uni-leipzig-open-access/json/JCLI-D-22-0512.1

1 line
42 KiB
Groff

{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,8,19]],"date-time":"2023-08-19T04:40:08Z","timestamp":1692420008291},"reference-count":74,"publisher":"American Meteorological Society","issue":"10","license":[{"start":{"date-parts":[[2023,5,15]],"date-time":"2023-05-15T00:00:00Z","timestamp":1684108800000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"Helmholtz-Hochschul-Nachwuchsforschergruppe","award":["VH-NG-1014"]},{"name":"Helmholtz-Hochschul-Nachwuchsforschergruppe","award":["VH-NG-1014"]},{"DOI":"10.13039\/501100001824","name":"Grantov\u00e1 Agentura ?esk\u00e9 Republiky","doi-asserted-by":"publisher","award":["21-20293J and 21-03295S"]},{"name":"Helmholtz-Hochschul-Nachwuchsforschergruppe","award":["VH-NG-1014"]},{"DOI":"10.13039\/501100002347","name":"Bundesministerium f\u00fcr Bildung und Forschung","doi-asserted-by":"publisher","award":["FKZ 01LP1606A"]},{"DOI":"10.13039\/501100002347","name":"Bundesministerium f\u00fcr Bildung und Forschung","doi-asserted-by":"publisher","award":["FKZ 01LP1606A"]},{"DOI":"10.13039\/100018730","name":"Deutsches Klimarechenzentrum","doi-asserted-by":"publisher","award":["bd1022"]},{"DOI":"10.13039\/100018730","name":"Deutsches Klimarechenzentrum","doi-asserted-by":"publisher","award":["bd1022"]},{"DOI":"10.13039\/100018730","name":"Deutsches Klimarechenzentrum","doi-asserted-by":"publisher","award":["bd1022"]},{"DOI":"10.13039\/100018730","name":"Deutsches Klimarechenzentrum","doi-asserted-by":"publisher","award":["id0853"]},{"DOI":"10.13039\/100018730","name":"Deutsches Klimarechenzentrum","doi-asserted-by":"publisher","award":["id0853"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023,5,15]]},"abstract":"<jats:title>Abstract<\/jats:title>\n<jats:p>The increase of atmospheric CO<jats:sub>2<\/jats:sub> concentrations changes the atmospheric temperature distribution, which in turn affects the circulation. A robust circulation response to CO<jats:sub>2<\/jats:sub> forcing is the strengthening of the stratospheric Brewer\u2013Dobson circulation (BDC), with associated consequences for transport of trace gases such as ozone. Ozone is further affected by the CO<jats:sub>2<\/jats:sub>-induced stratospheric cooling via the temperature dependency of ozone chemistry. These ozone changes in turn influence stratospheric temperatures and thereby modify the CO<jats:sub>2<\/jats:sub>-induced circulation changes. In this study, we perform dedicated model simulations to quantify the modification of the circulation response to CO<jats:sub>2<\/jats:sub> forcing by stratospheric ozone. Specifically, we compare simulations of the atmosphere with preindustrial and with quadrupled CO<jats:sub>2<\/jats:sub> climate conditions, in which stratospheric ozone is held fixed or is adapted to the new climate state. The results of the residual circulation and mean age of air show that ozone changes damp the CO<jats:sub>2<\/jats:sub>-induced BDC increase by up to 20%. This damping of the BDC strengthening is linked to an ozone-induced relative enhancement of the meridional temperature gradient in the lower stratosphere in summer, thereby leading to stronger stratospheric easterlies that suppress wave propagation. Additionally, we find a systematic weakening of the polar vortices in winter and spring. In the Southern Hemisphere, ozone reduces the CO<jats:sub>2<\/jats:sub>-induced delay of the final warming date by 50%.<\/jats:p>\n<jats:sec>\n<jats:title>Significance Statement<\/jats:title>\n<jats:p>A robust circulation response to enhanced CO<jats:sub>2<\/jats:sub> is the strengthening of the equator-to-pole circulation in the stratosphere, the so-called Brewer\u2013Dobson circulation (BDC), which affects the ozone layer by tracer transport. This in turn alters stratospheric temperatures and thereby modifies the stratospheric circulation. In the present study, we perform model experiments to quantify the ozone-induced circulation changes caused by quadrupled CO<jats:sub>2<\/jats:sub> concentrations. The results show that ozone changes damp the CO<jats:sub>2<\/jats:sub>-induced BDC strengthening due to radiative effects of the redistributed ozone layer by enhanced CO<jats:sub>2<\/jats:sub>. These ozone modifications lead to strengthened stratospheric easterlies in summer and decelerated westerlies in winter and spring. Moreover, the ozone changes reduce the CO<jats:sub>2<\/jats:sub>-induced delay of the polar vortex break down date in the Southern Hemisphere.