forked from lukaszett/Knack-Scraper
Implement Nodes to compute text embeddings
This commit is contained in:
parent
72765532d3
commit
49239e7e25
9 changed files with 505 additions and 25 deletions
|
|
@ -227,7 +227,9 @@ def main():
|
|||
num_threads=num_threads,
|
||||
)
|
||||
|
||||
postdf.to_sql("posts", con, if_exists="append")
|
||||
# Drop category and tags columns as they're stored in separate tables
|
||||
postdf = postdf.drop(columns=['category', 'tags'])
|
||||
postdf.to_sql("posts", con, if_exists="append", index=False)
|
||||
|
||||
# Tags
|
||||
tag_dim, tag_map = build_dimension_and_mapping(postdf, 'tags', 'tag')
|
||||
|
|
|
|||
|
|
@ -17,6 +17,9 @@ RUN apt-get update && apt-get install -y --no-install-recommends \
|
|||
ENV GLINER_MODEL_ID=urchade/gliner_multi-v2.1
|
||||
ENV GLINER_MODEL_PATH=/models/gliner_multi-v2.1
|
||||
|
||||
ENV MINILM_MODEL_ID=sentence-transformers/all-MiniLM-L6-v2
|
||||
ENV MINILM_MODEL_PATH=/models/all-MiniLM-L6-v2
|
||||
|
||||
WORKDIR /app
|
||||
COPY requirements.txt .
|
||||
RUN pip install --no-cache-dir -r requirements.txt
|
||||
|
|
@ -28,8 +31,10 @@ RUN apt install -y cron locales
|
|||
|
||||
# Ensure GLiNER helper scripts are available
|
||||
COPY ensure_gliner_model.sh /usr/local/bin/ensure_gliner_model.sh
|
||||
# Ensure MiniLM helper scripts are available
|
||||
COPY ensure_minilm_model.sh /usr/local/bin/ensure_minilm_model.sh
|
||||
COPY entrypoint.sh /usr/local/bin/entrypoint.sh
|
||||
RUN chmod +x /usr/local/bin/ensure_gliner_model.sh /usr/local/bin/entrypoint.sh
|
||||
RUN chmod +x /usr/local/bin/ensure_gliner_model.sh /usr/local/bin/ensure_minilm_model.sh /usr/local/bin/entrypoint.sh
|
||||
|
||||
COPY *.py .
|
||||
|
||||
|
|
|
|||
|
|
@ -9,6 +9,8 @@ from concurrent.futures import ThreadPoolExecutor
|
|||
from pipeline import TransformContext
|
||||
from transform_node import TransformNode
|
||||
|
||||
logger = logging.getLogger("knack-transform")
|
||||
|
||||
try:
|
||||
from gliner import GLiNER
|
||||
import torch
|
||||
|
|
@ -17,9 +19,6 @@ except ImportError:
|
|||
GLINER_AVAILABLE = False
|
||||
logging.warning("GLiNER not available. Install with: pip install gliner")
|
||||
|
||||
logger = logging.getLogger("knack-transform")
|
||||
|
||||
|
||||
class NerAuthorNode(TransformNode):
|
||||
"""Transform node that extracts and classifies authors using NER.
|
||||
|
||||
|
|
@ -257,10 +256,9 @@ class NerAuthorNode(TransformNode):
|
|||
self._store_authors(con, results)
|
||||
|
||||
# Return context with results
|
||||
results_df = pd.DataFrame(results) if results else pd.DataFrame()
|
||||
logger.info("AuthorNode transformation complete")
|
||||
|
||||
return TransformContext(results_df)
|
||||
return TransformContext(posts_df)
|
||||
|
||||
|
||||
class FuzzyAuthorNode(TransformNode):
|
||||
|
|
@ -333,12 +331,14 @@ class FuzzyAuthorNode(TransformNode):
|
|||
for _, author_row in authors_df.iterrows():
|
||||
author_id = author_row['id']
|
||||
author_name = str(author_row['name'])
