{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,1,25]],"date-time":"2024-01-25T08:17:59Z","timestamp":1706170679694},"reference-count":241,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2022,11,30]],"date-time":"2022-11-30T00:00:00Z","timestamp":1669766400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,11,30]],"date-time":"2022-11-30T00:00:00Z","timestamp":1669766400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Nat Rev Urol"],"published-print":{"date-parts":[[2023,3]]},"DOI":"10.1038\/s41585-022-00677-z","type":"journal-article","created":{"date-parts":[[2022,11,30]],"date-time":"2022-11-30T15:40:00Z","timestamp":1669822800000},"page":"158-178","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":7,"title":["Experimental in vitro, ex\u00a0vivo and in vivo models in prostate cancer research"],"prefix":"10.1038","volume":"20","author":[{"given":"Verena","family":"Sailer","sequence":"first","affiliation":[]},{"given":"Gunhild","family":"von Amsberg","sequence":"additional","affiliation":[]},{"given":"Stefan","family":"Duensing","sequence":"additional","affiliation":[]},{"given":"Jutta","family":"Kirfel","sequence":"additional","affiliation":[]},{"given":"Verena","family":"Lieb","sequence":"additional","affiliation":[]},{"given":"Eric","family":"Metzger","sequence":"additional","affiliation":[]},{"given":"Anne","family":"Offermann","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5736-2772","authenticated-orcid":false,"given":"Klaus","family":"Pantel","sequence":"additional","affiliation":[]},{"given":"Roland","family":"Schuele","sequence":"additional","affiliation":[]},{"given":"Helge","family":"Taubert","sequence":"additional","affiliation":[]},{"given":"Sven","family":"Wach","sequence":"additional","affiliation":[]},{"given":"Sven","family":"Perner","sequence":"additional","affiliation":[]},{"given":"Stefan","family":"Werner","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2778-6256","authenticated-orcid":false,"given":"Achim","family":"Aigner","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,11,30]]},"reference":[{"key":"677_CR1","doi-asserted-by":"publisher","first-page":"7","DOI":"10.3322\/caac.21590","volume":"70","author":"RL Siegel","year":"2020","unstructured":"Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 70, 7\u201330 (2020).","journal-title":"CA Cancer J. Clin."},{"key":"677_CR2","doi-asserted-by":"publisher","first-page":"9","DOI":"10.1038\/s41572-020-00243-0","volume":"7","author":"RJ Rebello","year":"2021","unstructured":"Rebello, R. J. et al. Prostate cancer. Nat. Rev. Dis. Primers 7, 9 (2021).","journal-title":"Nat. Rev. Dis. Primers"},{"key":"677_CR3","doi-asserted-by":"publisher","first-page":"7","DOI":"10.3322\/caac.21442","volume":"68","author":"RL Siegel","year":"2018","unstructured":"Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 68, 7\u201330 (2018).","journal-title":"CA Cancer J. Clin."},{"key":"677_CR4","doi-asserted-by":"publisher","first-page":"20","DOI":"10.1016\/j.canlet.2021.06.010","volume":"519","author":"Y Yamada","year":"2021","unstructured":"Yamada, Y. & Beltran, H. The treatment landscape of metastatic prostate cancer. Cancer Lett. 519, 20\u201329 (2021).","journal-title":"Cancer Lett."},{"key":"677_CR5","doi-asserted-by":"publisher","first-page":"594","DOI":"10.1016\/j.euo.2020.07.005","volume":"3","author":"ES Antonarakis","year":"2020","unstructured":"Antonarakis, E. S., Gomella, L. G. & Petrylak, D. P. When and how to use PARP inhibitors in prostate cancer: a systematic review of the literature with an update on on-going trials. Eur. Urol. Oncol. 3, 594\u2013611 (2020).","journal-title":"Eur. Urol. Oncol."},{"key":"677_CR6","doi-asserted-by":"publisher","first-page":"1091","DOI":"10.1056\/NEJMoa2107322","volume":"385","author":"O Sartor","year":"2021","unstructured":"Sartor, O. et al. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer. N. Engl. J. Med. 385, 1091\u20131103 (2021).","journal-title":"N. Engl. J. Med."},{"key":"677_CR7","doi-asserted-by":"publisher","first-page":"2532","DOI":"10.1001\/jama.2017.7248","volume":"317","author":"MS Litwin","year":"2017","unstructured":"Litwin, M. S. & Tan, H. J. The diagnosis and treatment of prostate cancer: a review. JAMA 317, 2532\u20132542 (2017).","journal-title":"JAMA"},{"key":"677_CR8","doi-asserted-by":"publisher","first-page":"101","DOI":"10.1038\/s41585-021-00524-7","volume":"19","author":"A Ali","year":"2022","unstructured":"Ali, A. et al. Prostate zones and cancer: lost in transition? Nat. Rev. Urol. 19, 101\u2013115 (2022).","journal-title":"Nat. Rev. Urol."},{"key":"677_CR9","doi-asserted-by":"publisher","first-page":"369","DOI":"10.1038\/nm.4053","volume":"22","author":"A Kumar","year":"2016","unstructured":"Kumar, A. et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat. Med. 22, 369\u2013378 (2016).","journal-title":"Nat. Med."},{"key":"677_CR10","doi-asserted-by":"publisher","first-page":"1011","DOI":"10.1016\/j.cell.2015.10.025","volume":"163","author":"Cancer Genome Atlas Research Network.","year":"2015","unstructured":"Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell 163, 1011\u20131025 (2015).","journal-title":"Cell"},{"key":"677_CR11","doi-asserted-by":"publisher","first-page":"644","DOI":"10.1126\/science.1117679","volume":"310","author":"SA Tomlins","year":"2005","unstructured":"Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644\u2013648 (2005).","journal-title":"Science"},{"key":"677_CR12","doi-asserted-by":"publisher","first-page":"1993","DOI":"10.1038\/sj.onc.1210843","volume":"27","author":"J Clark","year":"2008","unstructured":"Clark, J. et al. Complex patterns of ETS gene alteration arise during cancer development in the human prostate. Oncogene 27, 1993\u20132003 (2008).","journal-title":"Oncogene"},{"key":"677_CR13","doi-asserted-by":"publisher","first-page":"429","DOI":"10.1038\/nrurol.2009.127","volume":"6","author":"JP Clark","year":"2009","unstructured":"Clark, J. P. & Cooper, C. S. ETS gene fusions in prostate cancer. Nat. Rev. Urol. 6, 429\u2013439 (2009).","journal-title":"Nat. Rev. Urol."},{"key":"677_CR14","doi-asserted-by":"publisher","first-page":"1003","DOI":"10.1016\/j.cell.2018.03.029","volume":"173","author":"SMG Espiritu","year":"2018","unstructured":"Espiritu, S. M. G. et al. The evolutionary landscape of localized prostate cancers drives clinical aggression. Cell 173, 1003\u20131013.e1015 (2018).","journal-title":"Cell"},{"key":"677_CR15","doi-asserted-by":"publisher","DOI":"10.1172\/jci.insight.123468","volume":"3","author":"SS Salami","year":"2018","unstructured":"Salami, S. S. et al. Transcriptomic heterogeneity in multifocal prostate cancer. JCI Insight 3, e123468 (2018).","journal-title":"JCI Insight"},{"key":"677_CR16","doi-asserted-by":"publisher","first-page":"1499","DOI":"10.1038\/modpathol.2010.150","volume":"23","author":"SM Falzarano","year":"2010","unstructured":"Falzarano, S. M. et al. ERG rearrangement is present in a subset of transition zone prostatic tumors. Mod. Pathol. 