<\/jats:p><\/jats:sec>","DOI":"10.1175\/jcli-d-22-0512.1","type":"journal-article","created":{"date-parts":[[2023,2,10]],"date-time":"2023-02-10T15:08:45Z","timestamp":1676041725000},"page":"3305-3320","source":"Crossref","is-referenced-by-count":0,"title":["Stratospheric Ozone Changes Damp the CO2-Induced Acceleration of the Brewer\u2013Dobson Circulation"],"prefix":"10.1175","volume":"36","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3810-9568","authenticated-orcid":true,"given":"Leonhard","family":"Hufnagl","sequence":"first","affiliation":[{"name":"a Institut f\u00fcr Physik der Atmosph\u00e4re, Deutsches Zentrum f\u00fcr Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6872-5700","authenticated-orcid":true,"given":"Roland","family":"Eichinger","sequence":"additional","affiliation":[{"name":"a Institut f\u00fcr Physik der Atmosph\u00e4re, Deutsches Zentrum f\u00fcr Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany"},{"name":"c Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4960-2304","authenticated-orcid":true,"given":"Hella","family":"Garny","sequence":"additional","affiliation":[{"name":"a Institut f\u00fcr Physik der Atmosph\u00e4re, Deutsches Zentrum f\u00fcr Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany"},{"name":"b Institut f\u00fcr Meteorologie, Ludwig-Maximilians-Universit\u00e4t, Munich, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2966-3428","authenticated-orcid":true,"given":"Thomas","family":"Birner","sequence":"additional","affiliation":[{"name":"b Institut f\u00fcr Meteorologie, Ludwig-Maximilians-Universit\u00e4t, Munich, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3672-6626","authenticated-orcid":true,"given":"Ale\u0161","family":"Kucha\u0159","sequence":"additional","affiliation":[{"name":"d Institut f\u00fcr Meteorologie, Universit\u00e4t Leipzig, Leipzig, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8964-1394","authenticated-orcid":true,"given":"Patrick","family":"J\u00f6ckel","sequence":"additional","affiliation":[{"name":"a Institut f\u00fcr Physik der Atmosph\u00e4re, Deutsches Zentrum f\u00fcr Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7494-8035","authenticated-orcid":true,"given":"Phoebe","family":"Graf","sequence":"additional","affiliation":[{"name":"a Institut f\u00fcr Physik der Atmosph\u00e4re, Deutsches Zentrum f\u00fcr Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany"}]}],"member":"12","reference":[{"key":"bib1","series-title":"J. Geophys. Res. Atmos.","first-page":"2435","article-title":"New insights on the impact of ozone-depleting substances on the Brewer\u2013Dobson circulation","volume":"124","author":"Abalos, M.","year":"2019","unstructured":"Abalos, M., L. Polvani, N. Calvo, D. Kinnison, F. Ploeger, W. Randel, and S. Solomon, 2019: \nNew insights on the impact of ozone-depleting substances on the Brewer\u2013Dobson circulation. J. Geophys. Res. Atmos., 124, 2435\u20132451, https:\/\/doi.org\/10.1029\/2018JD029301."},{"key":"bib2","series-title":"Atmos. Chem. Phys.","first-page":"13\u2009571","article-title":"The Brewer-Dobson circulation in CMIP6","volume":"21","author":"Abalos, M.","year":"2021","unstructured":"Abalos, M., and Coauthors, 2021: \nThe Brewer-Dobson circulation in CMIP6. Atmos. Chem. Phys., 21, 13\u2009571\u201313\u2009591, https:\/\/doi.org\/10.5194\/acp-21-13571-2021."},{"key":"bib3","author":"Andrews, D. G.","year":"1987","unstructured":"Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp."},{"key":"bib4","series-title":"J. Geophys. Res. Atmos.","first-page":"e2019JD032345","article-title":"Uncertainty in the response of sudden stratospheric warmings and stratosphere\u2010troposphere coupling to quadrupled CO2 concentrations in CMIP6 models","volume":"125","author":"Ayarzag\u00fcena, B.","year":"2020","unstructured":"Ayarzag\u00fcena, B., and Coauthors, 2020: \nUncertainty in the response of sudden stratospheric warmings and stratosphere\u2010troposphere coupling to quadrupled CO2 concentrations in CMIP6 models. J. Geophys. Res. Atmos., 125, e2019JD032345, https:\/\/doi.org\/10.1029\/2019JD032345."},{"key":"bib5","series-title":"Rev. Geophys.","first-page":"e2020RG000708","article-title":"Sudden stratospheric warmings","volume":"59","author":"Baldwin, M. P.","year":"2021","unstructured":"Baldwin, M. P., and Coauthors, 2021: \nSudden stratospheric warmings. Rev. Geophys., 59, e2020RG000708, https:\/\/doi.org\/10.1029\/2020RG000708."},{"key":"bib6","author":"Baumgaertner, A. J. G.","year":"2013","unstructured":"Baumgaertner, A. J. G., P. J\u00f6ckel, A. D. Aylward, and M. J. Harris, 2013: Simulation of particle precipitation effects on the atmosphere with the MESSy model system. Climate and Weather of the Sun-Earth System (CAWSES), F. J. L\u00fcbken, Ed., Springer, 301\u2013316, https:\/\/doi.org\/10.1007\/978-94-007-4348-9_17."},{"key":"bib7","series-title":"J. Geophys. Res. Atmos.","first-page":"6782","article-title":"On the relative importance of radiative and dynamical heating for tropical tropopause temperatures","volume":"122","author":"Birner, T.","year":"2017","unstructured":"Birner, T., and E. J. Charlesworth, 2017: \nOn the relative importance of radiative and dynamical heating for tropical tropopause temperatures. J. Geophys. Res. Atmos., 122, 6782\u20136797, https:\/\/doi.org\/10.1002\/2016JD026445."},{"key":"bib8","series-title":"Quart. J. Roy. Meteor. Soc.","first-page":"351","article-title":"Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere","volume":"75","author":"Brewer, A. W.","year":"1949","unstructured":"Brewer, A. W., 1949: \nEvidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75, 351\u2013363, https:\/\/doi.org\/10.1002\/qj.49707532603."},{"key":"bib9","series-title":"Nature","first-page":"799","article-title":"Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate","volume":"410","author":"Butchart, N.","year":"2001","unstructured":"Butchart, N., and A. A. Scaife, 2001: \nRemoval of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature, 410, 799\u2013802, https:\/\/doi.org\/10.1038\/35071047."