Use different embeddings model;

This commit is contained in:
quorploop 2026-01-18 15:43:35 +01:00
parent 49239e7e25
commit 8fae350b34
10 changed files with 1846 additions and 57 deletions

View file

@ -13,16 +13,20 @@ import pandas as pd
import logging
import os
import numpy as np
import sys
import pickle
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
logger = logging.getLogger("knack-transform")
try:
from sentence_transformers import SentenceTransformer
import torch
MINILM_AVAILABLE = True
GTE_AVAILABLE = True
except ImportError:
MINILM_AVAILABLE = False
logging.warning("MiniLM not available. Install with pip!")
GTE_AVAILABLE = False
logging.warning("GTE not available. Install with pip!")
try:
import umap
@ -36,7 +40,7 @@ class TextEmbeddingNode(TransformNode):
of posts.
"""
def __init__(self,
model_name: str = "sentence-transformers/all-MiniLM-L6-v2",
model_name: str = "thenlper/gte-small",
model_path: str = None,
device: str = "cpu"):
"""Initialize the ExampleNode.
@ -47,27 +51,27 @@ class TextEmbeddingNode(TransformNode):
device: Device to use for computations ('cpu', 'cuda', 'mps')
"""
self.model_name = model_name
self.model_path = model_path or os.environ.get('MINILM_MODEL_PATH')
self.model_path = model_path or os.environ.get('GTE_MODEL_PATH')
self.device = device
self.model = None
logger.info(f"Initialized TextEmbeddingNode with model_name={model_name}, model_path={model_path}, device={device}")
def _setup_model(self):
"""Init the Text Embedding Model."""
if not MINILM_AVAILABLE:
raise ImportError("MiniLM is required for TextEmbeddingNode. Please install.")
if not GTE_AVAILABLE:
raise ImportError("GTE is required for TextEmbeddingNode. Please install.")
model_source = None
if self.model_path:
if os.path.exists(self.model_path):
model_source = self.model_path
logger.info(f"Loading MiniLM model from local path: {self.model_path}")
logger.info(f"Loading GTE model from local path: {self.model_path}")
else:
logger.warning(f"MiniLM_MODEL_PATH '{self.model_path}' not found; Falling back to hub model {self.model_name}")
logger.warning(f"GTE_MODEL_PATH '{self.model_path}' not found; Falling back to hub model {self.model_name}")
if model_source is None:
model_source = self.model_name
logger.info(f"Loading MiniLM model from the hub: {self.model_name}")
logger.info(f"Loading GTE model from the hub: {self.model_name}")
if self.device == "cuda" and torch.cuda.is_available():
self.model = SentenceTransformer(model_source).to('cuda', dtype=torch.float16)
@ -97,7 +101,7 @@ class TextEmbeddingNode(TransformNode):
# Example: Add a new column based on existing data
result_df = df.copy()
df['embedding'] = df['text'].apply(lambda x: self.model.encode(x, convert_to_numpy=True))
result_df['embedding'] = df['text'].apply(lambda x: self.model.encode(x, convert_to_numpy=True))
logger.info("Processing complete")
return result_df
@ -111,8 +115,7 @@ class TextEmbeddingNode(TransformNode):
logger.info(f"Storing {len(df)} results")
# Convert numpy arrays to bytes for BLOB storage
# Use tobytes() to serialize numpy arrays efficiently
updates = [(row['embedding'].tobytes(), row['id']) for _, row in df.iterrows()]
updates = [(row['embedding'], row['id']) for _, row in df.iterrows()]
con.executemany(
"UPDATE posts SET embedding = ? WHERE id = ?",
updates
@ -167,11 +170,12 @@ class UmapNode(TransformNode):
"""
def __init__(self,
n_neighbors: int = 15,
n_neighbors: int = 10,
min_dist: float = 0.1,
n_components: int = 2,
n_components: int = 3,
metric: str = "cosine",
random_state: int = 42):
random_state: int = 42,
model_path: str = None):
"""Initialize the UmapNode.
Args:
@ -180,15 +184,18 @@ class UmapNode(TransformNode):
n_components: Number of dimensions to reduce to (default: 2)
metric: Distance metric to use (default: 'cosine')
random_state: Random seed for reproducibility (default: 42)
model_path: Path to save/load the fitted UMAP model (default: None, uses 'umap_model.pkl')
"""
self.n_neighbors = n_neighbors
self.min_dist = min_dist
self.n_components = n_components
self.metric = metric
self.random_state = random_state
self.model_path = model_path or os.environ.get('UMAP_MODEL_PATH')
self.reducer = None
logger.info(f"Initialized UmapNode with n_neighbors={n_neighbors}, min_dist={min_dist}, "
f"n_components={n_components}, metric={metric}, random_state={random_state}")
f"n_components={n_components}, metric={metric}, random_state={random_state}, "
