forked from lukaszett/Knack-Scraper
Makes transformer script executable via cli
This commit is contained in:
parent
8fae350b34
commit
7c2e34906e
11 changed files with 648 additions and 37 deletions
|
|
@ -11,7 +11,6 @@ RUN apt-get update && apt-get install -y --no-install-recommends \
|
|||
liblapack-dev \
|
||||
pkg-config \
|
||||
curl \
|
||||
jq \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
ENV GLINER_MODEL_ID=urchade/gliner_multi-v2.1
|
||||
|
|
@ -40,7 +39,7 @@ COPY *.py .
|
|||
|
||||
# Create cron job that runs every weekend (Sunday at 3 AM) 0 3 * * 0
|
||||
# Testing every 30 Minutes */30 * * * *
|
||||
RUN echo "*/15 * * * * cd /app && /usr/local/bin/python main.py >> /proc/1/fd/1 2>&1" > /etc/cron.d/knack-transform
|
||||
RUN echo "*/30 * * * * cd /app && /usr/local/bin/python main.py >> /proc/1/fd/1 2>&1" > /etc/cron.d/knack-transform
|
||||
RUN chmod 0644 /etc/cron.d/knack-transform
|
||||
RUN crontab /etc/cron.d/knack-transform
|
||||
|
||||
|
|
|
|||
|
|
@ -418,3 +418,52 @@ class FuzzyAuthorNode(TransformNode):
|
|||
|
||||
# Return new context with results
|
||||
return TransformContext(input_df)
|
||||
|
||||
|
||||
def main():
|
||||
import sys
|
||||
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
||||
handlers=[
|
||||
logging.StreamHandler(sys.stdout)
|
||||
]
|
||||
)
|
||||
logger = logging.getLogger("knack-transform")
|
||||
|
||||
# Connect to database
|
||||
db_path = "/Users/linussilberstein/Documents/Knack-Scraper/data/knack.sqlite"
|
||||
con = sqlite3.connect(db_path)
|
||||
|
||||
try:
|
||||
# Read posts from database
|
||||
df = pd.read_sql('SELECT * FROM posts;', con)
|
||||
logger.info(f"Loaded {len(df)} posts from database")
|
||||
|
||||
# Create context
|
||||
context = TransformContext(df)
|
||||
|
||||
# Run NerAuthorNode
|
||||
logger.info("Running NerAuthorNode...")
|
||||
ner_node = NerAuthorNode(device="mps")
|
||||
context = ner_node.run(con, context)
|
||||
logger.info("NerAuthorNode complete")
|
||||
|
||||
# Run FuzzyAuthorNode
|
||||
logger.info("Running FuzzyAuthorNode...")
|
||||
fuzzy_node = FuzzyAuthorNode(max_l_dist=1)
|
||||
context = fuzzy_node.run(con, context)
|
||||
logger.info("FuzzyAuthorNode complete")
|
||||
|
||||
logger.info("All author nodes completed successfully!")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error during transformation: {e}", exc_info=True)
|
||||
raise
|
||||
finally:
|
||||
con.close()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
|
|
|||
|
|
@ -40,7 +40,7 @@ class TextEmbeddingNode(TransformNode):
|
|||
of posts.
|
||||
"""
|
||||
def __init__(self,
|
||||
model_name: str = "thenlper/gte-small",
|
||||
model_name: str = "thenlper/gte-large",
|
||||
model_path: str = None,
|
||||
device: str = "cpu"):
|
||||
"""Initialize the ExampleNode.
