{"key":"ref57","doi-asserted-by":"crossref","unstructured":"Wendisch, M., Macke, A., Ehrlich, A., L\u00fcpkes, C., Mech, M., Chechin, D., Dethloff, K., Velasco, C.\u00a0B., Bozem, H., Br\u00fcckner, M., Clemen, H.-C., Crewell, S., Donth, T., Dupuy, R., Ebell, K., Egerer, U., Engelmann, R., Engler, C., Eppers, O., Gehrmann, M., Gong, X., Gottschalk, M., Gourbeyre, C., Griesche, H., Hartmann, J., Hartmann, M., Heinold, B., Herber, A., Herrmann, H., Heygster, G., Hoor, P., Jafariserajehlou, S., J\u00e4kel, E., J\u00e4rvinen, E., Jourdan, O., K\u00e4stner, U., Kecorius, S., Knudsen, E.\u00a0M., K\u00f6llner, F., Kretzschmar, J., Lelli, L., Leroy, D., Maturilli, M., Mei, L., Mertes, S., Mioche, G., Neuber, R., Nicolaus, M., Nomokonova, T., Notholt, J., Palm, M., van Pinxteren, M., Quaas, J., Richter, P., Ruiz-Donoso, E., Sch\u00e4fer, M., Schmieder, K., Schnaiter, M., Schneider, J., Schwarzenb\u00f6ck, A., Seifert, P., Shupe, M.\u00a0D., Siebert, H., Spreen, G., Stapf, J., Stratmann, F., Vogl, T., Welti, A., Wex, H., Wiedensohler, A., Zanatta, M., and Zeppenfeld, S.: The Arctic Cloud Puzzle: Using ACLOUD\/PASCAL Multiplatform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification, B. Am. Meteorol. Soc., 100, 841\u2013871, https:\/\/doi.org\/10.1175\/BAMS-D-18-0072.1, 2019.\u2002a, b, c","DOI":"10.1175\/BAMS-D-18-0072.1"},{"key":"ref58","doi-asserted-by":"crossref","unstructured":"Wendisch, M., Br\u00fcckner, M., Crewell, S., Ehrlich, A., Notholt, J., L\u00fcpkes, C., Macke, A., Burrows, J.\u00a0P., Rinke, A., Quaas, J., Maturilli, M., Schemann, V., Shupe, M.\u00a0D., Akansu, E.\u00a0F., Barrientos-Velasco, C., B\u00e4rfuss, K., Blechschmidt, A.-M., Block, K., Bougoudis, I., Bozem, H., B\u00f6ckmann, C., Bracher, A., Bresson, H., Bretschneider, L., Buschmann, M., Chechin, D.\u00a0G., Chylik, J., Dahlke, S., Deneke, H., Dethloff, K., Donth, T., Dorn, W., Dupuy, R., Ebell, K., Egerer, U., Engelmann, R., Eppers, O., Gerdes, R., Gierens, R., Gorodetskaya, I.\u00a0V., Gottschalk, M., Griesche, H., Gryanik, V.\u00a0M., Handorf, D., Harm-Altst\u00e4dter, B., Hartmann, J., Hartmann, M., Heinold, B., Herber, A., Herrmann, H., Heygster, G., H\u00f6schel, I., Hofmann, Z., H\u00f6lemann, J., H\u00fcnerbein, A., Jafariserajehlou, S., J\u00e4kel, E., Jacobi, C., Janout, M., Jansen, F., Jourdan, O., Jur\u00e1nyi, Z., Kalesse-Los, H., Kanzow, T., K\u00e4thner, R., Kliesch, L.\u00a0L., Klingebiel, M., Knudsen, E.\u00a0M., Kov\u00e1cs, T., K\u00f6rtke, W., Krampe, D., Kretzschmar, J., Kreyling, D., Kulla, B., Kunkel, D., Lampert, A., Lauer, M., Lelli, L., von Lerber, A., Linke, O., L\u00f6hnert, U., Lonardi, M., Losa, S.\u00a0N., Losch, M., Maahn, M., Mech, M., Mei, L., Mertes, S., Metzner, E., Mewes, D., Michaelis, J., Mioche, G., Moser, M., Nakoudi, K., Neggers, R., Neuber, R., Nomokonova, T., Oelker, J., Papakonstantinou-Presvelou, I., P\u00e4tzold, F., Pefanis, V., Pohl, C., van Pinxteren, M., Radovan, A., Rhein, M., Rex, M., Richter, A., Risse, N., Ritter, C., Rostosky, P., Rozanov, V.\u00a0V., Donoso, E.\u00a0R., Saavedra-Garfias, P., Salzmann, M., Schacht, J., Sch\u00e4fer, M., Schneider, J., Schnierstein, N., Seifert, P., Seo, S., Siebert, H., Soppa, M.\u00a0A., Spreen, G., Stachlewska, I.\u00a0S., Stapf, J., Stratmann, F., Tegen, I., Viceto, C., Voigt, C., Vountas, M., Walbr\u00f6l, A., Walter, M., Wehner, B., Wex, H., Willmes, S., Zanatta, M., and Zeppenfeld, S.: Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)3 Project, B. Am. Meteorol. Soc., 104, E208\u2013E242, https:\/\/doi.org\/10.1175\/BAMS-D-21-0218.1, 2022.