},{"key":"bib10","series-title":"J. Climate","first-page":"5349","article-title":"Chemistry\u2013climate model simulations of twenty-first century stratospheric climate and circulation changes","volume":"23","author":"Butchart, N.","year":"2010","unstructured":"Butchart, N., and Coauthors, 2010: \nChemistry\u2013climate model simulations of twenty-first century stratospheric climate and circulation changes. J. Climate, 23, 5349\u20135374, https:\/\/doi.org\/10.1175\/2010JCLI3404.1."},{"key":"bib11","series-title":"J. Climate","first-page":"3467","article-title":"Seasonal persistence of circulation anomalies in the Southern Hemisphere stratosphere and its implications for the troposphere","volume":"31","author":"Byrne, N. J.","year":"2018","unstructured":"Byrne, N. J., and T. G. Shepherd, 2018: \nSeasonal persistence of circulation anomalies in the Southern Hemisphere stratosphere and its implications for the troposphere. J. Climate, 31, 3467\u20133483, https:\/\/doi.org\/10.1175\/JCLI-D-17-0557.1."},{"key":"bib12","series-title":"J. Climate","first-page":"7125","article-title":"Nonstationarity in Southern Hemisphere climate variability associated with the seasonal breakdown of the stratospheric polar vortex","volume":"30","author":"Byrne, N. J.","year":"2017","unstructured":"Byrne, N. J., T. G. Shepherd, T. Woolings, and R. A. Plumb, 2017: \nNonstationarity in Southern Hemisphere climate variability associated with the seasonal breakdown of the stratospheric polar vortex. J. Climate, 30, 7125\u20137139, https:\/\/doi.org\/10.1175\/JCLI-D-17-0097.1."},{"key":"bib13","series-title":"Geophys. Res. Lett.","first-page":"6972","article-title":"The role of the stratospheric polar vortex for the austral jet response to greenhouse gas forcing","volume":"46","author":"Ceppi, P.","year":"2019","unstructured":"Ceppi, P., and T. G. Shepherd, 2019: \nThe role of the stratospheric polar vortex for the austral jet response to greenhouse gas forcing. Geophys. Res. Lett., 46, 6972\u20136979, https:\/\/doi.org\/10.1029\/2019GL082883."},{"key":"bib14","series-title":"Geophys. Res. Lett.","first-page":"14\u2009195","article-title":"Ozone transport-radiation feedbacks in the tropical tropopause layer","volume":"46","author":"Charlesworth, E. J.","year":"2019","unstructured":"Charlesworth, E. J., T. Birner, and J. R. Albers, 2019: \nOzone transport-radiation feedbacks in the tropical tropopause layer. Geophys. Res. Lett., 46, 14\u2009195\u201314\u2009202, https:\/\/doi.org\/10.1029\/2019GL084679."},{"key":"bib15","series-title":"J. Climate","first-page":"449","article-title":"A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks","volume":"20","author":"Charlton, A. J.","year":"2007","unstructured":"Charlton, A. J., and L. M. Polvani, 2007: \nA new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449\u2013469, https:\/\/doi.org\/10.1175\/JCLI3996.1."},{"key":"bib16","series-title":"Geophys. Res. Lett.","first-page":"465","article-title":"Reduced Southern Hemispheric circulation response to quadrupled CO2 due to stratospheric ozone feedback","volume":"44","author":"Chiodo, G.","year":"2017","unstructured":"Chiodo, G., and L. M. Polvani, 2017: \nReduced Southern Hemispheric circulation response to quadrupled CO2 due to stratospheric ozone feedback. Geophys. Res. Lett., 44, 465\u2013474, https:\/\/doi.org\/10.1002\/2016GL071011."},{"key":"bib17","series-title":"J. Climate","first-page":"7629","article-title":"The response of the ozone layer to quadrupled CO2 concentrations: Implications for climate","volume":"32","author":"Chiodo, G.","year":"2019","unstructured":"Chiodo, G., and L. M. Polvani, 2019: \nThe response of the ozone layer to quadrupled CO2 concentrations: Implications for climate. J. Climate, 32, 7629\u20137642, https:\/\/doi.org\/10.1175\/JCLI-D-19-0086.1."},{"key":"bib18","series-title":"J. Climate","first-page":"3893","article-title":"The response of the ozone layer to quadrupled CO2 concentrations","volume":"31","author":"Chiodo, G.","year":"2018","unstructured":"Chiodo, G., L. M. Polvani, D. R. Marsh, A. Stenke, W. Ball, E. Rozanov, S. Muthers, and K. Tsigaridis, 2018: \nThe response of the ozone layer to quadrupled CO2 concentrations. J. Climate, 31, 3893\u20133907, https:\/\/doi.org\/10.1175\/JCLI-D-17-0492.1."},{"key":"bib19","series-title":"Wea. Climate Dyn.","first-page":"155","article-title":"Decomposing the response of the stratospheric Brewer\u2013Dobson circulation to an abrupt quadrupling in CO2","volume":"1","author":"Chrysanthou, A.","year":"2020","unstructured":"Chrysanthou, A., A. C. Maycock, and M. P. Chipperfield, 2020: \nDecomposing the response of the stratospheric Brewer\u2013Dobson circulation to an abrupt quadrupling in CO2. Wea. Climate Dyn., 1, 155\u2013174, https:\/\/doi.org\/10.5194\/wcd-1-155-2020."},{"key":"bib20","series-title":"J. Climate","first-page":"6769","article-title":"A 1D RCE study of factors affecting the tropical tropopause layer and surface climate","volume":"32","author":"Dacie, S.","year":"2019","unstructured":"Dacie, S., and Coauthors, 2019: \nA 1D RCE study of factors affecting the tropical tropopause layer and surface climate. J. Climate, 32, 6769\u20136782, https:\/\/doi.org\/10.1175\/JCLI-D-18-0778.1."