|
||||
# for author names < than 2 characters I want a fault tolerance of 0!
|
||||
l_dist = self.max_l_dist if len(author_name) > 2 else 0
|
||||
|
||||
# Use fuzzysearch to find matches with allowed errors
|
||||
matches = fuzzysearch.find_near_matches(
|
||||
author_name,
|
||||
post_author,
|
||||
max_l_dist=self.max_l_dist
|
||||
max_l_dist=l_dist,
|
||||
)
|
||||
|
||||
if matches:
|
||||
|
|
@ -417,4 +417,4 @@ class FuzzyAuthorNode(TransformNode):
|
|||
logger.info("FuzzyAuthorNode transformation complete")
|
||||
|
||||
# Return new context with results
|
||||
return TransformContext(result_df)
|
||||
return TransformContext(input_df)
|
||||
|
|
|
|||
445
transform/embeddings_node.py
Normal file
445
transform/embeddings_node.py
Normal file
|
|
@ -0,0 +1,445 @@
|
|||
"""Classes of Transformernodes that have to do with
|
||||
text processing.
|
||||
|
||||
- TextEmbeddingNode calculates text embeddings
|
||||
- UmapNode calculates xy coordinates on those vector embeddings
|
||||
- SimilarityNode calculates top n similar posts based on those embeddings
|
||||
using the spectral distance.
|
||||
"""
|
||||
from pipeline import TransformContext
|
||||
from transform_node import TransformNode
|
||||
import sqlite3
|
||||
import pandas as pd
|
||||
import logging
|
||||
import os
|
||||
import numpy as np
|
||||
|
||||
logger = logging.getLogger("knack-transform")
|
||||
|
||||
try:
|
||||
from sentence_transformers import SentenceTransformer
|
||||
import torch
|
||||
MINILM_AVAILABLE = True
|
||||
except ImportError:
|
||||
MINILM_AVAILABLE = False
|
||||
logging.warning("MiniLM not available. Install with pip!")
|
||||
|
||||
try:
|
||||
import umap
|
||||
UMAP_AVAILABLE = True
|
||||
except ImportError:
|
||||
UMAP_AVAILABLE = False
|
||||
logging.warning("UMAP not available. Install with pip install umap-learn!")
|
||||
|
||||
class TextEmbeddingNode(TransformNode):
|
||||
"""Calculates vector embeddings based on a dataframe
|
||||
of posts.
|
||||
"""
|
||||
def __init__(self,
|
||||
model_name: str = "sentence-transformers/all-MiniLM-L6-v2",
|
||||
model_path: str = None,
|
||||
device: str = "cpu"):
|
||||
"""Initialize the ExampleNode.
|
||||
|
||||
Args:
|
||||
model_name: Name of the ML Model to calculate text embeddings
|
||||
model_path: Optional local path to a downloaded embedding model
|
||||
device: Device to use for computations ('cpu', 'cuda', 'mps')
|
||||
"""
|
||||
self.model_name = model_name
|
||||
self.model_path = model_path or os.environ.get('MINILM_MODEL_PATH')
|
||||
self.device = device
|
||||
self.model = None
|
||||
logger.info(f"Initialized TextEmbeddingNode with model_name={model_name}, model_path={model_path}, device={device}")
|
||||
|
||||
def _setup_model(self):
|
||||
"""Init the Text Embedding Model."""
|
||||
if not MINILM_AVAILABLE:
|
||||
raise ImportError("MiniLM is required for TextEmbeddingNode. Please install.")
|
||||
|
||||
model_source = None
|
||||
if self.model_path:
|
||||
if os.path.exists(self.model_path):
|
||||
model_source = self.model_path
|
||||
logger.info(f"Loading MiniLM model from local path: {self.model_path}")
|
||||
else:
|
||||
logger.warning(f"MiniLM_MODEL_PATH '{self.model_path}' not found; Falling back to hub model {self.model_name}")
|
||||
|
||||
if model_source is None:
|
||||
model_source = self.model_name
|
||||
logger.info(f"Loading MiniLM model from the hub: {self.model_name}")
|
||||
|
||||
if self.device == "cuda" and torch.cuda.is_available():
|
||||
self.model = SentenceTransformer(model_source).to('cuda', dtype=torch.float16)
|
||||
elif self.device == "mps" and torch.backends.mps.is_available():
|
||||
self.model = SentenceTransformer(model_source).to('mps', dtype=torch.float16)
|
||||
else:
|
||||
self.model = SentenceTransformer(model_source)
|
||||
|
||||
def _process_data(self, df: pd.DataFrame) -> pd.DataFrame:
|
||||
"""Process the input dataframe.