\u2002a","DOI":"10.1175\/BAMS-D-21-0218.1"},{"key":"ref59","doi-asserted-by":"crossref","unstructured":"Wendisch, M., Stapf, J., Becker, S., Ehrlich, A., J\u00e4kel, E., Klingebiel, M., L\u00fcpkes, C., Sch\u00e4fer, M., and Shupe, M. D.: Effects of variable ice\u2013ocean surface properties and air mass transformation on the Arctic radiative energy budget, Atmos. Chem. Phys., 23, 9647\u20139667, https:\/\/doi.org\/10.5194\/acp-23-9647-2023, 2023.\u2002a","DOI":"10.5194\/acp-23-9647-2023"},{"key":"ref60","doi-asserted-by":"crossref","unstructured":"Werner, F., Siebert, H., Pilewskie, P., Schmeissner, T., Shaw, R.\u00a0A., and Wendisch, M.: New airborne retrieval approach for trade wind cumulus properties under overlying cirrus, J. Geophys. Res.-Atmos., 118, 3634\u20133649, https:\/\/doi.org\/10.1002\/jgrd.50334, 2013.\u2002a","DOI":"10.1002\/jgrd.50334"},{"key":"ref61","doi-asserted-by":"crossref","unstructured":"Wesche, C., Steinhage, D., and Nixdorf, U.: Polar aircraft Polar\u00a05 and Polar\u00a06 operated by the Alfred Wegener Institute, Journal of Large-Scale Research Facilities, 2, A87, https:\/\/doi.org\/10.17815\/jlsrf-2-153, 2016.\u2002a","DOI":"10.17815\/jlsrf-2-153"},{"key":"ref62","doi-asserted-by":"crossref","unstructured":"Zege, E., Katsev, I., Malinka, A., Prikhach, A., Heygster, G., and Wiebe, H.: Algorithm for retrieval of the effective snow grain size and pollution amount from satellite measurements, Remote Sens. Environ., 115, 2674\u20132685, https:\/\/doi.org\/10.1016\/j.rse.2011.06.001, 2011.\u2002a, b","DOI":"10.1016\/j.rse.2011.06.001"}],"container-title":["Atmospheric Chemistry and Physics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/acp.copernicus.org\/articles\/23\/15289\/2023\/acp-23-15289-2023.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,14]],"date-time":"2023-12-14T14:42:14Z","timestamp":1702564934000},"score":1,"resource":{"primary":{"URL":"https:\/\/acp.copernicus.org\/articles\/23\/15289\/2023\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12,14]]},"references-count":63,"journal-issue":{"issue":"24","published-online":{"date-parts":[[2023]]}},"URL":"http:\/\/dx.doi.org\/10.5194\/acp-23-15289-2023","relation":{"has-preprint":[{"id-type":"doi","id":"10.5194\/acp-2022-848","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2022-848","asserted-by":"object"}],"has-review":[{"id-type":"doi","id":"10.5194\/acp-2022-848-RC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2022-848-AC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2022-848-RC2","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2022-848-AC2","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/acp-2022-848-RC2","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/acp-2022-848-AC2","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/acp-2022-848-RC1","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/acp-2022-848-AC1","asserted-by":"object"}],"is-part-of":[{"id-type":"doi","id":"10.1594\/PANGAEA.888173","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.899177","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.960907","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.960906","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.902876","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.940564","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.902150","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.930932","asserted-by":"subject"}]},"ISSN":["1680-7324"],"issn-type":[{"value":"1680-7324","type":"electronic"}],"subject":["Atmospheric Science"],"published":{"date-parts":[[2023,12,14]]}}}