f"model_path={self.model_path}")
def _process_data(self, df: pd.DataFrame) -> pd.DataFrame:
"""Process the input dataframe.
@ -231,26 +238,53 @@ class UmapNode(TransformNode):
embeddings_matrix = np.vstack(result_df.loc[valid_rows, 'embedding'].values)
logger.info(f"Embeddings matrix shape: {embeddings_matrix.shape}")
# Apply UMAP
logger.info("Fitting UMAP reducer...")
self.reducer = umap.UMAP(
n_neighbors=self.n_neighbors,
min_dist=self.min_dist,
n_components=self.n_components,
metric=self.metric,
random_state=self.random_state
)
# Check if a saved UMAP model exists
if self.model_path and os.path.exists(self.model_path):
logger.info(f"Loading existing UMAP model from {self.model_path}")
try:
with open(self.model_path, 'rb') as f:
self.reducer = pickle.load(f)
logger.info("UMAP model loaded successfully")
umap_coords = self.reducer.transform(embeddings_matrix)
logger.info(f"UMAP transformation complete using existing model. Output shape: {umap_coords.shape}")
except Exception as e:
logger.warning(f"Failed to load UMAP model from {self.model_path}: {e}")
logger.info("Falling back to fitting a new model")
self.reducer = None
umap_coords = self.reducer.fit_transform(embeddings_matrix)
logger.info(f"UMAP transformation complete. Output shape: {umap_coords.shape}")
# If no saved model or loading failed, fit a new model
if self.reducer is None:
logger.info("Fitting new UMAP reducer...")
self.reducer = umap.UMAP(
n_neighbors=self.n_neighbors,
min_dist=self.min_dist,
n_components=self.n_components,
metric=self.metric,
random_state=self.random_state
)
umap_coords = self.reducer.fit_transform(embeddings_matrix)
logger.info(f"UMAP transformation complete. Output shape: {umap_coords.shape}")
# Save the fitted model
try:
umap_folder = '/'.join(self.model_path.split('/')[:1])
os.mkdir(umap_folder)
with open(self.model_path, 'wb') as f:
pickle.dump(self.reducer, f)
logger.info(f"UMAP model saved to {self.model_path}")
except Exception as e:
logger.error(f"Failed to save UMAP model to {self.model_path}: {e}")
# Add UMAP coordinates to dataframe
result_df.loc[valid_rows, 'umap_x'] = umap_coords[:, 0]
result_df.loc[valid_rows, 'umap_y'] = umap_coords[:, 1]
result_df.loc[valid_rows, 'umap_z'] = umap_coords[:, 2]
# Fill NaN for invalid rows
result_df['umap_x'] = result_df['umap_x'].fillna(None)
result_df['umap_y'] = result_df['umap_y'].fillna(None)
result_df['umap_x'] = result_df['umap_x'].fillna(value=0)
result_df['umap_y'] = result_df['umap_y'].fillna(value=0)
result_df['umap_z'] = result_df['umap_z'].fillna(value=0)
logger.info("Processing complete")
return result_df
@ -270,14 +304,14 @@ class UmapNode(TransformNode):
# Batch update UMAP coordinates
updates = [
(row['umap_x'], row['umap_y'], row['id'])
(row['umap_x'], row['umap_y'], row['umap_z'], row['id'])
for _, row in df.iterrows()
if pd.notna(row.get('umap_x')) and pd.notna(row.get('umap_y'))
if pd.notna(row.get('umap_x')) and pd.notna(row.get('umap_y')) and pd.notna(row.get('umap_z'))
]
if updates:
con.executemany(
"UPDATE posts SET umap_x = ?, umap_y = ? WHERE id = ?",
"UPDATE posts SET umap_x = ?, umap_y = ?, umap_z = ? WHERE id = ?",
updates
)
con.commit()
@ -443,3 +477,60 @@ class SimilarityNode(TransformNode):
# Return new context with results
return TransformContext(result_df)
def main():
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("app.log"),
logging.StreamHandler(sys.stdout)
]
)
logger = logging.getLogger("knack-transform")
con = sqlite3.connect("/Users/linussilberstein/Documents/Knack-Scraper/data/knack.sqlite")
df = pd.read_sql('select * from posts;', con)
#node = TextEmbeddingNode(device='mps')
#context = TransformContext(df)
logger.info(df)
#new_context = node.run(con, context)
#logger.info(new_context.get_dataframe())
#umapNode = UmapNode()
#new_context = umapNode.run(con, new_context)
#logger.info(new_context.get_dataframe())
# Create 3D scatter plot of UMAP coordinates
result_df = df
fig = plt.figure(figsize=(12, 9))
ax = fig.add_subplot(111, projection='3d')
scatter = ax.scatter(
result_df['umap_x'],
result_df['umap_y'],
result_df['umap_z'],
c=result_df['id'],
cmap='viridis',
alpha=0.6,
s=50
)
ax.set_xlabel('UMAP X')
ax.set_ylabel('UMAP Y')
ax.set_zlabel('UMAP Z')
ax.set_title('3D UMAP Visualization of Post Embeddings')
plt.colorbar(scatter, ax=ax, label='Post Index')
plt.tight_layout()
plt.show()
logger.info("3D plot displayed")
if __name__ == '__main__':
main()