|
||||
|
||||
Calculates an embedding as a np.array.
|
||||
Also pickles that array to prepare it to
|
||||
storage in the database.
|
||||
|
||||
Args:
|
||||
df: Input dataframe from context
|
||||
|
||||
Returns:
|
||||
Processed dataframe
|
||||
"""
|
||||
logger.info(f"Processing {len(df)} rows")
|
||||
|
||||
if self.model is None:
|
||||
self._setup_model()
|
||||
|
||||
# Example: Add a new column based on existing data
|
||||
result_df = df.copy()
|
||||
|
||||
df['embedding'] = df['text'].apply(lambda x: self.model.encode(x, convert_to_numpy=True))
|
||||
|
||||
logger.info("Processing complete")
|
||||
return result_df
|
||||
|
||||
def _store_results(self, con: sqlite3.Connection, df: pd.DataFrame):
|
||||
"""Store results back to the database using batch updates."""
|
||||
if df.empty:
|
||||
logger.info("No results to store")
|
||||
return
|
||||
|
||||
logger.info(f"Storing {len(df)} results")
|
||||
|
||||
# Convert numpy arrays to bytes for BLOB storage
|
||||
# Use tobytes() to serialize numpy arrays efficiently
|
||||
updates = [(row['embedding'].tobytes(), row['id']) for _, row in df.iterrows()]
|
||||
con.executemany(
|
||||
"UPDATE posts SET embedding = ? WHERE id = ?",
|
||||
updates
|
||||
)
|
||||
|
||||
con.commit()
|
||||
logger.info("Results stored successfully")
|
||||
|
||||
def run(self, con: sqlite3.Connection, context: TransformContext) -> TransformContext:
|
||||
"""Execute the transformation.
|
||||
|
||||
This is the main entry point called by the pipeline.
|
||||
|
||||
Args:
|
||||
con: SQLite database connection
|
||||
context: TransformContext containing input dataframe
|
||||
|
||||
Returns:
|
||||
TransformContext with processed dataframe
|
||||
"""
|
||||
logger.info("Starting TextEmbeddingNode transformation")
|
||||
|
||||
# Get input dataframe from context
|
||||
input_df = context.get_dataframe()
|
||||
|
||||
# Validate input
|
||||
if input_df.empty:
|
||||
logger.warning("Empty dataframe provided to TextEmbeddingNdode")
|
||||
return context
|
||||
|
||||
if 'text' not in input_df.columns:
|
||||
logger.warning("No 'text' column in context dataframe. Skipping TextEmbeddingNode")
|
||||
return context
|
||||
|
||||
# Process the data
|
||||
result_df = self._process_data(input_df)
|
||||
|
||||
# Store results (optional)
|
||||
self._store_results(con, result_df)
|
||||
|
||||
logger.info("TextEmbeddingNode transformation complete")
|
||||
|
||||
# Return new context with results
|
||||
return TransformContext(result_df)
|
||||
|
||||
|
||||
class UmapNode(TransformNode):
|
||||
"""Calculates 2D coordinates from embeddings using UMAP dimensionality reduction.
|
||||
|
||||
This node takes text embeddings and reduces them to 2D coordinates
|
||||
for visualization purposes.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
n_neighbors: int = 15,
|
||||
min_dist: float = 0.1,
|
||||
n_components: int = 2,
|
||||
metric: str = "cosine",
|
||||
random_state: int = 42):
|
||||
"""Initialize the UmapNode.