},{"key":"bib21","series-title":"J. Geophys. Res. Atmos.","first-page":"e2020JD034151","article-title":"Dynamical and trace gas responses of the quasi-biennial oscillation to increased CO2","volume":"126","author":"DallaSanta, K.","year":"2021","unstructured":"DallaSanta, K., C. Orbe, D. Rind, L. Nazarenko, and J. Jonas, 2021: \nDynamical and trace gas responses of the quasi-biennial oscillation to increased CO2. J. Geophys. Res. Atmos., 126, e2020JD034151, https:\/\/doi.org\/10.1029\/2020JD034151."},{"key":"bib22","series-title":"J. Geophys. Res. Atmos.","first-page":"1796","article-title":"Interactive ozone induces a negative feedback in CO2-driven climate change simulations","volume":"119","author":"Dietm\u00fcller, S.","year":"2014","unstructured":"Dietm\u00fcller, S., M. Ponater, and R. Sausen, 2014: \nInteractive ozone induces a negative feedback in CO2-driven climate change simulations. J. Geophys. Res. Atmos., 119, 1796\u20131805, https:\/\/doi.org\/10.1002\/2013JD020575."},{"key":"bib23","series-title":"Geosci. Model Dev.","first-page":"2209","article-title":"A new radiation infrastructure for the Modular Earth Submodel System (MESSy, based on version 2.51)","volume":"9","author":"Dietm\u00fcller, S.","year":"2016","unstructured":"Dietm\u00fcller, S., and Coauthors, 2016: \nA new radiation infrastructure for the Modular Earth Submodel System (MESSy, based on version 2.51). Geosci. Model Dev., 9, 2209\u20132222, https:\/\/doi.org\/10.5194\/gmd-9-2209-2016."},{"key":"bib24","series-title":"Atmos. Chem. Phys.","first-page":"7703","article-title":"Effects of mixing on resolved and unresolved scales on stratospheric age of air","volume":"17","author":"Dietm\u00fcller, S.","year":"2017","unstructured":"Dietm\u00fcller, S., H. Garny, F. Pl\u00f6ger, P. J\u00f6ckel, and D. Cai, 2017: \nEffects of mixing on resolved and unresolved scales on stratospheric age of air. Atmos. Chem. Phys., 17, 7703\u20137719, https:\/\/doi.org\/10.5194\/acp-17-7703-2017."},{"key":"bib25","series-title":"Atmos. Chem. Phys.","first-page":"6699","article-title":"Quantifying the effect of mixing on the mean age of air in CCMVal-2 and CCMI-1 models","volume":"18","author":"Dietm\u00fcller, S.","year":"2018","unstructured":"Dietm\u00fcller, S., and Coauthors, 2018: \nQuantifying the effect of mixing on the mean age of air in CCMVal-2 and CCMI-1 models. Atmos. Chem. Phys., 18, 6699\u20136720, https:\/\/doi.org\/10.5194\/acp-18-6699-2018."},{"key":"bib26","series-title":"Proc. Roy. Soc.","first-page":"187","article-title":"Origin and distribution of the polyatomic molecules in the atmosphere","volume":"236A","author":"Dobson, G. M. B.","year":"1956","unstructured":"Dobson, G. M. B., 1956: \nOrigin and distribution of the polyatomic molecules in the atmosphere. Proc. Roy. Soc., 236A, 187\u2013193, https:\/\/doi.org\/10.1098\/rspa.1956.0127."},{"key":"bib27","series-title":"J. Atmos. Sci.","first-page":"2600","article-title":"Eliassen\u2013Palm cross sections for the troposphere","volume":"37","author":"Edmon, H. J.","year":"1980","unstructured":"Edmon, H. J., B. J. Hoskins, and M. E. McIntyre, 1980: \nEliassen\u2013Palm cross sections for the troposphere. J. Atmos. Sci., 37, 2600\u20132616, https:\/\/doi.org\/10.1175\/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2."},{"key":"B28a","series-title":"Quart. J. Roy. Meteor. Soc.","first-page":"3850","article-title":"Overestimated acceleration of the advective Brewer\u2013Dobson circulation due to stratospheric cooling","volume":"146","author":"Eichinger, R.","year":"2020","unstructured":"Eichinger, R., and P. Sacha, 2020: \nOverestimated acceleration of the advective Brewer\u2013Dobson circulation due to stratospheric cooling. Quart. J. Roy. Meteor. Soc., 146, 3850\u20133864, https:\/\/doi.org\/10.1002\/qj.3876."},{"key":"bib28","series-title":"Atmos. Chem. Phys.","first-page":"5537","article-title":"Simulation of the isotopic composition of stratospheric water vapour\u2014Part 1: Description and evaluation of the EMAC model","volume":"15","author":"Eichinger, R.","year":"2015","unstructured":"Eichinger, R., P. J\u00f6ckel, S. Brinkop, M. Werner, and S. Lossow, 2015: \nSimulation of the isotopic composition of stratospheric water vapour\u2014Part 1: Description and evaluation of the EMAC model. Atmos. Chem. Phys., 15, 5537\u20135555, https:\/\/doi.org\/10.5194\/acp-15-5537-2015."},{"key":"bib29","series-title":"Atmos. Chem. Phys.","first-page":"921","article-title":"The influence of mixing on the stratospheric age of air changes in the 21st century","volume":"19","author":"Eichinger, R.","year":"2019","unstructured":"Eichinger, R., and Coauthors, 2019: \nThe influence of mixing on the stratospheric age of air changes in the 21st century. Atmos. Chem. Phys., 19, 921\u2013940, https:\/\/doi.org\/10.5194\/acp-19-921-2019."},{"key":"bib30","series-title":"Climate Dyn.","first-page":"3165","article-title":"Effects of missing gravity waves on stratospheric dynamics; Part 1: Climatology","volume":"54","author":"Eichinger, R.","year":"2020","unstructured":"Eichinger, R., H. Garny, P. \u0160\u00e1cha, J. Danker, S. Dietm\u00fcller, and S. Oberl\u00e4nder-Hayn, 2020: \nEffects of missing gravity waves on stratospheric dynamics; Part 1: Climatology. Climate Dyn., 54, 3165\u20133183, https:\/\/doi.org\/10.1007\/s00382-020-05166-w."