|
||||
|
|
@ -64,8 +64,12 @@ class TextEmbeddingNode(TransformNode):
|
|||
model_source = None
|
||||
if self.model_path:
|
||||
if os.path.exists(self.model_path):
|
||||
model_source = self.model_path
|
||||
logger.info(f"Loading GTE model from local path: {self.model_path}")
|
||||
# Check if it's a valid model directory
|
||||
if os.path.exists(os.path.join(self.model_path, 'config.json')):
|
||||
model_source = self.model_path
|
||||
logger.info(f"Loading GTE model from local path: {self.model_path}")
|
||||
else:
|
||||
logger.warning(f"GTE_MODEL_PATH '{self.model_path}' found but missing config.json; Falling back to hub model {self.model_name}")
|
||||
else:
|
||||
logger.warning(f"GTE_MODEL_PATH '{self.model_path}' not found; Falling back to hub model {self.model_name}")
|
||||
|
||||
|
|
@ -73,12 +77,17 @@ class TextEmbeddingNode(TransformNode):
|
|||
model_source = self.model_name
|
||||
logger.info(f"Loading GTE model from the hub: {self.model_name}")
|
||||
|
||||
if self.device == "cuda" and torch.cuda.is_available():
|
||||
self.model = SentenceTransformer(model_source).to('cuda', dtype=torch.float16)
|
||||
elif self.device == "mps" and torch.backends.mps.is_available():
|
||||
self.model = SentenceTransformer(model_source).to('mps', dtype=torch.float16)
|
||||
else:
|
||||
self.model = SentenceTransformer(model_source)
|
||||
try:
|
||||
if self.device == "cuda" and torch.cuda.is_available():
|
||||
self.model = SentenceTransformer(model_source).to('cuda', dtype=torch.float16)
|
||||
elif self.device == "mps" and torch.backends.mps.is_available():
|
||||
self.model = SentenceTransformer(model_source).to('mps', dtype=torch.float16)
|
||||
else:
|
||||
self.model = SentenceTransformer(model_source)
|
||||
logger.info(f"Successfully loaded GTE model from: {model_source}")
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to load GTE model from {model_source}: {e}")
|
||||
raise
|
||||
|
||||
def _process_data(self, df: pd.DataFrame) -> pd.DataFrame:
|
||||
"""Process the input dataframe.
|
||||
|
|
|
|||
|
|
@ -1,16 +1,35 @@
|
|||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
if [ -d "$GLINER_MODEL_PATH" ] && find "$GLINER_MODEL_PATH" -type f | grep -q .; then
|
||||
if [ -d "$GLINER_MODEL_PATH" ] && [ -f "$GLINER_MODEL_PATH/config.json" ]; then
|
||||
echo "GLiNER model already present at $GLINER_MODEL_PATH"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
echo "Downloading GLiNER model to $GLINER_MODEL_PATH"
|
||||
echo "Downloading GLiNER model $GLINER_MODEL_ID to $GLINER_MODEL_PATH"
|
||||
mkdir -p "$GLINER_MODEL_PATH"
|
||||
curl -sL "https://huggingface.co/api/models/${GLINER_MODEL_ID}" | jq -r '.siblings[].rfilename' | while read -r file; do
|
||||
target="${GLINER_MODEL_PATH}/${file}"
|
||||
mkdir -p "$(dirname "$target")"
|
||||
echo "Downloading ${file}"
|
||||
curl -sL "https://huggingface.co/${GLINER_MODEL_ID}/resolve/main/${file}" -o "$target"
|
||||
done
|
||||
|
||||
# Use Python with huggingface_hub for reliable model downloading
|
||||
python3 << 'EOF'
|
||||
import os
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
model_id = os.environ.get('GLINER_MODEL_ID')
|
||||
model_path = os.environ.get('GLINER_MODEL_PATH')
|
||||
|
||||
if not model_id or not model_path:
|
||||
raise ValueError(f"GLINER_MODEL_ID and GLINER_MODEL_PATH environment variables must be set")
|
||||
|
||||
try:
|
||||
print(f"Downloading model {model_id} to {model_path}")
|
||||
snapshot_download(
|
||||
repo_id=model_id,
|
||||
cache_dir=None, # Don't use cache, download directly
|
||||
local_dir=model_path,
|
||||
local_dir_use_symlinks=False # Don't use symlinks, copy files
|
||||
)
|
||||
print(f"Successfully downloaded GLiNER model to {model_path}")
|
||||
except Exception as e:
|
||||
print(f"Error downloading GLiNER model: {e}")
|
||||
exit(1)
|
||||
EOF
|