23, 1499\u20131506 (2010).","journal-title":"Mod. Pathol."},{"key":"677_CR17","doi-asserted-by":"publisher","first-page":"813","DOI":"10.1007\/s00428-020-03003-3","volume":"478","author":"M Varma","year":"2021","unstructured":"Varma, M., Shah, R. B., Williamson, S. R. & Berney, D. M. 2019 Gleason grading recommendations from ISUP and GUPS: broadly concordant but with significant differences. Virchows Arch. 478, 813\u2013815 (2021).","journal-title":"Virchows Arch."},{"key":"677_CR18","doi-asserted-by":"publisher","first-page":"557","DOI":"10.1016\/j.eururo.2015.10.040","volume":"69","author":"MA Rubin","year":"2016","unstructured":"Rubin, M. A., Girelli, G. & Demichelis, F. Genomic correlates to the newly proposed grading prognostic groups for prostate cancer. Eur. Urol. 69, 557\u2013560 (2016).","journal-title":"Eur. Urol."},{"key":"677_CR19","doi-asserted-by":"publisher","first-page":"746","DOI":"10.1016\/j.eururo.2021.03.009","volume":"80","author":"S Wilkinson","year":"2021","unstructured":"Wilkinson, S. et al. Nascent prostate cancer heterogeneity drives evolution and resistance to intense hormonal therapy. Eur. Urol. 80, 746\u2013757 (2021).","journal-title":"Eur. Urol."},{"key":"677_CR20","doi-asserted-by":"publisher","first-page":"2492","DOI":"10.1200\/JCO.2017.77.6880","volume":"36","author":"R Aggarwal","year":"2018","unstructured":"Aggarwal, R. et al. Clinical and genomic characterization of treatment-emergent small-cell neuroendocrine prostate cancer: a multi-institutional prospective study. J. Clin. Oncol. 36, 2492\u20132503 (2018).","journal-title":"J. Clin. Oncol."},{"key":"677_CR21","doi-asserted-by":"publisher","first-page":"1215","DOI":"10.1016\/j.cell.2015.05.001","volume":"161","author":"D Robinson","year":"2015","unstructured":"Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215\u20131228 (2015).","journal-title":"Cell"},{"key":"677_CR22","doi-asserted-by":"publisher","first-page":"541","DOI":"10.1038\/s41591-018-0014-x","volume":"24","author":"M Binnewies","year":"2018","unstructured":"Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541\u2013550 (2018).","journal-title":"Nat. Med."},{"key":"677_CR23","doi-asserted-by":"publisher","first-page":"488","DOI":"10.1038\/s41571-021-00499-9","volume":"18","author":"LC Hofbauer","year":"2021","unstructured":"Hofbauer, L. C. et al. Novel approaches to target the microenvironment of bone metastasis. Nat. Rev. Clin. Oncol. 18, 488\u2013505 (2021).","journal-title":"Nat. Rev. Clin. Oncol."},{"key":"677_CR24","doi-asserted-by":"publisher","first-page":"2018","DOI":"10.1056\/NEJMoa1501824","volume":"372","author":"EB Garon","year":"2015","unstructured":"Garon, E. B. et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 372, 2018\u20132028 (2015).","journal-title":"N. Engl. J. Med."},{"key":"677_CR25","doi-asserted-by":"publisher","first-page":"2521","DOI":"10.1056\/NEJMoa1503093","volume":"372","author":"C Robert","year":"2015","unstructured":"Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372, 2521\u20132532 (2015).","journal-title":"N. Engl. J. Med."},{"key":"677_CR26","doi-asserted-by":"publisher","first-page":"471","DOI":"10.1001\/jamaoncol.2018.5801","volume":"5","author":"W Abida","year":"2019","unstructured":"Abida, W. et al. Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade. JAMA Oncol. 5, 471\u2013478 (2019).","journal-title":"JAMA Oncol."},{"key":"677_CR27","doi-asserted-by":"publisher","first-page":"205","DOI":"10.1002\/pros.10290","volume":"57","author":"A van Bokhoven","year":"2003","unstructured":"van Bokhoven, A. et al. Molecular characterization of human prostate carcinoma cell lines. Prostate 57, 205\u2013225 (2003).","journal-title":"Prostate"},{"key":"677_CR28","first-page":"21","volume":"81","author":"PJ Russell","year":"2003","unstructured":"Russell, P. J. & Kingsley, E. A. Human prostate cancer cell lines. Methods Mol. Med. 81, 21\u201339 (2003).","journal-title":"Methods Mol. Med."},{"key":"677_CR29","doi-asserted-by":"publisher","first-page":"13","DOI":"10.1038\/sj.bjc.6604822","volume":"100","author":"WM van Weerden","year":"2009","unstructured":"van Weerden, W. M., Bangma, C. & de Wit, R. Human xenograft models as useful tools to assess the potential of novel therapeutics in prostate cancer. Br. J. Cancer 100, 13\u201318 (2009).","journal-title":"Br. J. Cancer"},{"key":"677_CR30","doi-asserted-by":"publisher","first-page":"74","DOI":"10.3390\/cells8010074","volume":"8","author":"T Namekawa","year":"2019","unstructured":"Namekawa, T., Ikeda, K., Horie-Inoue, K. & Inoue, S. Application of prostate cancer models for preclinical study: advantages and limitations of cell lines, patient-derived xenografts, and three-dimensional culture of patient-derived cells. Cells 8, 74 (2019).","journal-title":"Cells"},{"key":"677_CR31","doi-asserted-by":"publisher","first-page":"654","DOI":"10.1002\/pros.23313","volume":"77","author":"HM Nguyen","year":"2017","unstructured":"Nguyen, H. M. et al. LuCaP prostate cancer patient-derived xenografts reflect the molecular heterogeneity of advanced disease and serve as models for evaluating cancer therapeutics. Prostate 77, 654\u2013671 (2017).","journal-title":"Prostate"},{"key":"677_CR32","doi-asserted-by":"publisher","first-page":"1251","DOI":"10.1002\/pros.22610","volume":"73","author":"SR Young","year":"2013","unstructured":"Young, S. R. et al. Establishment and serial passage of cell cultures derived from LuCaP xenografts. Prostate 73, 1251\u20131262 (2013).","journal-title":"Prostate"},{"key":"677_CR33","doi-asserted-by":"publisher","first-page":"274","DOI":"10.1002\/ijc.2910210305","volume":"21","author":"KR Stone","year":"1978","unstructured":"Stone, K. R., Mickey, D. D., Wunderli, H., Mickey, G. H. & Paulson, D. F. Isolation of a human prostate carcinoma cell line (DU 145). Int. J. Cancer 21, 274\u2013281 (1978).","journal-title":"Int. J. Cancer"},{"key":"677_CR34","first-page":"16","volume":"17","author":"ME Kaighn","year":"1979","unstructured":"Kaighn, M. E., Narayan, K. S., Ohnuki, Y., Lechner, J. F. & Jones, L. W. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest. Urol. 17, 16\u201323 (1979).","journal-title":"Invest. Urol."