|
||||
|
||||
Args:
|
||||
n_neighbors: Number of neighbors to consider for UMAP (default: 15)
|
||||
min_dist: Minimum distance between points in low-dimensional space (default: 0.1)
|
||||
n_components: Number of dimensions to reduce to (default: 2)
|
||||
metric: Distance metric to use (default: 'cosine')
|
||||
random_state: Random seed for reproducibility (default: 42)
|
||||
"""
|
||||
self.n_neighbors = n_neighbors
|
||||
self.min_dist = min_dist
|
||||
self.n_components = n_components
|
||||
self.metric = metric
|
||||
self.random_state = random_state
|
||||
self.reducer = None
|
||||
logger.info(f"Initialized UmapNode with n_neighbors={n_neighbors}, min_dist={min_dist}, "
|
||||
f"n_components={n_components}, metric={metric}, random_state={random_state}")
|
||||
|
||||
def _process_data(self, df: pd.DataFrame) -> pd.DataFrame:
|
||||
"""Process the input dataframe.
|
||||
|
||||
Retrieves embeddings from BLOB storage, converts them back to numpy arrays,
|
||||
and applies UMAP dimensionality reduction to create 2D coordinates.
|
||||
|
||||
Args:
|
||||
df: Input dataframe from context
|
||||
|
||||
Returns:
|
||||
Processed dataframe with umap_x and umap_y columns
|
||||
"""
|
||||
logger.info(f"Processing {len(df)} rows")
|
||||
|
||||
if not UMAP_AVAILABLE:
|
||||
raise ImportError("UMAP is required for UmapNode. Install with: pip install umap-learn")
|
||||
|
||||
result_df = df.copy()
|
||||
|
||||
# Convert BLOB embeddings back to numpy arrays
|
||||
if 'embedding' not in result_df.columns:
|
||||
logger.error("No 'embedding' column found in dataframe")
|
||||
raise ValueError("Input dataframe must contain 'embedding' column")
|
||||
|
||||
logger.info("Converting embeddings from BLOB to numpy arrays")
|
||||
result_df['embedding'] = result_df['embedding'].apply(
|
||||
lambda x: np.frombuffer(x, dtype=np.float32) if x is not None else None
|
||||
)
|
||||
|
||||
# Filter out rows with None embeddings
|
||||
valid_rows = result_df['embedding'].notna()
|
||||
if not valid_rows.any():
|
||||
logger.error("No valid embeddings found in dataframe")
|
||||
raise ValueError("No valid embeddings to process")
|
||||
|
||||
logger.info(f"Found {valid_rows.sum()} valid embeddings out of {len(result_df)} rows")
|
||||
|
||||
# Stack embeddings into a matrix
|
||||
embeddings_matrix = np.vstack(result_df.loc[valid_rows, 'embedding'].values)
|
||||
logger.info(f"Embeddings matrix shape: {embeddings_matrix.shape}")
|
||||
|
||||
# Apply UMAP
|
||||
logger.info("Fitting UMAP reducer...")
|
||||
self.reducer = umap.UMAP(
|
||||
n_neighbors=self.n_neighbors,
|
||||
min_dist=self.min_dist,
|
||||
n_components=self.n_components,
|
||||
metric=self.metric,
|
||||
random_state=self.random_state
|
||||
)
|
||||
|
||||
umap_coords = self.reducer.fit_transform(embeddings_matrix)
|
||||
logger.info(f"UMAP transformation complete. Output shape: {umap_coords.shape}")
|
||||
|
||||
# Add UMAP coordinates to dataframe
|
||||
result_df.loc[valid_rows, 'umap_x'] = umap_coords[:, 0]
|
||||
result_df.loc[valid_rows, 'umap_y'] = umap_coords[:, 1]
|
||||
|
||||
# Fill NaN for invalid rows
|
||||
result_df['umap_x'] = result_df['umap_x'].fillna(None)
|
||||
result_df['umap_y'] = result_df['umap_y'].fillna(None)
|
||||
|
||||
logger.info("Processing complete")
|
||||
return result_df
|
||||
|
||||
def _store_results(self, con: sqlite3.Connection, df: pd.DataFrame):
|
||||
"""Store UMAP coordinates back to the database.
