{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T04:25:19Z","timestamp":1690863919792},"reference-count":38,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2023,7,31]],"date-time":"2023-07-31T00:00:00Z","timestamp":1690761600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2023,7,31]],"date-time":"2023-07-31T00:00:00Z","timestamp":1690761600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100009708","name":"Novo Nordisk Fonden","doi-asserted-by":"publisher","award":["NNF21OC0066526"]},{"DOI":"10.13039\/501100000781","name":"European Research Council","doi-asserted-by":"publisher","award":["SyG856432"]},{"DOI":"10.13039\/501100003554","name":"Lundbeckfonden","doi-asserted-by":"publisher","award":["R186"]},{"DOI":"10.13039\/501100011958","name":"Danmarks Frie Forskningsfond","doi-asserted-by":"publisher","award":["0135-00142B"]},{"DOI":"10.13039\/501100001732","name":"Danmarks Grundforskningsfond","doi-asserted-by":"publisher","award":["DNRF142"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Sci Rep"],"abstract":"Abstract<\/jats:title>Quantum sensors using solid state qubits have demonstrated outstanding sensitivity, beyond that possible using classical devices. In particular, those based on colour centres in diamond have demonstrated high sensitivity to magnetic field through exploiting the field-dependent emission of fluorescence under coherent control using microwaves. Given the highly biocompatible nature of diamond, sensing from biological samples is a key interdisciplinary application. In particular, the microscopic-scale study of living systems can be possible through recording of temperature and biomagnetic field. In this work, we use such a quantum sensor to demonstrate such microscopic-scale recording of electrical activity from neurons in fragile living brain tissue. By recording weak magnetic field induced by ionic currents in mouse corpus callosum<\/jats:italic> axons, we accurately recover signals from neuronal action potential propagation while demonstrating in situ<\/jats:italic> pharmacology. Our sensor allows recording of the electrical activity in neural circuits, disruption of which can shed light on the mechanisms of disease emergence. Unlike existing techniques for recording activity, which can require potentially damaging direct interaction, our sensing is entirely passive and remote from the sample. Our results open a promising new avenue for the microscopic recording of neuronal signals, offering the eventual prospect of microscopic imaging of electrical activity in the living mammalian brain.<\/jats:p>","DOI":"10.1038\/s41598-023-39539-y","type":"journal-article","created":{"date-parts":[[2023,7,31]],"date-time":"2023-07-31T16:02:56Z","timestamp":1690819376000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Microscopic-scale magnetic recording of brain neuronal electrical activity using a diamond quantum sensor"],"prefix":"10.1038","volume":"13","author":[{"given":"Nikolaj Winther","family":"Hansen","sequence":"first","affiliation":[]},{"given":"James Luke","family":"Webb","sequence":"additional","affiliation":[]},{"given":"Luca","family":"Troise","sequence":"additional","affiliation":[]},{"given":"Christoffer","family":"Olsson","sequence":"additional","affiliation":[]},{"given":"Leo","family":"Tomasevic","sequence":"additional","affiliation":[]},{"given":"Ovidiu","family":"Brinza","sequence":"additional","affiliation":[]},{"given":"Jocelyn","family":"Achard","sequence":"additional","affiliation":[]},{"given":"Robert","family":"Staacke","sequence":"additional","affiliation":[]},{"given":"Michael","family":"Kieschnick","sequence":"additional","affiliation":[]},{"given":"Jan","family":"Meijer","sequence":"additional","affiliation":[]},{"given":"Axel","family":"Thielscher","sequence":"additional","affiliation":[]},{"given":"Hartwig