},{"key":"677_CR35","first-page":"115","volume":"37","author":"JS Horoszewicz","year":"1980","unstructured":"Horoszewicz, J. S. et al. The LNCaP cell line\u2013a new model for studies on human prostatic carcinoma. Prog. Clin. Biol. Res. 37, 115\u2013132 (1980).","journal-title":"Prog. Clin. Biol. Res."},{"key":"677_CR36","doi-asserted-by":"publisher","first-page":"36","DOI":"10.1002\/pros.1045","volume":"47","author":"A van Bokhoven","year":"2001","unstructured":"van Bokhoven, A., Varella-Garcia, M., Korch, C., Hessels, D. & Miller, G. J. Widely used prostate carcinoma cell lines share common origins. Prostate 47, 36\u201351 (2001).","journal-title":"Prostate"},{"key":"677_CR37","first-page":"6340","volume":"61","author":"A van Bokhoven","year":"2001","unstructured":"van Bokhoven, A., Varella-Garcia, M., Korch, C. & Miller, G. J. TSU-Pr1 and JCA-1 cells are derivatives of T24 bladder carcinoma cells and are not of prostatic origin. Cancer Res. 61, 6340\u20136344 (2001).","journal-title":"Cancer Res."},{"key":"677_CR38","first-page":"1038","volume":"6","author":"MA Rubin","year":"2000","unstructured":"Rubin, M. A. et al. Rapid (\u201cwarm\u201d) autopsy study for procurement of metastatic prostate cancer. Clin. Cancer Res. 6, 1038\u20131045 (2000).","journal-title":"Clin. Cancer Res."},{"key":"677_CR39","first-page":"157","volume":"15","author":"YG Lee","year":"2001","unstructured":"Lee, Y. G. et al. Establishment and characterization of a new human prostatic cancer cell line: DuCaP. Vivo 15, 157\u2013162 (2001).","journal-title":"Vivo"},{"key":"677_CR40","first-page":"163","volume":"15","author":"S Korenchuk","year":"2001","unstructured":"Korenchuk, S. et al. VCaP, a cell-based model system of human prostate cancer. Vivo 15, 163\u2013168 (2001).","journal-title":"Vivo"},{"key":"677_CR41","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0020874","volume":"6","author":"KS Sfanos","year":"2011","unstructured":"Sfanos, K. S. et al. Identification of replication competent murine gammaretroviruses in commonly used prostate cancer cell lines. PLoS ONE\u00a06, e20874 (2011).","journal-title":"PLoS ONE"},{"key":"677_CR42","doi-asserted-by":"publisher","first-page":"187","DOI":"10.3109\/10408368309165763","volume":"19","author":"JC Griffiths","year":"1983","unstructured":"Griffiths, J. C. The laboratory diagnosis of prostatic adenocarcinoma. Crit. Rev. Clin. Lab. Sci. 19, 187\u2013204 (1983).","journal-title":"Crit. Rev. Clin. Lab. Sci."},{"key":"677_CR43","doi-asserted-by":"crossref","unstructured":"Moch, H., Humphrey, P. A., Ulbright, T. M. & Reuter, V. WHO Classification of Tumours of the Urinary System and Male Genital Organs. (International Agency for Research on Cancer, 2016).","DOI":"10.1016\/j.eururo.2016.02.029"},{"key":"677_CR44","doi-asserted-by":"publisher","first-page":"46","DOI":"10.1186\/s13046-022-02255-y","volume":"41","author":"L Merkens","year":"2022","unstructured":"Merkens, L. et al. Aggressive variants of prostate cancer: underlying mechanisms of neuroendocrine transdifferentiation. J. Exp. Clin. Cancer Res. 41, 46 (2022).","journal-title":"J. Exp. Clin. Cancer Res."},{"key":"677_CR45","first-page":"4111","volume":"44","author":"HB Grossman","year":"1984","unstructured":"Grossman, H. B., Wedemeyer, G., Ren, L. & Carey, T. E. UM-SCP-1, a new human cell line derived from a prostatic squamous cell carcinoma. Cancer Res. 44, 4111\u20134117 (1984).","journal-title":"Cancer Res."},{"key":"677_CR46","doi-asserted-by":"publisher","first-page":"287","DOI":"10.1002\/(SICI)1097-0045(20000301)42:4<287::AID-PROS6>3.0.CO;2-F","volume":"42","author":"CJ Kim","year":"2000","unstructured":"Kim, C. J., Kushima, R., Okada, Y. & Seto, A. Establishment and characterization of a prostatic small-cell carcinoma cell line (PSK-1) derived from a patient with Klinefelter syndrome. Prostate 42, 287\u2013294 (2000).","journal-title":"Prostate"},{"key":"677_CR47","doi-asserted-by":"publisher","first-page":"2781","DOI":"10.1111\/cas.14935","volume":"112","author":"K Okasho","year":"2021","unstructured":"Okasho, K. et al. Establishment and characterization of a novel treatment-related neuroendocrine prostate cancer cell line KUCaP13. Cancer Sci. 112, 2781\u20132791 (2021).","journal-title":"Cancer Sci."},{"key":"677_CR48","doi-asserted-by":"publisher","first-page":"4213","DOI":"10.18632\/oncotarget.3925","volume":"10","author":"J Steinestel","year":"2019","unstructured":"Steinestel, J. et al. Detecting predictive androgen receptor modifications in circulating prostate cancer cells. Oncotarget 10, 4213\u20134223 (2019).","journal-title":"Oncotarget"},{"key":"677_CR49","doi-asserted-by":"publisher","DOI":"10.1186\/s12885-018-4848-x","volume":"18","author":"K Jividen","year":"2018","unstructured":"Jividen, K. et al. Genomic analysis of DNA repair genes and androgen signaling in prostate cancer. BMC Cancer 18, 960 (2018).","journal-title":"BMC Cancer"},{"key":"677_CR50","doi-asserted-by":"publisher","first-page":"263","DOI":"10.1016\/j.eururo.2020.09.046","volume":"79","author":"P Cornford","year":"2021","unstructured":"Cornford, P. et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer. Part II-2020 Update: treatment of relapsing and metastatic prostate cancer. Eur. Urol. 79, 263\u2013282 (2021).","journal-title":"Eur. Urol."},{"key":"677_CR51","unstructured":"Teroerde, M. et al. in Prostate Cancer [internet] (eds Bott, S. R. J. & Ng, K. L.) (Exon Publications, 2021)."},{"key":"677_CR52","doi-asserted-by":"publisher","first-page":"1207","DOI":"10.1016\/j.bbrc.2006.05.020","volume":"345","author":"LA Perryman","year":"2006","unstructured":"Perryman, L. A. et al. Over-expression of p53 mutants in LNCaP cells alters tumor growth and angiogenesis in vivo. Biochem. Biophys. Res. Commun. 345, 1207\u20131214 (2006).","journal-title":"Biochem. Biophys. Res. Commun."},{"key":"677_CR53","doi-asserted-by":"publisher","first-page":"536","DOI":"10.1016\/j.ccell.2016.03.001","volume":"29","author":"JK Lee","year":"2016","unstructured":"Lee, J. K. et al. N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells. Cancer Cell 29, 536\u2013547 (2016).","journal-title":"Cancer Cell"},{"key":"677_CR54","doi-asserted-by":"publisher","first-page":"1689","DOI":"10.2174\/1381612824666180404152304","volume":"24","author":"AG Souza","year":"2018","unstructured":"Souza, A. G. et al. Comparative assay of 2D and 3D cell culture models: proliferation, gene expression and anticancer drug response. Curr. Pharm. Des. 24, 1689\u20131694 (2018).","journal-title":"Curr. Pharm. Des."},{"key":"677_CR55","doi-asserted-by":"publisher","first-page":"177","DOI":"10.1126\/science.2451290","volume":"240","author":"RM Sutherland","year":"1988","unstructured":"Sutherland, R. M. Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240, 177\u2013184 (1988).","journal-title":"Science"},{"key":"677_CR56","doi-asserted-by":"publisher","first-page":"841017","DOI":"10.3389\/fcell.2022.841017","volume":"10","author":"D Dietrichs","year":"2022","unstructured":"Dietrichs, D. et al. Three-dimensional growth of prostate cancer cells exposed to simulated microgravity. Front. Cell Dev. Biol. 10, 841017 (2022).","journal-title":"Front. Cell Dev. Biol."},{"key":"677_CR57","doi-asserted-by":"publisher","first-page":"3073","DOI":"10.3390\/ijms23063073","volume":"23","author":"D Grimm","year":"2022","unstructured":"Grimm, D. et al. The fight against cancer by microgravity: the multicellular spheroid as a metastasis model. Int. J. Mol. Sci. 23, 3073 (2022).","journal-title":"Int. J. Mol. Sci."},{"key":"677_CR58","doi-asserted-by":"publisher","first-page":"6806","DOI":"10.3390\/ijms21186806","volume":"21","author":"F Fontana","year":"2020","unstructured":"Fontana, F. et al. Three-dimensional cell cultures as an in vitro tool for prostate cancer modeling and drug discovery. Int. J. Mol. Sci. 21, 6806 (2020).","journal-title":"Int. J. Mol. Sci."},{"key":"677_CR59","doi-asserted-by":"publisher","author":"R Foty","year":"2011","unstructured":"Foty, R. A simple hanging drop cell culture protocol for generation of 3D spheroids. J. Vis. Exp. https:\/\/doi.org\/10.3791\/2720 (2011).","journal-title":"J. Vis. Exp.","DOI":"10.3791\/2720"},{"key":"677_CR60","doi-asserted-by":"publisher","first-page":"2201","DOI":"10.21873\/anticanres.11555","volume":"37","author":"J Hagemann","year":"2017","unstructured":"Hagemann, J. et al. Spheroid-based 3D cell cultures enable personalized therapy testing and drug discovery in head and neck cancer. Anticancer. Res. 37, 2201\u20132210 (2017).","journal-title":"Anticancer. Res."},{"key":"677_CR61","doi-asserted-by":"publisher","DOI":"10.1186\/s12885-015-1491-7","volume":"15","author":"K Halfter","year":"2015","unstructured":"Halfter, K. et al. Prospective cohort study using the breast cancer spheroid model as a predictor for response to neoadjuvant therapy\u2013the SpheroNEO study. BMC Cancer 15, 519 (2015).","journal-title":"BMC Cancer"},{"key":"677_CR62","doi-asserted-by":"publisher","first-page":"217","DOI":"10.3389\/fbioe.2019.00217","volume":"7","author":"LJ Bray","year":"2019","unstructured":"Bray, L. J., Hutmacher, D. W. & Bock, N. Addressing patient specificity in the engineering of tumor models. Front. Bioeng. Biotechnol. 7, 217 (2019).","journal-title":"Front. Bioeng. Biotechnol."},{"key":"677_CR63","doi-asserted-by":"publisher","first-page":"452","DOI":"10.1093\/jnci\/djt007","volume":"105","author":"JP Gillet","year":"2013","unstructured":"Gillet, J. P., Varma, S. & Gottesman, M. M. The clinical relevance of cancer cell lines. J. Natl Cancer Inst. 105, 452\u2013458 (2013).","journal-title":"J. Natl Cancer Inst."},{"key":"677_CR64","doi-asserted-by":"publisher","first-page":"213","DOI":"10.3109\/10520295.2010.483655","volume":"85","author":"M Ingram","year":"2010","unstructured":"Ingram, M. et al. Tissue engineered tumor models. Biotech. Histochem. 85, 213\u2013229 (2010).","journal-title":"Biotech. Histochem."},{"key":"677_CR65","doi-asserted-by":"publisher","first-page":"3020","DOI":"10.1016\/j.biomaterials.2009.02.047","volume":"30","author":"AY Hsiao","year":"2009","unstructured":"Hsiao, A. Y. et al. Microfluidic system for formation of PC-3 prostate cancer co-culture spheroids. Biomaterials 30, 3020\u20133027 (2009).","journal-title":"Biomaterials"},{"key":"677_CR66","doi-asserted-by":"publisher","first-page":"6176","DOI":"10.1158\/1078-0432.CCR-15-3107","volume":"22","author":"N Bansal","year":"2016","unstructured":"Bansal, N. et al. BMI-1 Targeting interferes with patient-derived tumor-initiating cell survival and tumor growth in prostate cancer. Clin. Cancer Res. 22, 6176\u20136191 (2016).","journal-title":"Clin. Cancer Res."},{"key":"677_CR67","doi-asserted-by":"publisher","first-page":"187","DOI":"10.1002\/pros.22740","volume":"74","author":"N Bansal","year":"2014","unstructured":"Bansal, N. et al. Enrichment of human prostate cancer cells with tumor initiating properties in mouse and zebrafish xenografts by differential adhesion. Prostate 74, 187\u2013200 (2014).","journal-title":"Prostate"},{"key":"677_CR68","doi-asserted-by":"publisher","first-page":"551","DOI":"10.1007\/s00432-018-2803-5","volume":"145","author":"J Linxweiler","year":"2019","unstructured":"Linxweiler, J. et al. Patient-derived, three-dimensional spheroid cultures provide a versatile translational model for the study of organ-confined prostate cancer. J. Cancer Res. Clin. Oncol. 145, 551\u2013559 (2019).","journal-title":"J. Cancer Res. Clin. Oncol."},{"key":"677_CR69","first-page":"1116","volume":"12","author":"E Jouberton","year":"2022","unstructured":"Jouberton, E., Voissiere, A., Penault-Llorca, F., Cachin, F. & Miot-Noirault, E. Multicellular tumor spheroids of LNCaP-Luc prostate cancer cells as in vitro screening models for cytotoxic drugs. Am. J. Cancer Res. 12, 1116\u20131128 (2022).","journal-title":"Am. J. Cancer Res."},{"key":"677_CR70","doi-asserted-by":"publisher","first-page":"176","DOI":"10.1016\/j.cell.2014.08.016","volume":"159","author":"D Gao","year":"2014","unstructured":"Gao, D. et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 159, 176\u2013187 (2014).","journal-title":"Cell"},{"key":"677_CR71","doi-asserted-by":"publisher","first-page":"6","DOI":"10.3892\/ol.2021.13124","volume":"23","author":"K Cheaito","year":"2022","unstructured":"Cheaito, K. et al. Establishment and characterization of prostate organoids from treatment-na\u00efve patients with prostate cancer. Oncol. Lett. 23, 6 (2022).","journal-title":"Oncol. Lett."},{"key":"677_CR72","doi-asserted-by":"publisher","first-page":"347","DOI":"10.1038\/nprot.2016.006","volume":"11","author":"J Drost","year":"2016","unstructured":"Drost, J. et al. Organoid culture systems for prostate epithelial and cancer tissue. Nat. Protoc. 11, 347\u2013358 (2016).","journal-title":"Nat. Protoc."},{"key":"677_CR73","doi-asserted-by":"publisher","first-page":"462","DOI":"10.1158\/2159-8290.CD-16-1154","volume":"7","author":"C Pauli","year":"2017","unstructured":"Pauli, C. et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 7, 462\u2013477 (2017).","journal-title":"Cancer Discov."