from shiny import module, ui, render, Inputs, Outputs, Session
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import pandas as pd
import numpy as np
import pickle

tfidf_matrix_path = "data/tfidf_matrix.pckl"
tfidf_vectorizer_path = "data/tfidf_vectorizer.pckl"
relevance_score_path = "data/tweet_relevance.json"
tweets_path = "data/tweets_all_combined.csv"

reply_html_svg = '<svg width="18px" height="18px" viewBox="0 0 24 24" aria-hidden="true"><g><path d="M1.751 10c0-4.42 3.584-8 8.005-8h4.366c4.49 0 8.129 3.64 8.129 8.13 0 2.96-1.607 5.68-4.196 7.11l-8.054 4.46v-3.69h-.067c-4.49.1-8.183-3.51-8.183-8.01zm8.005-6c-3.317 0-6.005 2.69-6.005 6 0 3.37 2.77 6.08 6.138 6.01l.351-.01h1.761v2.3l5.087-2.81c1.951-1.08 3.163-3.13 3.163-5.36 0-3.39-2.744-6.13-6.129-6.13H9.756z"></path></g></svg>'
retweet_html_svg = '<svg width="18px" height="18px" viewBox="0 0 24 24" aria-hidden="true"><g><path d="M4.5 3.88l4.432 4.14-1.364 1.46L5.5 7.55V16c0 1.1.896 2 2 2H13v2H7.5c-2.209 0-4-1.79-4-4V7.55L1.432 9.48.068 8.02 4.5 3.88zM16.5 6H11V4h5.5c2.209 0 4 1.79 4 4v8.45l2.068-1.93 1.364 1.46-4.432 4.14-4.432-4.14 1.364-1.46 2.068 1.93V8c0-1.1-.896-2-2-2z"></path></g></svg>'
like_html_svg = '<svg width="18px" height="18px" viewBox="0 0 24 24" aria-hidden="true"><g><path d="M16.697 5.5c-1.222-.06-2.679.51-3.89 2.16l-.805 1.09-.806-1.09C9.984 6.01 8.526 5.44 7.304 5.5c-1.243.07-2.349.78-2.91 1.91-.552 1.12-.633 2.78.479 4.82 1.074 1.97 3.257 4.27 7.129 6.61 3.87-2.34 6.052-4.64 7.126-6.61 1.111-2.04 1.03-3.7.477-4.82-.561-1.13-1.666-1.84-2.908-1.91zm4.187 7.69c-1.351 2.48-4.001 5.12-8.379 7.67l-.503.3-.504-.3c-4.379-2.55-7.029-5.19-8.382-7.67-1.36-2.5-1.41-4.86-.514-6.67.887-1.79 2.647-2.91 4.601-3.01 1.651-.09 3.368.56 4.798 2.01 1.429-1.45 3.146-2.1 4.796-2.01 1.954.1 3.714 1.22 4.601 3.01.896 1.81.846 4.17-.514 6.67z"></path></g></svg>'


print("Loading data from storage")
tweets = pd.read_csv(tweets_path)
relevance_score = pd.read_csv(relevance_score_path)

tfidf_matrix = None
with open(tfidf_matrix_path, "rb") as f:
    tfidf_matrix = pickle.load(f)

tfidf_vectorizer: TfidfVectorizer = None
with open(tfidf_vectorizer_path, "rb") as f:
    tfidf_vectorizer = pickle.load(f)


tweets["relevance_score"] = relevance_score["relevance_score"]
tweets = tweets.drop(["user_id", "measured_at", "tweet_id"], axis=1)


def search_query(query: str, limit: int = 5) -> pd.DataFrame:
    query_vec = tfidf_vectorizer.transform([query])
    similarity = cosine_similarity(query_vec, tfidf_matrix).flatten()

    filtered = np.where(similarity != 0)[0]
    indices = np.argsort(-similarity[filtered])
    correct_indices = filtered[indices]
    result = tweets.iloc[correct_indices]

    if not len(result):
        return None

    overall = result['relevance_score'] * similarity[correct_indices]
    return result.loc[overall.sort_values(ascending=False).index].head(limit)


@module.ui
def searchable_ui():
    return ui.div(
        ui.h2("Tweet Suchmaschine"),
        ui.input_text("search_input", "Suche:", placeholder="Gebe Suchterm ein", value="Leipzig"),
        ui.HTML("<br>"),
        ui.output_ui(id="searchable_tweet_ui"),
    )


@ module.server
def searchable_server(input: Inputs, output: Outputs, session: Session):
    @output
    @render.ui
    def searchable_tweet_ui():

        query = input.search_input()

        result_pd = search_query(query, 15)

        style = "text-align: center; padding-top: 0.5em;"
        tweet_ui = ui.page_fluid()

        if result_pd is None:
            return ui.div(
                ui.h5("Keine Ergebnisse gefunden!")
            )

        # iterating over dataframe is bad but needed
        for idx, row in result_pd.iterrows():
            tweet_ui.append(
                ui.div(
                    ui.row(
                        ui.column(9, ui.markdown(
                            f"**{row['user_name']}** *@{row['handle']}*"), style=style),
                        ui.column(3, ui.p(f"{row['created_at']}"), style=style),
                    ),
                    ui.row(
                        ui.column(12, ui.HTML(str(row["tweet_text"]).replace(
                            "\\n", "<br>")), style=style + "font-size: 20px; padding:1em;"),
                    ),
                    ui.row(
                        ui.column(3, ui.HTML(reply_html_svg), ui.p(
                            f"{row['reply_count']}"), style=style),
                        ui.column(3, ui.HTML(retweet_html_svg), ui.p(
                            f"{row['retweet_count']}"), style=style),
                        ui.column(3, ui.HTML(like_html_svg), ui.p(
                            f"{row['like_count']}"), style=style),
                        # quote_count: . Indicates approximately how many times this Tweet has been quoted by Twitter users. Example:
                        # TODO: use a nice svg for quote_count
                        ui.column(3, ui.p(f"Quote Count: {row['quote_count']}"), style=style),
                    ), style="border: 1px solid #954; margin-bottom: 1em;"))

        return tweet_ui