||||
|
|
|
|||
|
|
@ -1,16 +1,35 @@
|
|||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
if [ -d "$GTE_MODEL_PATH" ] && find "$GTE_MODEL_PATH" -type f | grep -q .; then
|
||||
if [ -d "$GTE_MODEL_PATH" ] && [ -f "$GTE_MODEL_PATH/config.json" ]; then
|
||||
echo "GTE model already present at $GTE_MODEL_PATH"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
echo "Downloading GTE model to $GTE_MODEL_PATH"
|
||||
echo "Downloading GTE model $GTE_MODEL_ID to $GTE_MODEL_PATH"
|
||||
mkdir -p "$GTE_MODEL_PATH"
|
||||
curl -sL "https://huggingface.co/api/models/${GTE_MODEL_ID}" | jq -r '.siblings[].rfilename' | while read -r file; do
|
||||
target="${GTE_MODEL_PATH}/${file}"
|
||||
mkdir -p "$(dirname "$target")"
|
||||
echo "Downloading ${file}"
|
||||
curl -sL "https://huggingface.co/${GTE_MODEL_ID}/resolve/main/${file}" -o "$target"
|
||||
done
|
||||
|
||||
# Use Python with huggingface_hub for reliable model downloading
|
||||
python3 << 'EOF'
|
||||
import os
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
model_id = os.environ.get('GTE_MODEL_ID')
|
||||
model_path = os.environ.get('GTE_MODEL_PATH')
|
||||
|
||||
if not model_id or not model_path:
|
||||
raise ValueError(f"GTE_MODEL_ID and GTE_MODEL_PATH environment variables must be set")
|
||||
|
||||
try:
|
||||
print(f"Downloading model {model_id} to {model_path}")
|
||||
snapshot_download(
|
||||
repo_id=model_id,
|
||||
cache_dir=None, # Don't use cache, download directly
|
||||
local_dir=model_path,
|
||||
local_dir_use_symlinks=False # Don't use symlinks, copy files
|
||||
)
|
||||
print(f"Successfully downloaded GTE model to {model_path}")
|
||||
except Exception as e:
|
||||
print(f"Error downloading GTE model: {e}")
|
||||
exit(1)
|
||||
EOF
|
||||
|
|
|
|||
|
|
@ -1,4 +1,5 @@
|
|||
#! python3
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
import sqlite3
|
||||
|
|
@ -23,9 +24,10 @@ logging.basicConfig(
|
|||
logger = logging.getLogger("knack-transform")
|
||||
|
||||
|
||||
def setup_database_connection():
|
||||
def setup_database_connection(db_path=None):
|
||||
"""Create connection to the SQLite database."""
|
||||
db_path = os.environ.get('DB_PATH', '/data/knack.sqlite')
|
||||
if db_path is None:
|
||||
db_path = os.environ.get('DB_PATH', '/data/knack.sqlite')
|
||||
logger.info(f"Connecting to database: {db_path}")
|
||||
return sqlite3.connect(db_path)
|
||||
|
||||
|
|
@ -35,13 +37,12 @@ def table_exists(tablename: str, con: sqlite3.Connection):
|
|||
query = "SELECT 1 FROM sqlite_master WHERE type='table' AND name=? LIMIT 1"
|
||||
return len(con.execute(query, [tablename]).fetchall()) > 0
|
||||
|
||||
|
||||
def main():
|
||||
"""Main entry point for the transform pipeline."""
|
||||
logger.info("Starting transform pipeline")
|
||||
def run_from_database(db_path=None):
|
||||
"""Run the pipeline using database as input and output."""
|
||||
logger.info("Starting transform pipeline (database mode)")
|
||||
|
||||
try:
|
||||
con = setup_database_connection()
|
||||
con = setup_database_connection(db_path)
|
||||
logger.info("Database connection established")
|
||||
|
||||
# Check if posts table exists
|
||||
|
|
@ -73,8 +74,9 @@ def main():
|
|||
max_workers = int(os.environ.get('MAX_WORKERS', 4))
|
||||
|
||||
pipeline = create_default_pipeline(device=device, max_workers=max_workers)
|
||||
effective_db_path = db_path or os.environ.get('DB_PATH', '/data/knack.sqlite')
|
||||
results = pipeline.run(
|
||||
db_path=os.environ.get('DB_PATH', '/data/knack.sqlite'),
|
||||
db_path=effective_db_path,
|
||||
initial_context=context,
|
||||
fail_fast=False # Continue even if some nodes fail
|
||||
)
|
||||
|
|
@ -97,6 +99,49 @@ def main():
|
|||
con.close()
|
||||
logger.info("Database connection closed")
|
||||
|
||||
def main():
|
||||
"""Main entry point with command-line argument support."""