},{"key":"677_CR74","doi-asserted-by":"publisher","first-page":"2506","DOI":"10.3390\/polym12112506","volume":"12","author":"A Kamatar","year":"2020","unstructured":"Kamatar, A., Gunay, G. & Acar, H. Natural and synthetic biomaterials for engineering multicellular tumor spheroids. Polymers 12, 2506 (2020).","journal-title":"Polymers"},{"key":"677_CR75","doi-asserted-by":"publisher","first-page":"1572","DOI":"10.3390\/biom11111572","volume":"11","author":"A Van Hemelryk","year":"2021","unstructured":"Van Hemelryk, A. et al. Modeling prostate cancer treatment responses in the organoid era: 3D environment impacts drug testing. Biomolecules 11, 1572 (2021).","journal-title":"Biomolecules"},{"key":"677_CR76","doi-asserted-by":"publisher","first-page":"2040","DOI":"10.1021\/mp500085p","volume":"11","author":"EL Fong","year":"2014","unstructured":"Fong, E. L. et al. Hydrogel-based 3D model of patient-derived prostate xenograft tumors suitable for drug screening. Mol. Pharm. 11, 2040\u20132050 (2014).","journal-title":"Mol. Pharm."},{"key":"677_CR77","doi-asserted-by":"publisher","first-page":"609","DOI":"10.1016\/j.biomaterials.2015.02.124","volume":"53","author":"LJ Bray","year":"2015","unstructured":"Bray, L. J. et al. Multi-parametric hydrogels support 3D in vitro bioengineered microenvironment models of tumour angiogenesis. Biomaterials 53, 609\u2013620 (2015).","journal-title":"Biomaterials"},{"key":"677_CR78","doi-asserted-by":"publisher","first-page":"112","DOI":"10.1016\/j.trecan.2020.09.006","volume":"7","author":"G Furesi","year":"2021","unstructured":"Furesi, G., Rauner, M. & Hofbauer, L. C. Emerging players in prostate cancer-bone Niche communication. Trends Cancer 7, 112\u2013121 (2021).","journal-title":"Trends Cancer"},{"key":"677_CR79","doi-asserted-by":"publisher","first-page":"119402","DOI":"10.1016\/j.biomaterials.2019.119402","volume":"220","author":"A Shokoohmand","year":"2019","unstructured":"Shokoohmand, A. et al. Microenvironment engineering of osteoblastic bone metastases reveals osteomimicry of patient-derived prostate cancer xenografts. Biomaterials 220, 119402 (2019).","journal-title":"Biomaterials"},{"key":"677_CR80","doi-asserted-by":"publisher","first-page":"13","DOI":"10.1038\/s41413-019-0049-8","volume":"7","author":"N Bock","year":"2019","unstructured":"Bock, N. et al. Engineering osteoblastic metastases to delineate the adaptive response of androgen-deprived prostate cancer in the bone metastatic microenvironment. Bone Res. 7, 13 (2019).","journal-title":"Bone Res."},{"key":"677_CR81","doi-asserted-by":"publisher","first-page":"eabg2564","DOI":"10.1126\/sciadv.abg2564","volume":"7","author":"N Bock","year":"2021","unstructured":"Bock, N. et al. In vitro engineering of a bone metastases model allows for study of the effects of antiandrogen therapies in advanced prostate cancer. Sci. Adv. 7, eabg2564 (2021).","journal-title":"Sci. Adv."},{"key":"677_CR82","doi-asserted-by":"publisher","first-page":"72","DOI":"10.1016\/j.biomaterials.2018.12.030","volume":"197","author":"BA Pereira","year":"2019","unstructured":"Pereira, B. A. et al. Tissue engineered human prostate microtissues reveal key role of mast cell-derived tryptase in potentiating cancer-associated fibroblast (CAF)-induced morphometric transition in vitro. Biomaterials 197, 72\u201385 (2019).","journal-title":"Biomaterials"},{"key":"677_CR83","doi-asserted-by":"publisher","first-page":"45","DOI":"10.1016\/j.ejpb.2016.11.013","volume":"112","author":"L Merz","year":"2017","unstructured":"Merz, L. et al. Tumor tissue slice cultures as a platform for analyzing tissue-penetration and biological activities of nanoparticles. Eur. J. Pharm. Biopharm. 112, 45\u201350 (2017).","journal-title":"Eur. J. Pharm. Biopharm."},{"key":"677_CR84","doi-asserted-by":"publisher","first-page":"864723","DOI":"10.3389\/fonc.2022.864723","volume":"12","author":"LM Perez","year":"2022","unstructured":"Perez, L. M. & Nonn, L. Harnessing the utility of ex vivo patient prostate tissue slice cultures. Front. Oncol. 12, 864723 (2022).","journal-title":"Front. Oncol."},{"key":"677_CR85","doi-asserted-by":"publisher","DOI":"10.1186\/1479-5876-11-199","volume":"11","author":"H Zhao","year":"2013","unstructured":"Zhao, H. et al. Patient-derived tissue slice grafts accurately depict response of high-risk primary prostate cancer to androgen deprivation therapy. J. Transl. Med. 11, 199 (2013).","journal-title":"J. Transl. Med."},{"key":"677_CR86","doi-asserted-by":"publisher","first-page":"1268","DOI":"10.1016\/j.ajpath.2019.02.017","volume":"189","author":"S Figiel","year":"2019","unstructured":"Figiel, S. et al. Functional organotypic cultures of prostate tissues: a relevant preclinical model that preserves hypoxia sensitivity and calcium signaling. Am. J. Pathol. 189, 1268\u20131275 (2019).","journal-title":"Am. J. Pathol."},{"key":"677_CR87","doi-asserted-by":"publisher","first-page":"400","DOI":"10.3389\/fonc.2018.00400","volume":"8","author":"AF van de Merbel","year":"2018","unstructured":"van de Merbel, A. F. et al. An ex vivo tissue culture model for the assessment of individualized drug responses in prostate and bladder cancer. Front. Oncol. 8, 400 (2018).","journal-title":"Front. Oncol."},{"key":"677_CR88","doi-asserted-by":"publisher","first-page":"390","DOI":"10.1002\/pros.23745","volume":"79","author":"W Zhang","year":"2019","unstructured":"Zhang, W. et al. Ex vivo treatment of prostate tumor tissue recapitulates in vivo therapy response. Prostate 79, 390\u2013402 (2019).","journal-title":"Prostate"},{"key":"677_CR89","doi-asserted-by":"publisher","first-page":"479","DOI":"10.1038\/bjc.2013.700","volume":"110","author":"MM Gerlach","year":"2014","unstructured":"Gerlach, M. M. et al. Slice cultures from head and neck squamous cell carcinoma: a novel test system for drug susceptibility and mechanisms of resistance. Br. J. Cancer 110, 479\u2013488 (2014).","journal-title":"Br. J. Cancer"},{"key":"677_CR90","doi-asserted-by":"publisher","first-page":"1444","DOI":"10.1002\/cam4.720","volume":"5","author":"J Koerfer","year":"2016","unstructured":"Koerfer, J. et al. Organotypic slice cultures of human gastric and esophagogastric junction cancer. Cancer Med. 5, 1444\u20131453 (2016).","journal-title":"Cancer Med."},{"key":"677_CR91","doi-asserted-by":"publisher","first-page":"e189","DOI":"10.1016\/j.clcc.2017.11.002","volume":"17","author":"R Sonnichsen","year":"2018","unstructured":"Sonnichsen, R. et al. Individual susceptibility analysis using patient-derived slice cultures of colorectal carcinoma. Clin. Colorectal Cancer 17, e189\u2013e199 (2018).","journal-title":"Clin. Colorectal Cancer"},{"key":"677_CR92","doi-asserted-by":"publisher","first-page":"670","DOI":"10.1093\/neuonc\/not003","volume":"15","author":"F Merz","year":"2013","unstructured":"Merz, F. et al. Organotypic slice cultures of human glioblastoma reveal different susceptibilities to treatments. Neuro Oncol. 15, 670\u2013681 (2013).","journal-title":"Neuro Oncol."