},{"key":"bib31","series-title":"Geosci. Model Dev.","first-page":"1937","article-title":"Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization","volume":"9","author":"Eyring, V.","year":"2016","unstructured":"Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: \nOverview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 1937\u20131958, https:\/\/doi.org\/10.5194\/gmd-9-1937-2016."},{"key":"bib32","series-title":"Atmos. Chem. Phys.","first-page":"9955","article-title":"Investigating the yield of H2O and H2 from methane oxidation in the stratosphere","volume":"18","author":"Frank, F.","year":"2018","unstructured":"Frank, F., P. J\u00f6ckel, S. Gromov, and M. Dameris, 2018: \nInvestigating the yield of H2O and H2 from methane oxidation in the stratosphere. Atmos. Chem. Phys., 18, 9955\u20139973, https:\/\/doi.org\/10.5194\/acp-18-9955-2018."},{"key":"bib33","series-title":"J. Atmos. Sci.","first-page":"2731","article-title":"Acceleration of the Brewer\u2013Dobson circulation due to increases in greenhouse gases","volume":"65","author":"Garcia, R. R.","year":"2008","unstructured":"Garcia, R. R., and W. J. Randel, 2008: \nAcceleration of the Brewer\u2013Dobson circulation due to increases in greenhouse gases. J. Atmos. Sci., 65, 2731\u20132739, https:\/\/doi.org\/10.1175\/2008JAS2712.1."},{"key":"bib34","series-title":"J. Geophys. Res. Atmos.","first-page":"7015","article-title":"The effects of mixing on age of air","volume":"119","author":"Garny, H.","year":"2014","unstructured":"Garny, H., T. Birner, H. B\u00f6nisch, and F. Bunzel, 2014: \nThe effects of mixing on age of air. J. Geophys. Res. Atmos., 119, 7015\u20137034, https:\/\/doi.org\/10.1002\/2013JD021417."},{"key":"bib35","series-title":"J. Geophys. Res.","first-page":"6003","article-title":"Potential role of the quasi-biennial oscillation in the stratosphere-troposphere exchange as found in water vapour in general circulation model experiments","volume":"104","author":"Giorgetta, M. A.","year":"1999","unstructured":"Giorgetta, M. A., and L. Bengtsson, 1999: \nPotential role of the quasi-biennial oscillation in the stratosphere-troposphere exchange as found in water vapour in general circulation model experiments. J. Geophys. Res., 104, 6003\u20136019, https:\/\/doi.org\/10.1029\/1998JD200112."},{"key":"bib36","series-title":"Quart. J. Roy. Meteor. Soc.","first-page":"551","article-title":"Ozone perturbation experiments in a two-dimensional circulation model","volume":"108","author":"Haigh, J. D.","year":"1982","unstructured":"Haigh, J. D., and J. A. Pyle, 1982: \nOzone perturbation experiments in a two-dimensional circulation model. Quart. J. Roy. Meteor. Soc., 108, 551\u2013574, https:\/\/doi.org\/10.1002\/qj.49710845705."},{"key":"bib37","series-title":"J. Geophys. Res.","first-page":"1059","article-title":"Age as a diagnostic of stratospheric transport","volume":"99","author":"Hall, T. M.","year":"1994","unstructured":"Hall, T. M., and R. A. Plumb, 1994: \nAge as a diagnostic of stratospheric transport. J. Geophys. Res., 99, 1059\u20131070, https:\/\/doi.org\/10.1029\/93JD03192."},{"key":"bib38","series-title":"J. Atmos. Sci.","first-page":"651","article-title":"On the \u201cdownward control\u201d of extratropical diabatic circulations by eddy-induced mean zonal forces","volume":"48","author":"Haynes, P. H.","year":"1991","unstructured":"Haynes, P. H., M. E. McIntyre, T. G. Shepherd, C. J. Marks, and K. P. Shine, 1991: \nOn the \u201cdownward control\u201d of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651\u2013678, https:\/\/doi.org\/10.1175\/1520-0469(1991)048<0651:OTCOED>2.0.CO;2."},{"key":"bib39","year":"2018","unstructured":"IPCC, 2018: Global Warming of 1.5\u00b0C. Cambridge University Press, 616 pp., https:\/\/doi.org\/10.1017\/9781009157940."},{"key":"bib40","series-title":"Wea. Climate Dyn.","first-page":"139","article-title":"Twenty-first century Southern Hemisphere impacts of ozone recovery and climate change from the stratosphere to the ocean","volume":"3","author":"Ivanciu, I.","year":"2022","unstructured":"Ivanciu, I., K. Matthes, A. Biastoch, S. Wahl, and J. Harla\u00df, 2022: \nTwenty-first century Southern Hemisphere impacts of ozone recovery and climate change from the stratosphere to the ocean. Wea. Climate Dyn., 3, 139\u2013171, https:\/\/doi.org\/10.5194\/wcd-3-139-2022."},{"key":"bib41","series-title":"Atmos. Chem. Phys.","first-page":"433","article-title":"Technical note: The Modular Earth Submodel System (MESSy)\u2014A new approach towards Earth system modeling","volume":"5","author":"J\u00f6ckel, P.","year":"2005","unstructured":"J\u00f6ckel, P., R. Sander, A. Kerkweg, H. Tost, and J. Lelieveld, 2005: \nTechnical note: The Modular Earth Submodel System (MESSy)\u2014A new approach towards Earth system modeling. Atmos. Chem. Phys., 5, 433\u2013444, https:\/\/doi.org\/10.5194\/acp-5-433-2005."