forked from lukaszett/Knack-Scraper
Dockerized Scraper
- Implements Dockerized Version of Scraper - Atomized tags and categories columns
This commit is contained in:
parent
7cc3d1b7e4
commit
bcd210ce01
5 changed files with 201 additions and 42 deletions
18
Dockerfile
18
Dockerfile
|
|
@ -7,9 +7,21 @@ WORKDIR /app
|
|||
COPY requirements.txt .
|
||||
RUN pip install --no-cache-dir -r requirements.txt
|
||||
|
||||
COPY .env .
|
||||
|
||||
RUN apt update -y
|
||||
RUN apt install -y cron
|
||||
COPY crontab .
|
||||
RUN crontab crontab
|
||||
RUN apt install -y cron locales
|
||||
|
||||
COPY main.py .
|
||||
|
||||
ENV PYTHONUNBUFFERED=1
|
||||
ENV LANG=de_DE.UTF-8
|
||||
ENV LC_ALL=de_DE.UTF-8
|
||||
|
||||
# Create cron job that runs every 15 minutes with environment variables
|
||||
RUN echo "*/10 * * * * cd /app && /usr/local/bin/python main.py >> /proc/1/fd/1 2>&1" > /etc/cron.d/knack-scraper
|
||||
RUN chmod 0644 /etc/cron.d/knack-scraper
|
||||
RUN crontab /etc/cron.d/knack-scraper
|
||||
|
||||
# Start cron in foreground
|
||||
CMD ["cron", "-f"]
|
||||
18
README.md
18
README.md
|
|
@ -0,0 +1,18 @@
|
|||
Knack-Scraper does exacly what its name suggests it does.
|
||||
Knack-Scraper scrapes knack.news and writes to an sqlite
|
||||
database for later usage.
|
||||
|
||||
## Example for .env
|
||||
|
||||
```
|
||||
NUM_THREADS=8
|
||||
NUM_SCRAPES=100
|
||||
DATABASE_LOCATION='./data/knack.sqlite'
|
||||
```
|
||||
|
||||
## Run once
|
||||
|
||||
```
|
||||
python main.py
|
||||
```
|
||||
|
||||
1
crontab
1
crontab
|
|
@ -1 +0,0 @@
|
|||
5 4 * * * python /app/main.py
|
||||
183
main.py
183
main.py
|
|
@ -1,25 +1,34 @@
|
|||
#! python3
|
||||
import locale
|
||||
import logging
|
||||
import os
|
||||
import sqlite3
|
||||
import sys
|
||||
import time
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from datetime import datetime
|
||||
import sys
|
||||
|
||||
from dotenv import load_dotenv
|
||||
import pandas as pd
|
||||
import requests
|
||||
import tqdm
|
||||
from bs4 import BeautifulSoup
|
||||
|
||||
logger = logging.getLogger("knack-scraper")
|
||||
# ch = logging.StreamHandler()
|
||||
# formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
|
||||
# ch.setFormatter(formatter)
|
||||
# ch.setLevel(logging.INFO)
|
||||
# logger.addHandler(ch)
|
||||
load_dotenv()
|
||||
|
||||
if (os.environ.get('LOGGING_LEVEL', 'INFO') == 'INFO'):
|
||||
logging_level = logging.INFO
|
||||
else:
|
||||
logging_level = logging.DEBUG
|
||||
|
||||
logging.basicConfig(
|
||||
level=logging_level,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
||||
handlers=[
|
||||
logging.FileHandler("app.log"),
|
||||
logging.StreamHandler(sys.stdout)
|
||||
]
|
||||
)
|
||||
logger = logging.getLogger("knack-scraper")
|
||||
|
||||
def table_exists(tablename: str, con: sqlite3.Connection):
|
||||
query = "SELECT 1 FROM sqlite_master WHERE type='table' AND name=? LIMIT 1"
|
||||
|
|
@ -39,19 +48,16 @@ def download(id: int):
|
|||
if not (200 <= res.status_code <= 300):
|
||||
return
|
||||
|
||||
logger.info("Found promising page with id %d!", id)
|
||||
logger.debug("Found promising page with id %d!", id)
|
||||
|
||||
content = res.content
|
||||
soup = BeautifulSoup(content, "html.parser")
|
||||
date_format = "%d. %B %Y"
|
||||
|
||||
# TODO FIXME: this fails inside the docker container
|
||||
locale.setlocale(locale.LC_TIME, "de_DE")
|
||||
pC = soup.find("div", {"class": "postContent"})
|
||||
|
||||
if pC is None:
|
||||
# not a normal post
|
||||
logger.info(
|
||||
logger.debug(
|
||||
"Page with id %d does not have a .pageContent-div. Skipping for now.", id
|
||||
)
|
||||
return
|
||||
|
|
@ -63,9 +69,13 @@ def download(id: int):
|
|||
# these fields are possible but not required
|
||||
# TODO: cleanup
|
||||
try:
|
||||
date_string = pC.find("span", {"class": "singledate"}).text
|
||||
parsed_date = datetime.strptime(date_string, date_format)
|
||||
except AttributeError:
|
||||
date_parts = pC.find("span", {"class": "singledate"}).text.split(' ')
|
||||
day = int(date_parts[0][:-1])