Roman","family":"Siebner","sequence":"additional","affiliation":[]},{"given":"Kirstine","family":"Berg-S\u00f8rensen","sequence":"additional","affiliation":[]},{"given":"Jean-Fran\u00e7ois","family":"Perrier","sequence":"additional","affiliation":[]},{"given":"Alexander","family":"Huck","sequence":"additional","affiliation":[]},{"given":"Ulrik Lund","family":"Andersen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,7,31]]},"reference":[{"issue":"17","key":"39539_CR1","doi-asserted-by":"publisher","first-page":"2473","DOI":"10.15252\/embj.201797397","volume":"36","author":"H Sasaguri","year":"2017","unstructured":"Sasaguri, H. et al. App mouse models for Alzheimer\u2019s disease preclinical studies. EMBO J. 36(17), 2473\u20132487 (2017).","journal-title":"EMBO J."},{"issue":"8","key":"39539_CR2","doi-asserted-by":"publisher","first-page":"469","DOI":"10.1038\/s41582-021-00505-9","volume":"17","author":"M Romoli","year":"2021","unstructured":"Romoli, M., Sen, A., Parnetti, L., Calabresi, P. & Costa, C. Amyloid-beta: A potential link between epilepsy and cognitive decline. Nat. Rev. Neurol. 17(8), 469\u2013485 (2021).","journal-title":"Nat. Rev. Neurol."},{"issue":"9648","key":"39539_CR3","doi-asserted-by":"publisher","first-page":"1502","DOI":"10.1016\/S0140-6736(08)61620-7","volume":"372","author":"A Compston","year":"2008","unstructured":"Compston, A. & Coles, A. Multiple sclerosis. Lancet 372(9648), 1502\u20131517 (2008).","journal-title":"Lancet"},{"issue":"5","key":"39539_CR4","doi-asserted-by":"publisher","first-page":"1355","DOI":"10.1093\/brain\/awp062","volume":"132","author":"CR Jack","year":"2009","unstructured":"Jack, C. R. et al. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer\u2019s disease: Implications for sequence of pathological events in Alzheimer\u2019s disease. Brain 132(5), 1355\u20131365 (2009).","journal-title":"Brain"},{"issue":"4","key":"39539_CR5","doi-asserted-by":"publisher","first-page":"357","DOI":"10.1016\/S1474-4422(13)70044-9","volume":"12","author":"VL Villemagne","year":"2013","unstructured":"Villemagne, V. L. et al. Amyloid beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer\u2019s disease: A prospective cohort study. Lancet Neurol. 12(4), 357\u2013367 (2013).","journal-title":"Lancet Neurol."},{"issue":"2","key":"39539_CR6","doi-asserted-by":"publisher","first-page":"152","DOI":"10.1136\/jnnp.37.2.152","volume":"37","author":"CL Schauf","year":"1974","unstructured":"Schauf, C. L. & Davis, F. A. Impulse conduction in multiple sclerosis: A theoretical basis for modification by temperature and pharmacological agents. J. Neurol. Neurosurg. Psychiatry 37(2), 152\u2013161 (1974).","journal-title":"J. Neurol. Neurosurg. Psychiatry"},{"issue":"10","key":"39539_CR7","doi-asserted-by":"publisher","first-page":"1370","DOI":"10.1038\/s41593-018-0236-8","volume":"21","author":"TM Dawson","year":"2018","unstructured":"Dawson, T. M., Golde, T. E. & Lagier-Tourenne, C. Animal models of neurodegenerative diseases. Nat. Neurosci. 21(10), 1370\u20131379 (2018).","journal-title":"Nat. Neurosci."},{"issue":"8","key":"39539_CR8","doi-asserted-by":"publisher","first-page":"1074","DOI":"10.1038\/nn.3168","volume":"15","author":"RM Ransohoff","year":"2012","unstructured":"Ransohoff, R. M. Animal models of multiple sclerosis: The good, the bad and the bottom line. Nat. Neurosci. 15(8), 1074\u20131077 (2012).","journal-title":"Nat. Neurosci."},{"key":"39539_CR9","doi-asserted-by":"publisher","first-page":"159","DOI":"10.3389\/fncel.2019.00159","volume":"13","author":"V Emmenegger","year":"2019","unstructured":"Emmenegger, V., Obien, M. E. J., Franke, F. & Hierlemann, A. Technologies to study action potential propagation with a focus on HD-MEAs. Front. Cell. Neurosci. 13, 159 (2019).","journal-title":"Front. Cell. Neurosci."},{"issue":"2","key":"39539_CR10","doi-asserted-by":"publisher","first-page":"230","DOI":"10.1016\/S0013-4694(98)00099-6","volume":"110","author":"YC Okada","year":"1999","unstructured":"Okada, Y. C., Lahteenm\u00e4ki, A. & Xu, C. Experimental analysis of distortion of magnetoencephalography signals by the skull. Clin. Neurophysiol. 