|
||||
|
||||
Args:
|
||||
con: Database connection
|
||||
df: Processed dataframe with umap_x and umap_y columns
|
||||
"""
|
||||
if df.empty:
|
||||
logger.info("No results to store")
|
||||
return
|
||||
|
||||
logger.info(f"Storing {len(df)} results")
|
||||
|
||||
# Batch update UMAP coordinates
|
||||
updates = [
|
||||
(row['umap_x'], row['umap_y'], row['id'])
|
||||
for _, row in df.iterrows()
|
||||
if pd.notna(row.get('umap_x')) and pd.notna(row.get('umap_y'))
|
||||
]
|
||||
|
||||
if updates:
|
||||
con.executemany(
|
||||
"UPDATE posts SET umap_x = ?, umap_y = ? WHERE id = ?",
|
||||
updates
|
||||
)
|
||||
con.commit()
|
||||
logger.info(f"Stored {len(updates)} UMAP coordinate pairs successfully")
|
||||
else:
|
||||
logger.warning("No valid UMAP coordinates to store")
|
||||
|
||||
def run(self, con: sqlite3.Connection, context: TransformContext) -> TransformContext:
|
||||
"""Execute the transformation.
|
||||
|
||||
This is the main entry point called by the pipeline.
|
||||
|
||||
Args:
|
||||
con: SQLite database connection
|
||||
context: TransformContext containing input dataframe
|
||||
|
||||
Returns:
|
||||
TransformContext with processed dataframe
|
||||
"""
|
||||
logger.info("Starting ExampleNode transformation")
|
||||
|
||||
# Get input dataframe from context
|
||||
input_df = context.get_dataframe()
|
||||
|
||||
# Validate input
|
||||
if input_df.empty:
|
||||
logger.warning("Empty dataframe provided to ExampleNode")
|
||||
return context
|
||||
|
||||
# Process the data
|
||||
result_df = self._process_data(input_df)
|
||||
|
||||
# Store results (optional)
|
||||
self._store_results(con, result_df)
|
||||
|
||||
logger.info("ExampleNode transformation complete")
|
||||
|
||||
# Return new context with results
|
||||
return TransformContext(result_df)
|
||||
|
||||
|
||||
class SimilarityNode(TransformNode):
|
||||
"""Example transform node template.
|
||||
|
||||
This node demonstrates the basic structure for creating
|
||||
new transformation nodes in the pipeline.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
param1: str = "default_value",
|
||||
param2: int = 42,
|
||||
device: str = "cpu"):
|
||||
"""Initialize the ExampleNode.
|
||||
|
||||
Args:
|
||||
param1: Example string parameter
|
||||
param2: Example integer parameter
|
||||
device: Device to use for computations ('cpu', 'cuda', 'mps')
|
||||
"""
|
||||
self.param1 = param1
|
||||
self.param2 = param2
|
||||
self.device = device
|
||||
logger.info(f"Initialized ExampleNode with param1={param1}, param2={param2}")
|
||||
|
||||
def _create_tables(self, con: sqlite3.Connection):
|
||||
"""Create any necessary tables in the database.
|
||||
|
||||
This is optional - only needed if your node creates new tables.
|
||||
"""
|
||||
logger.info("Creating example tables")
|
||||
|
||||
con.execute("""
|
||||
CREATE TABLE IF NOT EXISTS example_results (
|
||||
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||
post_id INTEGER,
|
||||
result_value TEXT,
|
||||
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
||||
FOREIGN KEY (post_id) REFERENCES posts(id)
|
||||
)
|
||||
""")
|
||||
|
||||
con.commit()
|
||||
|
||||
def _process_data(self, df: pd.DataFrame) -> pd.DataFrame:
|
||||
"""Process the input dataframe.
|
||||
|
||||
This is where your main transformation logic goes.