|
||||
months = {'Januar': 1, 'Februar': 2, 'März': 3, 'April': 4, 'Mai': 5, 'Juni': 6, 'Juli': 7, 'August': 8, 'September': 9, 'Oktober': 10, 'November': 11, 'Dezember': 12}
|
||||
month = months[date_parts[1]]
|
||||
year = int(date_parts[2])
|
||||
parsed_date = datetime(year, month, day)
|
||||
except Exception:
|
||||
parsed_date = None
|
||||
|
||||
try:
|
||||
|
|
@ -75,7 +85,7 @@ def download(id: int):
|
|||
|
||||
try:
|
||||
category = pC.find("span", {"class": "categoryInfo"}).find_all()
|
||||
category = [c.text for c in category]
|
||||
category = [c.text for c in category if c.text != 'Alle Artikel']
|
||||
category = ";".join(category)
|
||||
except AttributeError:
|
||||
category = None
|
||||
|
|
@ -129,15 +139,79 @@ def run_downloads(min_id: int, max_id: int, num_threads: int = 8):
|
|||
|
||||
# sqlite can't handle lists so let's convert them to a single row csv
|
||||
# TODO: make sure our database is properly normalized
|
||||
df = pd.DataFrame(res)
|
||||
postdf = pd.DataFrame(res)
|
||||
tagdf = None
|
||||
posttotagdf = None
|
||||
categorydf = None
|
||||
postcategorydf = None
|
||||
|
||||
return df
|
||||
# Extract and create tags dataframe
|
||||
if not postdf.empty and 'tags' in postdf.columns:
|
||||
# Collect all unique tags
|
||||
all_tags = set()
|
||||
for tags_str in postdf['tags']:
|
||||
if pd.notna(tags_str):
|
||||
tags_list = [tag.strip() for tag in tags_str.split(';')]
|
||||
all_tags.update(tags_list)
|
||||
|
||||
# Create tagdf with id and text columns
|
||||
if all_tags:
|
||||
all_tags = sorted(list(all_tags))
|
||||
tagdf = pd.DataFrame({
|
||||
'id': range(len(all_tags)),
|
||||
'tag': all_tags
|
||||
})
|
||||
|
||||
# Create posttotagdf mapping table
|
||||
rows = []
|
||||
for post_id, tags_str in zip(postdf['id'], postdf['tags']):
|
||||
if pd.notna(tags_str):
|
||||
tags_list = [tag.strip() for tag in tags_str.split(';')]
|
||||
for tag_text in tags_list:
|
||||
tag_id = tagdf[tagdf['tag'] == tag_text]['id'].values[0]
|
||||
rows.append({'post_id': post_id, 'tag_id': tag_id})
|
||||
|
||||
if rows:
|
||||
posttotagdf = pd.DataFrame(rows)
|
||||
|
||||
# Extract and create categories dataframe
|
||||
if not postdf.empty and 'category' in postdf.columns:
|
||||
# Collect all unique categories
|
||||
all_categories = set()
|
||||
for category_str in postdf['category']:
|
||||
if pd.notna(category_str):
|
||||
category_list = [cat.strip() for cat in category_str.split(';')]
|
||||
all_categories.update(category_list)
|
||||
|
||||
# Create categorydf with id and category columns
|
||||
if all_categories:
|
||||
all_categories = sorted(list(all_categories))
|
||||
categorydf = pd.DataFrame({
|
||||
'id': range(len(all_categories)),
|
||||
'category': all_categories
|
||||
})
|
||||
|
||||
# Create postcategorydf mapping table
|
||||
rows = []
|
||||
for post_id, category_str in zip(postdf['id'], postdf['category']):
|
||||
if pd.notna(category_str):
|
||||
category_list = [cat.strip() for cat in category_str.split(';')]
|
||||
for category_text in category_list:
|
||||
category_id = categorydf[categorydf['category'] == category_text]['id'].values[0]
|
||||
rows.append({'post_id': post_id, 'category_id': category_id})
|
||||
|
||||
if rows:
|
||||
postcategorydf = pd.DataFrame(rows)
|
||||
|
||||
return postdf, tagdf, posttotagdf, categorydf, postcategorydf
|
||||
|
||||
|
||||
def main():
|
||||
num_threads = int(os.environ.get("NUM_THREADS", 8))
|
||||
n_scrapes = int(os.environ.get("NUM_SCRAPES", 100))
|
||||
database_location = os.environ.get("DATABASE_LOCATION", "/data/knack.sqlite")
|
||||
database_location = os.environ.get("DATABASE_LOCATION", "../data/knack.sqlite")
|
||||
|
||||
logger.debug(f"Started Knack Scraper: \nNUM_THREADS: {num_threads}\nN_SCRAPES: {n_scrapes}\nDATABASE_LOCATION: {database_location}")
|
||||
|
||||
con = sqlite3.connect(database_location)
|
||||
with con:
|
||||
|
|
@ -155,12 +229,77 @@ def main():
|
|||
max_id_in_db = -1
|
||||
|
||||
con = sqlite3.connect(database_location)
|
||||
df = run_downloads(