110(2), 230\u2013238 (1999).","journal-title":"Clin. Neurophysiol."},{"issue":"10","key":"39539_CR11","doi-asserted-by":"publisher","first-page":"101101","DOI":"10.1063\/1.2354545","volume":"77","author":"RL Fagaly","year":"2006","unstructured":"Fagaly, R. L. Superconducting quantum interference device instruments and applications. Rev. Sci. Instrum. 77(10), 101101 (2006).","journal-title":"Rev. Sci. Instrum."},{"issue":"7698","key":"39539_CR12","doi-asserted-by":"publisher","first-page":"657","DOI":"10.1038\/nature26147","volume":"555","author":"E Boto","year":"2018","unstructured":"Boto, E. et al. Moving magnetoencephalography towards real-world applications with a wearable system. Nature 555(7698), 657\u2013661 (2018).","journal-title":"Nature"},{"issue":"1","key":"39539_CR13","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.physrep.2013.02.001","volume":"528","author":"MW Doherty","year":"2013","unstructured":"Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528(1), 1\u201345 (2013).","journal-title":"Phys. Rep."},{"issue":"3","key":"39539_CR14","doi-asserted-by":"publisher","first-page":"035002","DOI":"10.1103\/RevModPhys.89.035002","volume":"89","author":"CL Degen","year":"2017","unstructured":"Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89(3), 035002 (2017).","journal-title":"Rev. Mod. Phys."},{"issue":"1","key":"39539_CR15","doi-asserted-by":"publisher","first-page":"401","DOI":"10.1038\/srep00401","volume":"2","author":"LT Hall","year":"2012","unstructured":"Hall, L. T. et al. High spatial and temporal resolution wide-field imaging of neuron activity using quantum NV-diamond. Sci. Rep. 2(1), 401 (2012).","journal-title":"Sci. Rep."},{"issue":"10","key":"39539_CR16","doi-asserted-by":"publisher","first-page":"810","DOI":"10.1038\/nphys1075","volume":"4","author":"JM Taylor","year":"2008","unstructured":"Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys. 4(10), 810\u2013816 (2008).","journal-title":"Nat. Phys."},{"issue":"2","key":"39539_CR17","doi-asserted-by":"publisher","first-page":"610","DOI":"10.1021\/nl903646p","volume":"10","author":"D Paul","year":"2010","unstructured":"Paul, D., Greer, J. C. & Andreas Larsson, J. Spin-polarization mechanisms of the nitrogen-vacancy center in diamond. Nano Lett. 10(2), 610\u2013614 (2010).","journal-title":"Nano Lett."},{"issue":"2","key":"39539_CR18","doi-asserted-by":"publisher","first-page":"166","DOI":"10.1177\/1352458509353649","volume":"16","author":"A Ozturk","year":"2010","unstructured":"Ozturk, A. et al. MRI of the corpus callosum in multiple sclerosis: Association with disability. Mult. Scler. J. 16(2), 166\u2013177 (2010).","journal-title":"Mult. Scler. J."},{"issue":"3","key":"39539_CR19","doi-asserted-by":"publisher","first-page":"441","DOI":"10.1016\/S0010-9452(13)80039-1","volume":"27","author":"C Pozzilli","year":"1991","unstructured":"Pozzilli, C. et al. Anterior corpus callosum atrophy and verbal fluency in multiple sclerosis. Cortex 27(3), 441\u2013445 (1991).","journal-title":"Cortex"},{"issue":"5","key":"39539_CR20","doi-asserted-by":"publisher","first-page":"606","DOI":"10.1002\/ana.410410509","volume":"41","author":"H Yamauchi","year":"1997","unstructured":"Yamauchi, H. et al. Atrophy of the corpus callosum, cognitive impairment, and cortical hypometabolism in progressive supranuclear palsy. Ann. Neurol. 41(5), 606\u2013614 (1997).","journal-title":"Ann. Neurol."},{"issue":"2","key":"39539_CR21","doi-asserted-by":"publisher","first-page":"243","DOI":"10.1001\/archneur.59.2.243","volume":"59","author":"SJ Teipel","year":"2002","unstructured":"Teipel, S. J. et al. Progression of corpus callosum atrophy in Alzheimer disease. Arch. Neurol. 59(2), 243 (2002).","journal-title":"Arch. Neurol."},{"issue":"4","key":"39539_CR22","doi-asserted-by":"publisher","first-page":"1089","DOI":"10.1113\/jphysiol.2007.145383","volume":"586","author":"R De Col","year":"2008","unstructured":"De Col, R., Messlinger, K. & Carr, R. W. Conduction velocity is regulated by sodium channel inactivation in unmyelinated axons innervating the rat cranial meninges. J. Physiol. 