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Transform pipeline for Knack scraper data',
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||||
epilog="""
|
||||
Examples:
|
||||
# Run with database (Docker mode)
|
||||
python main.py
|
||||
|
||||
# Run with custom device and workers
|
||||
python main.py --database /path/to/knack.sqlite --device mps --workers 8
|
||||
|
||||
# Run with specific database file
|
||||
python main.py --database /path/to/knack.sqlite
|
||||
"""
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--database',
|
||||
help='Path to SQLite database (for database mode). Defaults to DB_PATH env var or /data/knack.sqlite'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--device',
|
||||
default=os.environ.get('COMPUTE_DEVICE', 'cpu'),
|
||||
choices=['cpu', 'cuda', 'mps'],
|
||||
help='Device to use for compute-intensive operations (default: cpu)'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--workers',
|
||||
type=int,
|
||||
default=int(os.environ.get('MAX_WORKERS', 4)),
|
||||
help='Maximum number of parallel workers (default: 4)'
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Determine mode based on arguments
|
||||
if args.database:
|
||||
# Database mode (original behavior)
|
||||
run_from_database(db_path=args.database)
|
||||
logger.info("Database connection closed")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
|
|
|||
|
|
@ -214,8 +214,15 @@ def create_default_pipeline(device: str = "cpu",
|
|||
"""
|
||||
from author_node import NerAuthorNode, FuzzyAuthorNode
|
||||
from embeddings_node import TextEmbeddingNode, UmapNode
|
||||
from url_node import URLNode
|
||||
|
||||
pipeline = ParallelPipeline(max_workers=max_workers, use_processes=False)
|
||||
|
||||
pipeline.add_node(NodeConfig(
|
||||
node_class=URLNode,
|
||||
dependencies=[],
|
||||
name='URLNode'
|
||||
))
|
||||
|
||||
# Add AuthorNode (no dependencies)
|
||||
pipeline.add_node(NodeConfig(
|
||||
|
|
@ -243,7 +250,7 @@ def create_default_pipeline(device: str = "cpu",
|
|||
'device': device,
|
||||
'model_path': os.environ.get('GTE_MODEL_PATH')
|
||||
},
|
||||
dependencies=[],
|
||||
dependencies=['AuthorNode'],
|
||||
name='TextEmbeddingNode'
|
||||
))
|
||||
|
||||
|
|
|
|||
|
|
@ -4,4 +4,6 @@ gliner
|
|||
torch
|
||||
fuzzysearch
|
||||
sentence_transformers
|
||||
umap-learn
|
||||
umap-learn
|
||||
matplotlib
|
||||
huggingface_hub
|
||||
160
transform/url_node.py
Normal file
160
transform/url_node.py
Normal file
|
|
@ -0,0 +1,160 @@
|
|||
"""Nodes to extract URL in text using regex patterns."""
|
||||
import sqlite3
|
||||
import pandas as pd
|
||||
import logging
|
||||
import re
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from pipeline import TransformContext
|
||||
from transform_node import TransformNode
|
||||
|
||||
logger = logging.getLogger("knack-transform")
|
||||
|
||||
class URLNode(TransformNode):
|
||||
"""Node that looks for URLs in the text-column in posts.
|
||||
Stores data in a new table urls:
|
||||
- id, post_id, url_raw, tld, host
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
logger.info("Init URL Node")
|
||||
|
||||
def _create_tables(self, con: sqlite3.Connection):
|
||||
"""Create urls table if they don't exist."""
|
||||
con.execute("""
|
||||
CREATE TABLE IF NOT EXISTS urls (
|
||||
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||
post_id INTEGER,
|
||||
url_raw TEXT,
|
||||
tld TEXT,
|
||||
host TEXT,
|
||||
FOREIGN KEY (post_id) REFERENCES posts(id)
|
||||
)
|
||||
""")
|
||||
|
||||
con.commit()
|
||||
|
||||
def _process_data(self, input_df: pd.DataFrame) -> pd.DataFrame:
|
||||
logger.info(f"Processing {len(input_df)} rows")
|
||||
|
||||
mappings = []
|
||||
for _, post_row in input_df.iterrows():
|
||||
post_id = post_row['id']
|
||||
post_text = post_row['text']
|
||||
|
||||
pattern = r"https?://(?:www\.)?[-a-zA-Z0-9@:%._\+~#=]{1,256}\.[a-zA-Z0-9()]{1,6}\b[-a-zA-Z0-9@:%_\+.~#?&/=]*"
|
||||
|
||||
urls = re.findall(pattern, post_text)
|
||||
logger.debug(f"Post {post_id}, text preview: {post_text[:50]}, URLs found: {len(urls)}")
|
||||
|
||||
for url in urls:
|
||||
try:
|
||||
parsed = urlparse(url)