|
||||
postdf, tagdf, posttotagdf, categorydf, postcategorydf = run_downloads(
|
||||
min_id=max_id_in_db + 1,
|
||||
max_id=max_id_in_db + n_scrapes,
|
||||
num_threads=num_threads,
|
||||
)
|
||||
df.to_sql("posts", con, if_exists="append")
|
||||
postdf.to_sql("posts", con, if_exists="append")
|
||||
|
||||
# Handle tags dataframe merging and storage
|
||||
if tagdf is not None and not tagdf.empty:
|
||||
# Check if tags table already exists
|
||||
if table_exists("tags", con):
|
||||
# Read existing tags from database
|
||||
existing_tagdf = pd.read_sql("SELECT id, tag FROM tags", con)
|
||||
|
||||
# Merge new tags with existing tags, avoiding duplicates
|
||||
merged_tagdf = pd.concat([existing_tagdf, tagdf], ignore_index=False)
|
||||
merged_tagdf = merged_tagdf.drop_duplicates(subset=['tag'], keep='first')
|
||||
merged_tagdf = merged_tagdf.reset_index(drop=True)
|
||||
merged_tagdf['id'] = range(len(merged_tagdf))
|
||||
|
||||
# Drop the old table and insert the merged data
|
||||
con.execute("DROP TABLE tags")
|
||||
con.commit()
|
||||
merged_tagdf.to_sql("tags", con, if_exists="append", index=False)
|
||||
|
||||
# Update tag_id references in posttotagdf
|
||||
if posttotagdf is not None and not posttotagdf.empty:
|
||||
#tag_mapping = dict(zip(tagdf['tag'], tagdf['id']))
|
||||
posttotagdf['tag_id'] = posttotagdf['tag_id'].map(
|
||||
lambda old_id: merged_tagdf[merged_tagdf['tag'] == tagdf.loc[old_id, 'tag']]['id'].values[0]
|
||||
)
|
||||
else:
|
||||
# First time creating tags table
|
||||
tagdf.to_sql("tags", con, if_exists="append", index=False)
|
||||
|
||||
# Store posttags (post to tags mapping)
|
||||
if posttotagdf is not None and not posttotagdf.empty:
|
||||
posttotagdf.to_sql("posttags", con, if_exists="append", index=False)
|
||||
|
||||
# Handle categories dataframe merging and storage
|
||||
if categorydf is not None and not categorydf.empty:
|
||||
# Check if categories table already exists
|
||||
if table_exists("categories", con):
|
||||
# Read existing categories from database
|
||||
existing_categorydf = pd.read_sql("SELECT id, category FROM categories", con)
|
||||
|
||||
# Merge new categories with existing categories, avoiding duplicates
|
||||
merged_categorydf = pd.concat([existing_categorydf, categorydf], ignore_index=False)
|
||||
merged_categorydf = merged_categorydf.drop_duplicates(subset=['category'], keep='first')
|
||||
merged_categorydf = merged_categorydf.reset_index(drop=True)
|
||||
merged_categorydf['id'] = range(len(merged_categorydf))
|
||||
|
||||
# Drop the old table and insert the merged data
|
||||
con.execute("DROP TABLE categories")
|
||||
con.commit()
|
||||
merged_categorydf.to_sql("categories", con, if_exists="append", index=False)
|
||||
|
||||
# Update category_id references in postcategorydf
|
||||
if postcategorydf is not None and not postcategorydf.empty:
|
||||
postcategorydf['category_id'] = postcategorydf['category_id'].map(
|
||||
lambda old_id: merged_categorydf[merged_categorydf['category'] == categorydf.loc[old_id, 'category']]['id'].values[0]
|
||||
)
|
||||
else:
|
||||
# First time creating categories table
|
||||
categorydf.to_sql("categories", con, if_exists="append", index=False)
|
||||
|
||||
# Store postcategories (post to categories mapping)
|
||||
if postcategorydf is not None and not postcategorydf.empty:
|
||||
postcategorydf.to_sql("postcategories", con, if_exists="append", index=False)
|
||||
|
||||
logger.info(f"scraped new entries. number of new posts: {len(postdf.index)}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
|||
|
|
@ -1,14 +1,5 @@
|
|||
beautifulsoup4==4.12.2
|
||||
certifi==2023.7.22
|
||||
charset-normalizer==3.3.0
|
||||
idna==3.4
|
||||
numpy==1.26.1
|
||||
pandas==2.1.1
|
||||
python-dateutil==2.8.2
|
||||
pytz==2023.3.post1
|
||||
requests==2.31.0
|
||||
six==1.16.0
|
||||
soupsieve==2.5
|
||||
tqdm==4.66.1
|
||||
tzdata==2023.3
|
||||
urllib3==2.0.7
|
||||
pandas
|
||||
requests
|
||||
tqdm
|
||||
bs4
|
||||
dotenv
|
||||
Loading…
Add table
Add a link
Reference in a new issue