586(4), 1089\u20131103 (2008).","journal-title":"J. Physiol."},{"issue":"1","key":"39539_CR23","doi-asserted-by":"publisher","first-page":"015004","DOI":"10.1103\/RevModPhys.92.015004","volume":"92","author":"JF Barry","year":"2020","unstructured":"Barry, J. F. et al. Sensitivity optimization for NV-diamond magnetometry. Rev. Mod. Phys. 92(1), 015004 (2020).","journal-title":"Rev. Mod. Phys."},{"issue":"7446","key":"39539_CR24","doi-asserted-by":"publisher","first-page":"486","DOI":"10.1038\/nature12072","volume":"496","author":"D Le Sage","year":"2013","unstructured":"Le Sage, D. et al. Optical magnetic imaging of living cells. Nature 496(7446), 486\u2013489 (2013).","journal-title":"Nature"},{"issue":"1","key":"39539_CR25","doi-asserted-by":"publisher","first-page":"25","DOI":"10.1016\/j.jneumeth.2009.05.013","volume":"182","author":"DK Crawford","year":"2009","unstructured":"Crawford, D. K., Mangiardi, M. & Tiwari-Woodruff, S. K. Assaying the functional effects of demyelination and remyelination: Revisiting field potential recordings. J. Neurosci. Methods 182(1), 25\u201333 (2009).","journal-title":"J. Neurosci. Methods"},{"issue":"3","key":"39539_CR26","doi-asserted-by":"publisher","first-page":"198","DOI":"10.1097\/NEN.0b013e3182482590","volume":"71","author":"TM Reeves","year":"2012","unstructured":"Reeves, T. M., Smith, T. L., Williamson, J. C. & Phillips, L. L. Unmyelinated axons show selective rostrocaudal pathology in the corpus callosum after traumatic brain injury. J. Neuropathol. Exp. Neurol. 71(3), 198\u2013210 (2012).","journal-title":"J. Neuropathol. Exp. Neurol."},{"key":"39539_CR27","doi-asserted-by":"publisher","first-page":"45","DOI":"10.3389\/fncel.2017.00045","volume":"11","author":"MS Hamada","year":"2017","unstructured":"Hamada, M. S., Popovic, M. A. & Kole, M. H. P. Loss of saltation and presynaptic action potential failure in demyelinated axons. Front. Cell. Neurosci. 11, 45 (2017).","journal-title":"Front. Cell. Neurosci."},{"issue":"5","key":"39539_CR28","doi-asserted-by":"publisher","first-page":"965","DOI":"10.1085\/jgp.47.5.965","volume":"47","author":"T Narahashi","year":"1964","unstructured":"Narahashi, T., Moore, J. W. & Scott, W. R. Tetrodotoxin blockage of sodium conductance increase in lobster giant axons. J. Gen. Physiol. 47(5), 965\u2013974 (1964).","journal-title":"J. Gen. Physiol."},{"issue":"10","key":"39539_CR29","doi-asserted-by":"publisher","first-page":"5616","DOI":"10.1073\/pnas.090034797","volume":"97","author":"JH Caldwell","year":"2000","unstructured":"Caldwell, J. H., Schaller, K. L., Lasher, R. S., Peles, E. & Levinson, S. R. Sodium channel nav1.6 is localized at nodes of ranvier, dendrites and synapses. Proc. Natl. Acad. Sci. 97(10), 5616\u20135620 (2000).","journal-title":"Proc. Natl. Acad. Sci."},{"key":"39539_CR30","doi-asserted-by":"publisher","first-page":"145","DOI":"10.1016\/j.neures.2021.11.005","volume":"177","author":"R Yamano","year":"2022","unstructured":"Yamano, R., Miyazaki, H. & Nukina, N. The diffuse distribution of nav1.2 on mid-axonal regions is a marker for unmyelinated fibers in the central nervous system. Neurosci. Res. 177, 145\u2013150 (2022).","journal-title":"Neurosci. Res."},{"issue":"4","key":"39539_CR31","doi-asserted-by":"publisher","first-page":"397","DOI":"10.1124\/pr.57.4.4","volume":"57","author":"WA Catterall","year":"2005","unstructured":"Catterall, W. A., Goldin, A. L. & Waxman, S. G. International union of pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol. Rev. 57(4), 397\u2013409 (2005).","journal-title":"Pharmacol. Rev."},{"issue":"49","key":"39539_CR32","doi-asserted-by":"publisher","first-page":"14133","DOI":"10.1073\/pnas.1601513113","volume":"113","author":"JF Barry","year":"2016","unstructured":"Barry, J. F. et al. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc. Natl. Acad. Sci. 113(49), 14133\u201314138 (2016).","journal-title":"Proc. Natl. Acad. Sci."},{"issue":"1","key":"39539_CR33","doi-asserted-by":"publisher","first-page":"200","DOI":"10.1038\/s42005-022-00978-0","volume":"5","author":"K Arai","year":"2022","unstructured":"Arai, K. et al. Millimetre-scale magnetocardiography of living rats with thoracotomy. Commun. Phys. 5(1), 200 (2022).","journal-title":"Commun. Phys."},{"key":"39539_CR34","doi-asserted-by":"publisher","first-page":"064051","DOI":"10.1103\/PhysRevApplied.17.064051","volume":"17","author":"JL Webb","year":"2021","unstructured":"Webb, J. L. et al. High speed microcircuit and synthetic biosignal widefield imaging using nitrogen vacancies in diamond. Phys. Rev. Appl. 17, 064051 (2021).","journal-title":"Phys. Rev. Appl."},{"issue":"11","key":"39539_CR35","doi-asserted-by":"publisher","first-page":"1945","DOI":"10.1515\/nanoph-2019-0209","volume":"8","author":"EV Levine","year":"2019","unstructured":"Levine, E. V. et al. Principles and techniques of the quantum diamond microscope. Nanophotonics 8(11), 1945\u20131973 (2019).","journal-title":"Nanophotonics"},{"issue":"13","key":"39539_CR36","doi-asserted-by":"publisher","first-page":"14809","DOI":"10.1364\/OE.25.014809","volume":"25","author":"HAR El-Ella","year":"2017","unstructured":"El-Ella, H. A. R., Ahmadi, S., Wojciechowski, A. M., Huck, A. & Andersen, U. L. Optimised frequency modulation for continuous-wave optical magnetic resonance sensing using nitrogen-vacancy ensembles. Opt. Express 25(13), 14809 (2017).","journal-title":"Opt. Express"},{"issue":"1","key":"39539_CR37","doi-asserted-by":"publisher","first-page":"2412","DOI":"10.1038\/s41598-021-81828-x","volume":"11","author":"JL Webb","year":"2021","unstructured":"Webb, J. L. et al. Detection of biological signals from a live mammalian muscle using an early stage diamond quantum sensor. Sci. Rep. 11(1), 2412 (2021).","journal-title":"Sci. Rep."},{"key":"39539_CR38","doi-asserted-by":"publisher","first-page":"522536","DOI":"10.3389\/fphy.2020.522536","volume":"8","author":"JL Webb","year":"2020","unstructured":"Webb, J. L. et al. Optimization of a diamond nitrogen vacancy centre magnetometer for sensing of biological signals. Front. Phys. 8, 522536 (2020).","journal-title":"Front. Phys."}],"container-title":["Scientific Reports"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.nature.com\/articles\/s41598-023-39539-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s41598-023-39539-y","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s41598-023-39539-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,7,31]],"date-time":"2023-07-31T16:13:46Z","timestamp":1690820026000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.nature.com\/articles\/s41598-023-39539-y"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,7,31]]},"references-count":38,"journal-issue":{"issue":"1","published-online":{"date-parts":[[2023,12]]}},"alternative-id":["39539"],"URL":"http:\/\/dx.doi.org\/10.1038\/s41598-023-39539-y","relation":{},"ISSN":["2045-2322"],"issn-type":[{"value":"2045-2322","type":"electronic"}],"subject":["Multidisciplinary"],"published":{"date-parts":[[2023,7,31]]},"assertion":[{"value":"13 May 2023","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"26 July 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"31 July 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"Hartwig R. Siebner has received honoraria as speaker from Sanofi Genzyme, Denmark and Novartis, Denmark, as consultant from Sanofi Genzyme, Denmark, Lophora, Denmark, and Lundbeck AS, Denmark, and as editor-in-chief (Neuroimage Clinical) and senior editor (NeuroImage) from Elsevier Publishers, Amsterdam, The Netherlands and royalties as book editor from Springer Publishers, Stuttgart, Germany and from Gyldendal Publishers, Copenhagen, Denmark. The other authors declare no competing interests.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}],"article-number":"12407"}}