},{"key":"bib42","series-title":"Atmos. Chem. Phys.","first-page":"5067","article-title":"The atmospheric chemistry general circulation model ECHAM5\/MESSy1: Consistent simulation of ozone from the surface to the mesosphere","volume":"6","author":"J\u00f6ckel, P.","year":"2006","unstructured":"J\u00f6ckel, P., and Coauthors, 2006: \nThe atmospheric chemistry general circulation model ECHAM5\/MESSy1: Consistent simulation of ozone from the surface to the mesosphere. Atmos. Chem. Phys., 6, 5067\u20135104, https:\/\/doi.org\/10.5194\/acp-6-5067-2006."},{"key":"bib43","series-title":"Atmos. Chem. Phys.","first-page":"1677","article-title":"Technical note: Coupling of chemical processes with the Modular Earth Submodel System (MESSy) submodel TRACER","volume":"8","author":"J\u00f6ckel, P.","year":"2008","unstructured":"J\u00f6ckel, P., A. Kerkweg, J. Buchholz-Dietsch, H. Tost, R. Sander, and A. Pozzer, 2008: \nTechnical note: Coupling of chemical processes with the Modular Earth Submodel System (MESSy) submodel TRACER. Atmos. Chem. Phys., 8, 1677\u20131687, https:\/\/doi.org\/10.5194\/acp-8-1677-2008."},{"key":"bib44","series-title":"Geosci. Model Dev.","first-page":"717","article-title":"Development cycle 2 of the Modular Earth Submodel System (MESSy2)","volume":"3","author":"J\u00f6ckel, P.","year":"2010","unstructured":"J\u00f6ckel, P., and Coauthors, 2010: \nDevelopment cycle 2 of the Modular Earth Submodel System (MESSy2). Geosci. Model Dev., 3, 717\u2013752, https:\/\/doi.org\/10.5194\/gmd-3-717-2010."},{"key":"bib45","series-title":"Geosci. Model Dev.","first-page":"1153","article-title":"Earth system chemistry integrated modelling (ESCiMO) with the modular earth submodel system (MESSy, version 2.51)","volume":"9","author":"J\u00f6ckel, P.","year":"2016","unstructured":"J\u00f6ckel, P., and Coauthors, 2016: \nEarth system chemistry integrated modelling (ESCiMO) with the modular earth submodel system (MESSy, version 2.51). Geosci. Model Dev., 9, 1153\u20131200, https:\/\/doi.org\/10.5194\/gmd-9-1153-2016."},{"key":"bib46","series-title":"Atmos. Sci. Lett.","first-page":"e1020","article-title":"Scaling of Eliassen-Palm flux vectors","volume":"22","author":"Jucker, M.","year":"2021","unstructured":"Jucker, M., 2021: \nScaling of Eliassen-Palm flux vectors. Atmos. Sci. Lett., 22, e1020, https:\/\/doi.org\/10.1002\/asl.1020."},{"key":"bib47","series-title":"J. Geophys. Res. Atmos.","first-page":"e2022JD036992","article-title":"Northern Hemisphere stratosphere-troposphere circulation change in CMIP6 models: 1. Inter-model spread and scenario sensitivity","volume":"127","author":"Karpechko, A. Y.","year":"2022","unstructured":"Karpechko, A. Y., and Coauthors, 2022: \nNorthern Hemisphere stratosphere-troposphere circulation change in CMIP6 models: 1. Inter-model spread and scenario sensitivity. J. Geophys. Res. Atmos., 127, e2022JD036992, https:\/\/doi.org\/10.1029\/2022JD036992."},{"key":"bib48","series-title":"Atmos. Chem. Phys.","first-page":"3603","article-title":"Technical note: Implementation of prescribed (OFFLEM), calculated (ONLEM), and pseudo-emissions (TNUDGE) of chemical species in the modular earth submodel system (MESSy)","volume":"6","author":"Kerkweg, A.","year":"2006","unstructured":"Kerkweg, A., R. Sander, H. Tost, and P. J\u00f6ckel, 2006: \nTechnical note: Implementation of prescribed (OFFLEM), calculated (ONLEM), and pseudo-emissions (TNUDGE) of chemical species in the modular earth submodel system (MESSy). Atmos. Chem. Phys., 6, 3603\u20133609, https:\/\/doi.org\/10.5194\/acp-6-3603-2006."},{"key":"bib49","series-title":"Quart. J. Roy. Meteor. Soc.","first-page":"281","article-title":"The role of molecular hydrogen and methane oxidation in the water vapour budget of the stratosphere","volume":"114","author":"le Texier, H.","year":"1988","unstructured":"le Texier, H., S. Solomon, and R. R. Garcia, 1988: \nThe role of molecular hydrogen and methane oxidation in the water vapour budget of the stratosphere. Quart. J. Roy. Meteor. Soc., 114, 281\u2013295, https:\/\/doi.org\/10.1002\/qj.49711448002."},{"key":"bib50","series-title":"J. Climate","first-page":"40","article-title":"The strength of the Brewer\u2013Dobson circulation in a changing climate: Coupled chemistry\u2013climate model simulations","volume":"21","author":"Li, F.","year":"2008","unstructured":"Li, F., J. Austin, and J. Wilson, 2008: \nThe strength of the Brewer\u2013Dobson circulation in a changing climate: Coupled chemistry\u2013climate model simulations. J. Climate, 21, 40\u201357, https:\/\/doi.org\/10.1175\/2007JCLI1663.1."},{"key":"bib51","series-title":"Geophys. Res. Lett.","first-page":"3928","article-title":"Stratospheric ozone chemistry feedbacks are not critical for the determination of climate sensitivity in CESM1(WACCM)","volume":"43","author":"Marsh, D. R.","year":"2016","unstructured":"Marsh, D. R., J.-F. Lamarque, A. J. Conley, and L. M. Polvani, 2016: \nStratospheric ozone chemistry feedbacks are not critical for the determination of climate sensitivity in CESM1(WACCM). Geophys. Res. Lett., 43, 3928\u20133934, https:\/\/doi.org\/10.1002\/2016GL068344."