|
||||
|
||||
Args:
|
||||
df: Input dataframe from context
|
||||
|
||||
Returns:
|
||||
Processed dataframe
|
||||
"""
|
||||
logger.info(f"Processing {len(df)} rows")
|
||||
|
||||
# Example: Add a new column based on existing data
|
||||
result_df = df.copy()
|
||||
result_df['processed'] = True
|
||||
result_df['example_value'] = result_df['id'].apply(lambda x: f"{self.param1}_{x}")
|
||||
|
||||
logger.info("Processing complete")
|
||||
return result_df
|
||||
|
||||
def _store_results(self, con: sqlite3.Connection, df: pd.DataFrame):
|
||||
"""Store results back to the database.
|
||||
|
||||
This is optional - only needed if you want to persist results.
|
||||
|
||||
Args:
|
||||
con: Database connection
|
||||
df: Processed dataframe to store
|
||||
"""
|
||||
if df.empty:
|
||||
logger.info("No results to store")
|
||||
return
|
||||
|
||||
logger.info(f"Storing {len(df)} results")
|
||||
|
||||
# Example: Store to database
|
||||
# df[['post_id', 'result_value']].to_sql(
|
||||
# 'example_results',
|
||||
# con,
|
||||
# if_exists='append',
|
||||
# index=False
|
||||
# )
|
||||
|
||||
con.commit()
|
||||
logger.info("Results stored successfully")
|
||||
|
||||
def run(self, con: sqlite3.Connection, context: TransformContext) -> TransformContext:
|
||||
"""Execute the transformation.
|
||||
|
||||
This is the main entry point called by the pipeline.
|
||||
|
||||
Args:
|
||||
con: SQLite database connection
|
||||
context: TransformContext containing input dataframe
|
||||
|
||||
Returns:
|
||||
TransformContext with processed dataframe
|
||||
"""
|
||||
logger.info("Starting ExampleNode transformation")
|
||||
|
||||
# Get input dataframe from context
|
||||
input_df = context.get_dataframe()
|
||||
|
||||
# Validate input
|
||||
if input_df.empty:
|
||||
logger.warning("Empty dataframe provided to ExampleNode")
|
||||
return context
|
||||
|
||||
# Create any necessary tables
|
||||
self._create_tables(con)
|
||||
|
||||
# Process the data
|
||||
result_df = self._process_data(input_df)
|
||||
|
||||
# Store results (optional)
|
||||
self._store_results(con, result_df)
|
||||
|
||||
logger.info("ExampleNode transformation complete")
|
||||
|
||||
# Return new context with results
|
||||
return TransformContext(result_df)
|
||||
16
transform/ensure_minilm_model.sh
Normal file
16
transform/ensure_minilm_model.sh
Normal file
|
|
@ -0,0 +1,16 @@
|
|||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
if [ -d "$MINILM_MODEL_PATH" ] && find "$MINILM_MODEL_PATH" -type f | grep -q .; then
|
||||
echo "MiniLM model already present at $MINILM_MODEL_PATH"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
echo "Downloading MiniLM model to $MINILM_MODEL_PATH"
|
||||
mkdir -p "$MINILM_MODEL_PATH"
|
||||
curl -sL "https://huggingface.co/api/models/${MINILM_MODEL_ID}" | jq -r '.siblings[].rfilename' | while read -r file; do
|
||||
target="${MINILM_MODEL_PATH}/${file}"
|
||||
mkdir -p "$(dirname "$target")"
|
||||
echo "Downloading ${file}"
|
||||
curl -sL "https://huggingface.co/${MINILM_MODEL_ID}/resolve/main/${file}" -o "$target"
|
||||
done
|
||||
|
|
@ -2,7 +2,9 @@
|
|||
set -euo pipefail
|
||||
|
||||
# Run model download with output to stdout/stderr
|
||||
/usr/local/bin/ensure_minilm_model.sh 2>&1
|
||||
/usr/local/bin/ensure_gliner_model.sh 2>&1
|
||||
|
||||
# Start cron in foreground with logging
|
||||
exec cron -f -L 2
|
||||
# cd /app && /usr/local/bin/python main.py >> /proc/1/fd/1 2>&1
|
||||
|
|
@ -56,9 +56,9 @@ def main():
|
|||
|
||||
# Load posts data
|
||||
logger.info("Loading posts from database")
|
||||
sql = "SELECT id, author FROM posts WHERE author IS NOT NULL AND (is_cleaned IS NULL OR is_cleaned = 0) LIMIT ?"