},{"key":"677_CR93","doi-asserted-by":"publisher","first-page":"510","DOI":"10.1158\/0008-5472.CAN-21-0799","volume":"82","author":"S Chakrabarty","year":"2021","unstructured":"Chakrabarty, S. et al. A microfluidic cancer-on-chip platform predicts drug response using organotypic tumor slice culture. Cancer Res. 82, 510\u2013520 (2021).","journal-title":"Cancer Res."},{"key":"677_CR94","doi-asserted-by":"publisher","first-page":"312","DOI":"10.1039\/C5LC01108F","volume":"16","author":"M Astolfi","year":"2016","unstructured":"Astolfi, M. et al. Micro-dissected tumor tissues on chip: an ex vivo method for drug testing and personalized therapy. Lab Chip 16, 312\u2013325 (2016).","journal-title":"Lab Chip"},{"key":"677_CR95","doi-asserted-by":"publisher","first-page":"4208","DOI":"10.3390\/cancers13164208","volume":"13","author":"D Dorrigiv","year":"2021","unstructured":"Dorrigiv, D. et al. Microdissected tissue vs tissue slices-a comparative study of tumor explant models cultured on-chip and off-chip. Cancers 13, 4208 (2021).","journal-title":"Cancers"},{"key":"677_CR96","doi-asserted-by":"publisher","first-page":"130","DOI":"10.3390\/mi7080130","volume":"7","author":"N Kashaninejad","year":"2016","unstructured":"Kashaninejad, N. et al. Organ-tumor-on-a-chip for chemosensitivity assay: a critical review. Micromachines 7, 130 (2016).","journal-title":"Micromachines"},{"key":"677_CR97","doi-asserted-by":"publisher","first-page":"632","DOI":"10.1016\/j.bios.2017.03.054","volume":"94","author":"HJ Pandya","year":"2017","unstructured":"Pandya, H. J. et al. A microfluidic platform for drug screening in a 3D cancer microenvironment. Biosens. Bioelectron. 94, 632\u2013642 (2017).","journal-title":"Biosens. Bioelectron."},{"key":"677_CR98","doi-asserted-by":"publisher","first-page":"1502","DOI":"10.1016\/S0022-5347(05)65820-X","volume":"166","author":"K Kunzi-Rapp","year":"2001","unstructured":"Kunzi-Rapp, K. et al. Chorioallantoic membrane assay: vascularized 3-dimensional cell culture system for human prostate cancer cells as an animal substitute model. J. Urol. 166, 1502\u20131507 (2001).","journal-title":"J. Urol."},{"key":"677_CR99","doi-asserted-by":"publisher","first-page":"R155","DOI":"10.1530\/ERC-12-0285","volume":"20","author":"X Wu","year":"2013","unstructured":"Wu, X., Gong, S., Roy-Burman, P., Lee, P. & Culig, Z. Current mouse and cell models in prostate cancer research. Endocr. Relat. Cancer 20, R155\u2013R170 (2013).","journal-title":"Endocr. Relat. Cancer"},{"key":"677_CR100","doi-asserted-by":"publisher","first-page":"1179","DOI":"10.1002\/ijc.2910430636","volume":"43","author":"LW Chung","year":"1989","unstructured":"Chung, L. W. et al. Co-inoculation of tumorigenic rat prostate mesenchymal cells with non-tumorigenic epithelial cells results in the development of carcinosarcoma in syngeneic and athymic animals. Int. J. Cancer 43, 1179\u20131187 (1989).","journal-title":"Int. J. Cancer"},{"key":"677_CR101","doi-asserted-by":"publisher","first-page":"2790","DOI":"10.1111\/j.1582-4934.2008.00279.x","volume":"12","author":"Y Li","year":"2008","unstructured":"Li, Y. et al. Decrease in stromal androgen receptor associates with androgen-independent disease and promotes prostate cancer cell proliferation and invasion. J. Cell Mol. Med. 12, 2790\u20132798 (2008).","journal-title":"J. Cell Mol. Med."},{"key":"677_CR102","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1002\/jcb.21379","volume":"103","author":"M Craig","year":"2008","unstructured":"Craig, M., Ying, C. & Loberg, R. D. Co-inoculation of prostate cancer cells with U937 enhances tumor growth and angiogenesis in vivo. J. Cell Biochem. 103, 1\u20138 (2008).","journal-title":"J. Cell Biochem."},{"key":"677_CR103","doi-asserted-by":"publisher","first-page":"5733","DOI":"10.1038\/sj.onc.1205560","volume":"21","author":"A Aigner","year":"2002","unstructured":"Aigner, A. et al. Ribozyme-targeting of a secreted FGF-binding protein (FGF-BP) inhibits proliferation of prostate cancer cells in vitro and in vivo. Oncogene 21, 5733\u20135742 (2002).","journal-title":"Oncogene"},{"key":"677_CR104","doi-asserted-by":"publisher","first-page":"754","DOI":"10.1002\/pros.22619","volume":"73","author":"JC Klink","year":"2013","unstructured":"Klink, J. C. et al. Resveratrol worsens survival in SCID mice with prostate cancer xenografts in a cell-line specific manner, through paradoxical effects on oncogenic pathways. Prostate 73, 754\u2013762 (2013).","journal-title":"Prostate"},{"key":"677_CR105","doi-asserted-by":"publisher","first-page":"138","DOI":"10.2174\/1871520615666150116102442","volume":"15","author":"QH Chen","year":"2015","unstructured":"Chen, Q. H. Curcumin-based anti-prostate cancer agents. Anticancer. Agents Med. Chem. 15, 138\u2013156 (2015).","journal-title":"Anticancer. Agents Med. Chem."},{"key":"677_CR106","doi-asserted-by":"publisher","first-page":"592","DOI":"10.1016\/j.molcel.2018.06.036","volume":"71","author":"X Jin","year":"2018","unstructured":"Jin, X. et al. DUB3 promotes BET inhibitor resistance and cancer progression by deubiquitinating BRD4. Mol. Cell 71, 592\u2013605.e594 (2018).","journal-title":"Mol. Cell"},{"key":"677_CR107","doi-asserted-by":"publisher","first-page":"361","DOI":"10.1038\/s41594-019-0219-9","volume":"26","author":"E Metzger","year":"2019","unstructured":"Metzger, E. et al. KMT9 monomethylates histone H4 lysine 12 and controls proliferation of prostate cancer cells. Nat. Struct. Mol. Biol. 26, 361\u2013371 (2019).","journal-title":"Nat. Struct. Mol. Biol."},{"key":"677_CR108","first-page":"4227","volume":"9","author":"T Voskoglou-Nomikos","year":"2003","unstructured":"Voskoglou-Nomikos, T., Pater, J. L. & Seymour, L. Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin. Cancer Res. 9, 4227\u20134239 (2003).","journal-title":"Clin. Cancer Res."},{"key":"677_CR109","doi-asserted-by":"publisher","first-page":"1206","DOI":"10.3892\/etm.2021.10640","volume":"22","author":"Z Yin","year":"2021","unstructured":"Yin, Z. et al. Current research developments of patient-derived tumour xenograft models (Review). Exp. Ther. Med. 22, 1206 (2021).","journal-title":"Exp. Ther. Med."},{"key":"677_CR110","doi-asserted-by":"publisher","first-page":"11896","DOI":"10.1073\/pnas.1734139100","volume":"100","author":"L Xin","year":"2003","unstructured":"Xin, L., Ide, H., Kim, Y., Dubey, P. & Witte, O. N. In vivo regeneration of murine prostate from dissociated cell populations of postnatal epithelia and urogenital sinus mesenchyme. Proc. Natl Acad. Sci. USA 100, 11896\u201311903 (2003).","journal-title":"Proc. Natl Acad. Sci. USA"},{"key":"677_CR111","doi-asserted-by":"publisher","first-page":"1392","DOI":"10.1038\/labinvest.3700335","volume":"85","author":"Y Wang","year":"2005","unstructured":"Wang, Y. et al. An orthotopic metastatic prostate cancer model in SCID mice via grafting of a transplantable human prostate tumor line. Lab. Invest. 