},{"key":"bib52","series-title":"J. Climate","first-page":"545","article-title":"The circulation response to idealized changes in stratospheric water vapor","volume":"26","author":"Maycock, A. C.","year":"2013","unstructured":"Maycock, A. C., M. M. Joshi, K. P. Shine, and A. A. Scaife, 2013: \nThe circulation response to idealized changes in stratospheric water vapor. J. Climate, 26, 545\u2013561, https:\/\/doi.org\/10.1175\/JCLI-D-12-00155.1."},{"key":"bib53","series-title":"Quart. J. Roy. Meteor. Soc.","first-page":"2176","article-title":"The potential impact of changes in lower stratospheric water vapour on stratospheric temperatures over the past 30 years","volume":"140","author":"Maycock, A. C.","year":"2014","unstructured":"Maycock, A. C., M. M. Joshi, K. P. Shine, S. M. Davis, and K. H. Rosenlof, 2014: \nThe potential impact of changes in lower stratospheric water vapour on stratospheric temperatures over the past 30 years. Quart. J. Roy. Meteor. Soc., 140, 2176\u20132185, https:\/\/doi.org\/10.1002\/qj.2287."},{"key":"bib54","series-title":"J. Climate","first-page":"1516","article-title":"Simulated anthropogenic changes in the Brewer\u2013Dobson circulation, including its extension to high latitudes","volume":"22","author":"McLandress, C.","year":"2009","unstructured":"McLandress, C., and T. G. Shepherd, 2009: \nSimulated anthropogenic changes in the Brewer\u2013Dobson circulation, including its extension to high latitudes. J. Climate, 22, 1516\u20131540, https:\/\/doi.org\/10.1175\/2008JCLI2679.1."},{"key":"bib55","series-title":"Geophys. Res. Lett.","first-page":"e2021GL092568","article-title":"Combined effects of global warming and ozone depletion\/recovery on Southern Hemisphere atmospheric circulation and regional precipitation","volume":"48","author":"Mindlin, J.","year":"2021","unstructured":"Mindlin, J., T. G. Shepherd, C. Vera, and M. Osman, 2021: \nCombined effects of global warming and ozone depletion\/recovery on Southern Hemisphere atmospheric circulation and regional precipitation. Geophys. Res. Lett., 48, e2021GL092568, https:\/\/doi.org\/10.1029\/2021GL092568."},{"key":"bib56","series-title":"Geosci. Model Dev.","first-page":"2157","article-title":"The coupled atmosphere\u2013chemistry\u2013ocean model SOCOL-MPIOM","volume":"7","author":"Muthers, S.","year":"2014","unstructured":"Muthers, S., and Coauthors, 2014: \nThe coupled atmosphere\u2013chemistry\u2013ocean model SOCOL-MPIOM. Geosci. Model Dev., 7, 2157\u20132179, https:\/\/doi.org\/10.5194\/gmd-7-2157-2014."},{"key":"bib57","series-title":"Atmos. Chem. Phys.","first-page":"5391","article-title":"Towards a better representation of the solar cycle in general circulation models","volume":"7","author":"Nissen, K. M.","year":"2007","unstructured":"Nissen, K. M., K. Matthes, U. Langematz, and B. Mayer, 2007: \nTowards a better representation of the solar cycle in general circulation models. Atmos. Chem. Phys., 7, 5391\u20135400, https:\/\/doi.org\/10.5194\/acp-7-5391-2007."},{"key":"bib58","series-title":"Nat. Climate Change","first-page":"41","article-title":"A large ozone-circulation feedback and its implications for global warming assessments","volume":"5","author":"Nowack, P. J.","year":"2015","unstructured":"Nowack, P. J., N. L. Abraham, A. C. Maycock, P. Braesicke, J. M. Gregory, M. M. Joshi, A. Osprey, and J. A. Pyle, 2015: \nA large ozone-circulation feedback and its implications for global warming assessments. Nat. Climate Change, 5, 41\u201345, https:\/\/doi.org\/10.1038\/nclimate2451."},{"key":"bib59","series-title":"J. Geophys. Res. Atmos.","first-page":"4630","article-title":"The impact of stratospheric ozone feedbacks on climate sensitivity estimates","volume":"123","author":"Nowack, P. J.","year":"2018","unstructured":"Nowack, P. J., N. L. Abraham, P. Braesicke, and J. A. Pyle, 2018: \nThe impact of stratospheric ozone feedbacks on climate sensitivity estimates. J. Geophys. Res. Atmos., 123, 4630\u20134641, https:\/\/doi.org\/10.1002\/2017JD027943."},{"key":"bib60","series-title":"Geophys. Res. Lett.","first-page":"1772","article-title":"Is the Brewer-Dobson circulation increasing or moving upward?","volume":"43","author":"Oberl\u00e4nder-Hayn, S.","year":"2016","unstructured":"Oberl\u00e4nder-Hayn, S., and Coauthors, 2016: \nIs the Brewer-Dobson circulation increasing or moving upward? Geophys. Res. Lett., 43, 1772\u20131779, https:\/\/doi.org\/10.1002\/2015GL067545."},{"key":"bib61","series-title":"J. Geophys. Res.","first-page":"D10117","article-title":"A study on the formation and trend of the Brewer-Dobson circulation","volume":"116","author":"Okamoto, K.","year":"2011","unstructured":"Okamoto, K., K. Sato, and H. Akiyoshi, 2011: \nA study on the formation and trend of the Brewer-Dobson circulation. J. Geophys. Res., 116, D10117, https:\/\/doi.org\/10.1029\/2010JD014953."},{"key":"bib62","series-title":"Environ. Res. Lett.","first-page":"064038","article-title":"Stratospheric contraction caused by increasing greenhouse gases","volume":"16","author":"Pisoft, P.","year":"2021","unstructured":"Pisoft, P., and Coauthors, 2021: \nStratospheric contraction caused by increasing greenhouse gases. Environ. Res. Lett., 16, 064038, https:\/\/doi.org\/10.1088\/1748-9326\/abfe2b."