Knack-Scraper/transform/main.py

89 lines
3 KiB
Python

#! python3
import logging
import os
import sqlite3
import sys
from dotenv import load_dotenv
load_dotenv()
if (os.environ.get('LOGGING_LEVEL', 'INFO') == 'INFO'):
logging_level = logging.INFO
else:
logging_level = logging.DEBUG
logging.basicConfig(
level=logging_level,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("app.log"),
logging.StreamHandler(sys.stdout)
]
)
logger = logging.getLogger("knack-transform")
def setup_database_connection():
"""Create connection to the SQLite database."""
db_path = os.environ.get('DB_PATH', '/data/knack.sqlite')
logger.info(f"Connecting to database: {db_path}")
return sqlite3.connect(db_path)
def table_exists(tablename: str, con: sqlite3.Connection):
"""Check if a table exists in the database."""
query = "SELECT 1 FROM sqlite_master WHERE type='table' AND name=? LIMIT 1"
return len(con.execute(query, [tablename]).fetchall()) > 0
def main():
"""Main entry point for the transform pipeline."""
logger.info("Starting transform pipeline")
try:
con = setup_database_connection()
logger.info("Database connection established")
# Check if posts table exists
if not table_exists('posts', con):
logger.warning("Posts table does not exist yet. Please run the scraper first to populate the database.")
logger.info("Transform pipeline skipped - no data available")
return
# Import transform nodes
from author_node import AuthorNode
from base import TransformContext
import pandas as pd
# Load posts data
logger.info("Loading posts from database")
sql = "SELECT id, author FROM posts WHERE author IS NOT NULL AND (is_cleaned IS NULL OR is_cleaned = 0) LIMIT ?"
MAX_CLEANED_POSTS = os.environ.get("MAX_CLEANED_POSTS", 500)
df = pd.read_sql(sql, con, params=[MAX_CLEANED_POSTS])
logger.info(f"Loaded {len(df)} uncleaned posts with authors")
if df.empty:
logger.info("No uncleaned posts found. Transform pipeline skipped.")
return
# Create context and run author classification
context = TransformContext(df)
author_transform = AuthorNode(device=os.environ.get('COMPUTE_DEVICE', 'cpu')) # Change to "cuda" or "mps" if available
result_context = author_transform.run(con, context)
# TODO: Create Node to compute Text Embeddings and UMAP.
# TODO: Create Node to pre-compute data based on visuals to reduce load time.
logger.info("Transform pipeline completed successfully")
except Exception as e:
logger.error(f"Error in transform pipeline: {e}", exc_info=True)
sys.exit(1)
finally:
if 'con' in locals():
con.close()
logger.info("Database connection closed")
if __name__ == "__main__":
main()