from shiny import module, ui, render, Inputs, Outputs, Session from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity import pandas as pd import numpy as np import pickle tfidf_matrix_path = "data/tfidf_matrix.pckl" tfidf_vectorizer_path = "data/tfidf_vectorizer.pckl" relevance_score_path = "data/tweet_relevance.json" tweets_path = "data/tweets_all_combined.csv" reply_html_svg = '<svg width="18px" height="18px" viewBox="0 0 24 24" aria-hidden="true"><g><path d="M1.751 10c0-4.42 3.584-8 8.005-8h4.366c4.49 0 8.129 3.64 8.129 8.13 0 2.96-1.607 5.68-4.196 7.11l-8.054 4.46v-3.69h-.067c-4.49.1-8.183-3.51-8.183-8.01zm8.005-6c-3.317 0-6.005 2.69-6.005 6 0 3.37 2.77 6.08 6.138 6.01l.351-.01h1.761v2.3l5.087-2.81c1.951-1.08 3.163-3.13 3.163-5.36 0-3.39-2.744-6.13-6.129-6.13H9.756z"></path></g></svg>' retweet_html_svg = '<svg width="18px" height="18px" viewBox="0 0 24 24" aria-hidden="true"><g><path d="M4.5 3.88l4.432 4.14-1.364 1.46L5.5 7.55V16c0 1.1.896 2 2 2H13v2H7.5c-2.209 0-4-1.79-4-4V7.55L1.432 9.48.068 8.02 4.5 3.88zM16.5 6H11V4h5.5c2.209 0 4 1.79 4 4v8.45l2.068-1.93 1.364 1.46-4.432 4.14-4.432-4.14 1.364-1.46 2.068 1.93V8c0-1.1-.896-2-2-2z"></path></g></svg>' like_html_svg = '<svg width="18px" height="18px" viewBox="0 0 24 24" aria-hidden="true"><g><path d="M16.697 5.5c-1.222-.06-2.679.51-3.89 2.16l-.805 1.09-.806-1.09C9.984 6.01 8.526 5.44 7.304 5.5c-1.243.07-2.349.78-2.91 1.91-.552 1.12-.633 2.78.479 4.82 1.074 1.97 3.257 4.27 7.129 6.61 3.87-2.34 6.052-4.64 7.126-6.61 1.111-2.04 1.03-3.7.477-4.82-.561-1.13-1.666-1.84-2.908-1.91zm4.187 7.69c-1.351 2.48-4.001 5.12-8.379 7.67l-.503.3-.504-.3c-4.379-2.55-7.029-5.19-8.382-7.67-1.36-2.5-1.41-4.86-.514-6.67.887-1.79 2.647-2.91 4.601-3.01 1.651-.09 3.368.56 4.798 2.01 1.429-1.45 3.146-2.1 4.796-2.01 1.954.1 3.714 1.22 4.601 3.01.896 1.81.846 4.17-.514 6.67z"></path></g></svg>' print("Loading data from storage") tweets = pd.read_csv(tweets_path) relevance_score = pd.read_csv(relevance_score_path) tfidf_matrix = None with open(tfidf_matrix_path, "rb") as f: tfidf_matrix = pickle.load(f) tfidf_vectorizer: TfidfVectorizer = None with open(tfidf_vectorizer_path, "rb") as f: tfidf_vectorizer = pickle.load(f) tweets["relevance_score"] = relevance_score["relevance_score"] tweets = tweets.drop(["user_id", "measured_at", "tweet_id"], axis=1) def search_query(query: str, limit: int = 5) -> pd.DataFrame: query_vec = tfidf_vectorizer.transform([query]) similarity = cosine_similarity(query_vec, tfidf_matrix).flatten() filtered = np.where(similarity != 0)[0] indices = np.argsort(-similarity[filtered]) correct_indices = filtered[indices] result = tweets.iloc[correct_indices] if not len(result): return None overall = result['relevance_score'] * similarity[correct_indices] return result.loc[overall.sort_values(ascending=False).index].head(limit) @module.ui def searchable_ui(): return ui.div( ui.h2("Tweet Suchmaschine"), ui.input_text("search_input", "Suche:", placeholder="Gebe Suchterm ein", value="Leipzig"), ui.HTML("<br>"), ui.output_ui(id="searchable_tweet_ui"), ) @ module.server def searchable_server(input: Inputs, output: Outputs, session: Session): @output @render.ui def searchable_tweet_ui(): query = input.search_input() result_pd = search_query(query, 15) style = "text-align: center; padding-top: 0.5em;" tweet_ui = ui.page_fluid() if result_pd is None: return ui.div( ui.h5("Keine Ergebnisse gefunden!") ) # iterating over dataframe is bad but needed for idx, row in result_pd.iterrows(): tweet_ui.append( ui.div( ui.row( ui.column(9, ui.markdown( f"**{row['user_name']}** *@{row['handle']}*"), style=style), ui.column(3, ui.p(f"{row['created_at']}"), style=style), ), ui.row( ui.column(12, ui.HTML(str(row["tweet_text"]).replace( "\\n", "<br>")), style=style + "font-size: 20px; padding:1em;"), ), ui.row( ui.column(3, ui.HTML(reply_html_svg), ui.p( f"{row['reply_count']}"), style=style), ui.column(3, ui.HTML(retweet_html_svg), ui.p( f"{row['retweet_count']}"), style=style), ui.column(3, ui.HTML(like_html_svg), ui.p( f"{row['like_count']}"), style=style), # quote_count: . Indicates approximately how many times this Tweet has been quoted by Twitter users. Example: # TODO: use a nice svg for quote_count ui.column(3, ui.p(f"Quote Count: {row['quote_count']}"), style=style), ), style="border: 1px solid #954; margin-bottom: 1em;")) return tweet_ui