},{"key":"bib63","series-title":"J. Climate","first-page":"3771","article-title":"Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model","volume":"19","author":"Roeckner, E.","year":"2006","unstructured":"Roeckner, E., and Coauthors, 2006: \nSensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J. Climate, 19, 3771\u20133791, https:\/\/doi.org\/10.1175\/JCLI3824.1."},{"key":"bib64","series-title":"J. Atmos. Sci.","first-page":"784","article-title":"A robust mechanism for strengthening of the Brewer\u2013Dobson circulation in response to climate change: Critical-layer control of subtropical wave breaking","volume":"68","author":"Shepherd, T. G.","year":"2011","unstructured":"Shepherd, T. G., and C. McLandress, 2011: \nA robust mechanism for strengthening of the Brewer\u2013Dobson circulation in response to climate change: Critical-layer control of subtropical wave breaking. J. Atmos. Sci., 68, 784\u2013797, https:\/\/doi.org\/10.1175\/2010JAS3608.1."},{"key":"bib65","author":"Stocker, T. F.","year":"2013","unstructured":"Stocker, T. F., and Coauthors, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https:\/\/doi.org\/10.1017\/CBO9781107415324."},{"key":"bib66","author":"Szopa, S.","year":"2021","unstructured":"Szopa, S., and Coauthors, 2021: Short-lived climate forcers. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 817\u2013922."},{"key":"bib67","series-title":"Nat. Geosci.","first-page":"741","article-title":"Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change","volume":"4","author":"Thompson, D. W. J.","year":"2011","unstructured":"Thompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011: \nSignatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 4, 741\u2013749, https:\/\/doi.org\/10.1038\/ngeo1296."},{"key":"bib68","author":"Tost, H.","year":"2006","unstructured":"Tost, H., 2006: Global modelling of cloud, convection and precipitation: Influences on trace gases and aerosols. Ph.D. thesis, University of Bonn, 198 pp., https:\/\/hdl.handle.net\/20.500.11811\/2602."},{"key":"bib69","series-title":"Atmos. Chem. Phys.","first-page":"5475","article-title":"Influence of different convection parameterisations in a GCM","volume":"6","author":"Tost, H.","year":"2006","unstructured":"Tost, H., P. J\u00f6ckel, and J. Lelieveld, 2006: \nInfluence of different convection parameterisations in a GCM. Atmos. Chem. Phys., 6, 5475\u20135493, https:\/\/doi.org\/10.5194\/acp-6-5475-2006."},{"key":"bib70","series-title":"Quart. J. Roy. Meteor. Soc.","first-page":"1479","article-title":"Response of the large-scale structure of the atmosphere to global warming","volume":"141","author":"Vallis, G. K.","year":"2015","unstructured":"Vallis, G. K., P. Zurita-Gotor, C. Cairns, and J. Kidston, 2015: \nResponse of the large-scale structure of the atmosphere to global warming. Quart. J. Roy. Meteor. Soc., 141, 1479\u20131501, https:\/\/doi.org\/10.1002\/qj.2456."},{"key":"bib71","series-title":"Rev. Geophys.","first-page":"1010","article-title":"Age of stratospheric air: Theory, observations and models","volume":"40","author":"Waugh, D.","year":"2002","unstructured":"Waugh, D., and T. Hall, 2002: \nAge of stratospheric air: Theory, observations and models. Rev. Geophys., 40, 1010, https:\/\/doi.org\/10.1029\/2000RG000101."},{"key":"bib72","series-title":"Geosci. Model Dev.","first-page":"661","article-title":"Methane chemistry in a nutshell\u2013The new submodels CH4 (v1.0) and TRSYNC (v1.0) in MESSy (v2.54.0)","volume":"14","author":"Winterstein, F.","year":"2021","unstructured":"Winterstein, F., and P. J\u00f6ckel, 2021: \nMethane chemistry in a nutshell\u2013The new submodels CH4 (v1.0) and TRSYNC (v1.0) in MESSy (v2.54.0). Geosci. Model Dev., 14, 661\u2013674, https:\/\/doi.org\/10.5194\/gmd-14-661-2021."},{"key":"bib73","series-title":"J. Climate","first-page":"7619","article-title":"The key role of coupled chemistry\u2013climate interactions in Tropical stratospheric temperature variability","volume":"33","author":"Yook, S.","year":"2020","unstructured":"Yook, S., D. W. J. Thompson, S. Solomon, and S.-Y. Kim, 2020: \nThe key role of coupled chemistry\u2013climate interactions in Tropical stratospheric temperature variability. J. Climate, 33, 7619\u20137629, https:\/\/doi.org\/10.1175\/JCLI-D-20-0071.1."}],"container-title":["Journal of Climate"],"original-title":[],"link":[{"URL":"https:\/\/journals.ametsoc.org\/view\/journals\/clim\/36\/10\/JCLI-D-22-0512.1.xml","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/journals.ametsoc.org\/downloadpdf\/journals\/clim\/36\/10\/JCLI-D-22-0512.1.xml","content-type":"text\/html","content-version":"vor","intended-application":"syndication"},{"URL":"https:\/\/journals.ametsoc.org\/downloadpdf\/journals\/clim\/36\/10\/JCLI-D-22-0512.1.xml","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,18]],"date-time":"2023-08-18T19:12:43Z","timestamp":1692385963000},"score":1,"resource":{"primary":{"URL":"https:\/\/journals.ametsoc.org\/view\/journals\/clim\/36\/10\/JCLI-D-22-0512.1.xml"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5,15]]},"references-count":74,"journal-issue":{"issue":"10"},"URL":"http:\/\/dx.doi.org\/10.1175\/jcli-d-22-0512.1","relation":{},"ISSN":["0894-8755","1520-0442"],"issn-type":[{"value":"0894-8755","type":"print"},{"value":"1520-0442","type":"electronic"}],"subject":["Atmospheric Science"],"published":{"date-parts":[[2023,5,15]]}}}