85, 1392\u20131404 (2005).","journal-title":"Lab. Invest."},{"key":"677_CR112","doi-asserted-by":"publisher","first-page":"7294","DOI":"10.1158\/0008-5472.CAN-09-3982","volume":"70","author":"CP Liao","year":"2010","unstructured":"Liao, C. P., Adisetiyo, H., Liang, M. & Roy-Burman, P. Cancer-associated fibroblasts enhance the gland-forming capability of prostate cancer stem cells. Cancer Res. 70, 7294\u20137303 (2010).","journal-title":"Cancer Res."},{"key":"677_CR113","doi-asserted-by":"publisher","first-page":"495","DOI":"10.1038\/nature08361","volume":"461","author":"X Wang","year":"2009","unstructured":"Wang, X. et al. A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461, 495\u2013500 (2009).","journal-title":"Nature"},{"key":"677_CR114","doi-asserted-by":"publisher","first-page":"951","DOI":"10.1093\/jnci\/84.12.951","volume":"84","author":"RA Stephenson","year":"1992","unstructured":"Stephenson, R. A. et al. Metastatic model for human prostate cancer using orthotopic implantation in nude mice. J. Natl Cancer Inst. 84, 951\u2013957 (1992).","journal-title":"J. Natl Cancer Inst."},{"key":"677_CR115","doi-asserted-by":"publisher","first-page":"177","DOI":"10.1007\/978-1-4939-7234-0_15","volume":"1655","author":"W J\u00e4ger","year":"2018","unstructured":"J\u00e4ger, W. et al. Orthotopic mouse models of urothelial cancer. Methods Mol. Biol. 1655, 177\u2013197 (2018).","journal-title":"Methods Mol. Biol."},{"key":"677_CR116","doi-asserted-by":"publisher","first-page":"820","DOI":"10.1097\/01.ju.0000169133.82167.aa","volume":"174","author":"AS Singh","year":"2005","unstructured":"Singh, A. S. & Figg, W. D. In vivo models of prostate cancer metastasis to bone. J. Urol. 174, 820\u2013826 (2005).","journal-title":"J. Urol."},{"key":"677_CR117","doi-asserted-by":"publisher","first-page":"10616","DOI":"10.18632\/oncotarget.7055","volume":"7","author":"KR Parajuli","year":"2016","unstructured":"Parajuli, K. R., Zhang, Q., Liu, S. & You, Z. Aminomethylphosphonic acid inhibits growth and metastasis of human prostate cancer in an orthotopic xenograft mouse model. Oncotarget 7, 10616\u201310626 (2016).","journal-title":"Oncotarget"},{"key":"677_CR118","first-page":"297","volume":"111","author":"RM Hoffman","year":"2005","unstructured":"Hoffman, R. M. Orthotopic metastatic (MetaMouse) models for discovery and development of novel chemotherapy. Methods Mol. Med. 111, 297\u2013322 (2005).","journal-title":"Methods Mol. Med."},{"key":"677_CR119","doi-asserted-by":"publisher","first-page":"1019","DOI":"10.1016\/j.molonc.2013.07.008","volume":"7","author":"Y Xiang","year":"2013","unstructured":"Xiang, Y. et al. SPARCL1 suppresses metastasis in prostate cancer. Mol. Oncol. 7, 1019\u20131030 (2013).","journal-title":"Mol. Oncol."},{"key":"677_CR120","first-page":"2577","volume":"54","author":"GN Thalmann","year":"1994","unstructured":"Thalmann, G. N. et al. Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res. 54, 2577\u20132581 (1994).","journal-title":"Cancer Res."},{"key":"677_CR121","first-page":"1627","volume":"2","author":"CA Pettaway","year":"1996","unstructured":"Pettaway, C. A. et al. Selection of highly metastatic variants of different human prostatic carcinomas using orthotopic implantation in nude mice. Clin. Cancer Res. 2, 1627\u20131636 (1996).","journal-title":"Clin. Cancer Res."},{"key":"677_CR122","doi-asserted-by":"publisher","first-page":"1420","DOI":"10.1016\/S0022-5347(05)67210-2","volume":"164","author":"BJ Patel","year":"2000","unstructured":"Patel, B. J. et al. CL1-GFP: an androgen independent metastatic tumor model for prostate cancer. J. Urol. 164, 1420\u20131425 (2000).","journal-title":"J. Urol."},{"key":"677_CR123","first-page":"249","volume":"7","author":"Z Duan","year":"2019","unstructured":"Duan, Z. et al. Th17 cells promote tumor growth in an immunocompetent orthotopic mouse model of prostate cancer. Am. J. Clin. Exp. Urol. 7, 249\u2013261 (2019).","journal-title":"Am. J. Clin. Exp. Urol."},{"key":"677_CR124","doi-asserted-by":"publisher","first-page":"457","DOI":"10.1002\/pros.23490","volume":"78","author":"J Lardizabal","year":"2018","unstructured":"Lardizabal, J., Ding, J., Delwar, Z., Rennie, P. S. & Jia, W. A TRAMP-derived orthotopic prostate syngeneic (TOPS) cancer model for investigating anti-tumor treatments. Prostate 78, 457\u2013468 (2018).","journal-title":"Prostate"},{"key":"677_CR125","doi-asserted-by":"publisher","author":"JF Anker","year":"2018","unstructured":"Anker, J. F., Mok, H., Naseem, A. F., Thumbikat, P. & Abdulkadir, S. A. A bioluminescent and fluorescent orthotopic syngeneic murine model of androgen-dependent and castration-resistant prostate cancer. J. Vis. Exp. https:\/\/doi.org\/10.3791\/57301 (2018).","journal-title":"J. Vis. Exp.","DOI":"10.3791\/57301"},{"key":"677_CR126","doi-asserted-by":"publisher","DOI":"10.1038\/s41598-018-35695-8","volume":"8","author":"T Lange","year":"2018","unstructured":"Lange, T. et al. Development and characterization of a spontaneously metastatic patient-derived xenograft model of human prostate cancer. Sci. Rep. 8, 17535 (2018).","journal-title":"Sci. Rep."},{"key":"677_CR127","doi-asserted-by":"publisher","first-page":"160","DOI":"10.1016\/j.canlet.2021.11.004","volume":"525","author":"M Shi","year":"2022","unstructured":"Shi, M., Wang, Y., Lin, D. & Wang, Y. Patient-derived xenograft models of neuroendocrine prostate cancer. Cancer Lett. 525, 160\u2013169 (2022).","journal-title":"Cancer Lett."},{"key":"677_CR128","doi-asserted-by":"publisher","first-page":"9750795","DOI":"10.1155\/2016\/9750795","volume":"2016","author":"D Rea","year":"2016","unstructured":"Rea, D. et al. Mouse models in prostate cancer translational research: from xenograft to PDX. Biomed. Res. Int. 2016, 9750795 (2016).","journal-title":"Biomed. Res. Int."},{"key":"677_CR129","first-page":"1055","volume":"149","author":"WM van Weerden","year":"1996","unstructured":"van Weerden, W. M. et al. Development of seven new human prostate tumor xenograft models and their histopathological characterization. Am. J. Pathol. 149, 1055\u20131062 (1996).","journal-title":"Am. J. Pathol."},{"key":"677_CR130","doi-asserted-by":"publisher","first-page":"4933","DOI":"10.1158\/1078-0432.CCR-20-0479","volume":"26","author":"N Palanisamy","year":"2020","unstructured":"Palanisamy, N. et al. The MD Anderson prostate cancer patient-derived xenograft series (MDA PCa PDX) captures the molecular landscape of prostate cancer and facilitates marker-driven therapy development. Clin. Cancer Res. 26, 4933\u20134946 (2020).","journal-title":"Clin. Cancer Res."