|
||||
hostname = parsed.netloc
|
||||
|
||||
# If the hostname starts with www. remove that part.
|
||||
if hostname[:4] == 'www.':
|
||||
hostname = hostname[4:]
|
||||
|
||||
# Extract TLD (last part after the last dot)
|
||||
tld = ""
|
||||
if hostname:
|
||||
parts = hostname.split('.')
|
||||
if len(parts) > 0:
|
||||
tld = parts[-1]
|
||||
|
||||
mappings.append({
|
||||
'post_id': post_id,
|
||||
'url_raw': url,
|
||||
'host': hostname,
|
||||
'tld': tld
|
||||
})
|
||||
logger.debug(f" URL: {url} -> Host: {hostname}, TLD: {tld}")
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to parse URL {url}: {e}")
|
||||
|
||||
result_df = pd.DataFrame(mappings)
|
||||
logger.info(f"Extracted {len(result_df)} URLs from {len(input_df)} posts")
|
||||
return result_df
|
||||
|
||||
|
||||
def _store_results(self, con: sqlite3.Connection, result_df: pd.DataFrame):
|
||||
if result_df.empty:
|
||||
logger.info("No URLs to store")
|
||||
return
|
||||
|
||||
result_df.to_sql('urls', con, if_exists='append', index=False)
|
||||
logger.info(f"Stored {len(result_df)} URLs to database")
|
||||
|
||||
def run(self, con: sqlite3.Connection, context: TransformContext):
|
||||
"""Executes the URL Node.
|
||||
Writes to a new table urls and creates said table if it does not
|
||||
exist currently.
|
||||
|
||||
Args:
|
||||
con (sqlite3.Connection): SQLite database connection
|
||||
context (TransformContext): Transformcontext,
|
||||
containing the input dataframe of all posts
|
||||
|
||||
Returns:
|
||||
TransformContext with processed dataframe.
|
||||
"""
|
||||
logger.info("Starting URLNode transformation")
|
||||
|
||||
input_df = context.get_dataframe()
|
||||
|
||||
if input_df.empty:
|
||||
logger.warning("Empty dataframe. Skipping URLNode")
|
||||
return context
|
||||
|
||||
self._create_tables(con)
|
||||
result_df = self._process_data(input_df)
|
||||
self._store_results(con, result_df)
|
||||
|
||||
logger.info("Node transformation complete")
|
||||
|
||||
return TransformContext(input_df)
|
||||
|
||||
def main():
|
||||
import sys
|
||||
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
||||
handlers=[
|
||||
logging.StreamHandler(sys.stdout)
|
||||
]
|
||||
)
|
||||
logger = logging.getLogger("knack-transform")
|
||||
|
||||
# Connect to database
|
||||
db_path = "/Users/linussilberstein/Documents/Knack-Scraper/data/knack.sqlite"
|
||||
con = sqlite3.connect(db_path)
|
||||
|
||||
try:
|
||||
# Read posts from database
|
||||
df = pd.read_sql('SELECT * FROM posts;', con)
|
||||
logger.info(f"Loaded {len(df)} posts from database")
|
||||
|
||||
# Create context
|
||||
context = TransformContext(df)
|
||||
|
||||
# Run NerAuthorNode
|
||||
logger.info("Running NerAuthorNode...")
|
||||
node = URLNode()
|
||||
context = node.run(con, context)
|
||||
logger.info("NerAuthorNode complete")
|
||||
|
||||
|
||||
logger.info("All author nodes completed successfully!")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error during transformation: {e}", exc_info=True)
|
||||
raise
|
||||
finally:
|
||||
con.close()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
Loading…
Add table
Add a link
Reference in a new issue