|
||||
MAX_CLEANED_POSTS = os.environ.get("MAX_CLEANED_POSTS", 100)
|
||||
df = pd.read_sql(sql, con, params=[MAX_CLEANED_POSTS])
|
||||
sql = "SELECT * FROM posts WHERE author IS NOT NULL AND (is_cleaned IS NULL OR is_cleaned = 0)"
|
||||
# MAX_CLEANED_POSTS = os.environ.get("MAX_CLEANED_POSTS", 100)
|
||||
df = pd.read_sql(sql, con)
|
||||
logger.info(f"Loaded {len(df)} uncleaned posts with authors")
|
||||
|
||||
if df.empty:
|
||||
|
|
|
|||
|
|
@ -12,6 +12,7 @@ logger = logging.getLogger("knack-transform")
|
|||
|
||||
class TransformContext:
|
||||
"""Context object containing the dataframe for transformation."""
|
||||
# Possibly add a dict for the context to give more Information
|
||||
|
||||
def __init__(self, df: pd.DataFrame):
|
||||
self.df = df
|
||||
|
|
@ -153,7 +154,6 @@ class ParallelPipeline:
|
|||
logger.info(f"Pipeline has {len(stages)} execution stage(s)")
|
||||
|
||||
results = {}
|
||||
contexts = {None: initial_context} # Track contexts from each node
|
||||
errors = []
|
||||
|
||||
ExecutorClass = ProcessPoolExecutor if self.use_processes else ThreadPoolExecutor
|
||||
|
|
@ -213,6 +213,7 @@ def create_default_pipeline(device: str = "cpu",
|
|||
Configured ParallelPipeline
|
||||
"""
|
||||
from author_node import NerAuthorNode, FuzzyAuthorNode
|
||||
from embeddings_node import TextEmbeddingNode, UmapNode
|
||||
|
||||
pipeline = ParallelPipeline(max_workers=max_workers, use_processes=False)
|
||||
|
||||
|
|
@ -236,17 +237,24 @@ def create_default_pipeline(device: str = "cpu",
|
|||
name='FuzzyAuthorNode'
|
||||
))
|
||||
|
||||
# TODO: Create Node to compute Text Embeddings and UMAP.
|
||||
# TODO: Create Node to pre-compute data based on visuals to reduce load time.
|
||||
pipeline.add_node(NodeConfig(
|
||||
node_class=TextEmbeddingNode,
|
||||
node_kwargs={
|
||||
'device': device,
|
||||
'model_path': os.environ.get('MINILM_MODEL_PATH')
|
||||
},
|
||||
dependencies=[],
|
||||
name='TextEmbeddingNode'
|
||||
))
|
||||
|
||||
# TODO: Add more nodes here as they are implemented
|
||||
# Example:
|
||||
# pipeline.add_node(NodeConfig(
|
||||
# node_class=EmbeddingNode,
|
||||
# node_kwargs={'device': device},
|
||||
# dependencies=[], # Runs after AuthorNode
|
||||
# name='EmbeddingNode'
|
||||
# ))
|
||||
pipeline.add_node(NodeConfig(
|
||||
node_class=UmapNode,
|
||||
node_kwargs={},
|
||||
dependencies=['TextEmbeddingNode'],
|
||||
name='UmapNode'
|
||||
))
|
||||
|
||||
# TODO: Create Node to compute Text Embeddings and UMAP.
|
||||
|
||||
# pipeline.add_node(NodeConfig(
|
||||
# node_class=UMAPNode,
|
||||
|
|
|
|||
|
|
@ -3,3 +3,5 @@ python-dotenv
|
|||
gliner
|
||||
torch
|
||||
fuzzysearch
|
||||
sentence_transformers
|
||||
umap-learn
|
||||
Loading…
Add table
Add a link
Reference in a new issue