},{"key":"677_CR131","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-021-25175-5","volume":"12","author":"GP Risbridger","year":"2021","unstructured":"Risbridger, G. P. et al. The MURAL collection of prostate cancer patient-derived xenografts enables discovery through preclinical models of uro-oncology. Nat. Commun. 12, 5049 (2021).","journal-title":"Nat. Commun."},{"key":"677_CR132","doi-asserted-by":"publisher","first-page":"2286","DOI":"10.1158\/0008-5472.CAN-19-3101","volume":"80","author":"YA Evrard","year":"2020","unstructured":"Evrard, Y. A. et al. Systematic establishment of robustness and standards in patient-derived xenograft experiments and analysis. Cancer Res. 80, 2286\u20132297 (2020).","journal-title":"Cancer Res."},{"key":"677_CR133","doi-asserted-by":"publisher","first-page":"1272","DOI":"10.1158\/0008-5472.CAN-13-2921-T","volume":"74","author":"D Lin","year":"2014","unstructured":"Lin, D. et al. High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 74, 1272\u20131283 (2014).","journal-title":"Cancer Res."},{"key":"677_CR134","doi-asserted-by":"publisher","first-page":"1177","DOI":"10.1016\/j.eururo.2014.08.053","volume":"67","author":"RB Marques","year":"2015","unstructured":"Marques, R. B. et al. High efficacy of combination therapy using PI3K\/AKT inhibitors with androgen deprivation in prostate cancer preclinical models. Eur. Urol. 67, 1177\u20131185 (2015).","journal-title":"Eur. Urol."},{"key":"677_CR135","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1158\/1078-0432.CCR-15-0235","volume":"22","author":"A Varkaris","year":"2016","unstructured":"Varkaris, A. et al. Integrating murine and clinical trials with cabozantinib to understand roles of MET and VEGFR2 as targets for growth inhibition of prostate cancer. Clin. Cancer Res. 22, 107\u2013121 (2016).","journal-title":"Clin. Cancer Res."},{"key":"677_CR136","doi-asserted-by":"publisher","first-page":"1985","DOI":"10.1158\/1078-0432.CCR-19-2268","volume":"26","author":"S Hammer","year":"2020","unstructured":"Hammer, S. et al. Preclinical efficacy of a PSMA-targeted thorium-227 conjugate (PSMA-TTC), a targeted alpha therapy for prostate cancer. Clin. Cancer Res. 26, 1985\u20131996 (2020).","journal-title":"Clin. Cancer Res."},{"key":"677_CR137","doi-asserted-by":"publisher","first-page":"1567","DOI":"10.1038\/ng.3967","volume":"49","author":"U Ben-David","year":"2017","unstructured":"Ben-David, U. et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat. Genet. 49, 1567\u20131575 (2017).","journal-title":"Nat. Genet."},{"key":"677_CR138","doi-asserted-by":"publisher","first-page":"86","DOI":"10.1038\/s41588-020-00750-6","volume":"53","author":"XY Woo","year":"2021","unstructured":"Woo, X. Y. et al. Conservation of copy number profiles during engraftment and passaging of patient-derived cancer xenografts. Nat. Genet. 53, 86\u201399 (2021).","journal-title":"Nat. Genet."},{"key":"677_CR139","doi-asserted-by":"publisher","first-page":"14.41.11","DOI":"10.1002\/cpph.26","volume":"78","author":"B Verma","year":"2017","unstructured":"Verma, B., Ritchie, M. & Mancini, M. Development and applications of patient-derived xenograft models in humanized mice for oncology and immune-oncology drug discovery. Curr. Protoc. Pharmacol. 78, 14.41.11\u201314.41.12 (2017).","journal-title":"Curr. Protoc. Pharmacol."},{"key":"677_CR140","doi-asserted-by":"publisher","first-page":"786","DOI":"10.1038\/nri3311","volume":"12","author":"LD Shultz","year":"2012","unstructured":"Shultz, L. D., Brehm, M. A., Garcia-Martinez, J. V. & Greiner, D. L. Humanized mice for immune system investigation: progress, promise and challenges. Nat. Rev. Immunol. 12, 786\u2013798 (2012).","journal-title":"Nat. Rev. Immunol."},{"key":"677_CR141","doi-asserted-by":"publisher","first-page":"12","DOI":"10.1186\/s40425-015-0056-2","volume":"3","author":"MD Roth","year":"2015","unstructured":"Roth, M. D. & Harui, A. Human tumor infiltrating lymphocytes cooperatively regulate prostate tumor growth in a humanized mouse model. J. Immunother. Cancer 3, 12 (2015).","journal-title":"J. Immunother. Cancer"},{"key":"677_CR142","doi-asserted-by":"publisher","first-page":"1120","DOI":"10.21037\/tau.2020.03.38","volume":"9","author":"M Valta","year":"2020","unstructured":"Valta, M. et al. Critical evaluation of the subcutaneous engraftments of hormone na\u00efve primary prostate cancer. Transl. Androl. Urol. 9, 1120\u20131134 (2020).","journal-title":"Transl. Androl. Urol."},{"key":"677_CR143","doi-asserted-by":"publisher","first-page":"4410","DOI":"10.1172\/JCI69369","volume":"123","author":"G Liu","year":"2013","unstructured":"Liu, G. et al. Perturbation of NK cell peripheral homeostasis accelerates prostate carcinoma metastasis. J. Clin. Invest. 123, 4410\u20134422 (2013).","journal-title":"J. Clin. Invest."},{"key":"677_CR144","doi-asserted-by":"publisher","first-page":"858","DOI":"10.1158\/2159-8290.CD-20-1311","volume":"11","author":"C Alix-Panabi\u00e8res","year":"2021","unstructured":"Alix-Panabi\u00e8res, C. & Pantel, K. Liquid biopsy: from discovery to clinical application. Cancer Discov. 11, 858\u2013873 (2021).","journal-title":"Cancer Discov."},{"key":"677_CR145","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-020-15426-2","volume":"11","author":"V Faugeroux","year":"2020","unstructured":"Faugeroux, V. et al. Genetic characterization of a unique neuroendocrine transdifferentiation prostate circulating tumor cell-derived eXplant model. Nat. Commun. 11, 1884 (2020).","journal-title":"Nat. Commun."},{"key":"677_CR146","doi-asserted-by":"publisher","first-page":"553","DOI":"10.1038\/s41568-019-0180-2","volume":"19","author":"L Keller","year":"2019","unstructured":"Keller, L. & Pantel, K. Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells. Nat. Rev. Cancer 19, 553\u2013567 (2019).","journal-title":"Nat. Rev. Cancer"},{"key":"677_CR147","doi-asserted-by":"publisher","first-page":"179","DOI":"10.1016\/j.ejca.2021.03.023","volume":"150","author":"L Mout","year":"2021","unstructured":"Mout, L. et al. Generating human prostate cancer organoids from leukapheresis enriched circulating tumour cells. Eur. J. Cancer 150, 179\u2013189 (2021).","journal-title":"Eur. J. Cancer"},{"key":"677_CR148","doi-asserted-by":"publisher","first-page":"874","DOI":"10.3390\/cancers13040874","volume":"13","author":"S Gunti","year":"2021","unstructured":"Gunti, S., Hoke, A. T. K., Vu, K. P. & London, N. R. Jr Organoid and spheroid tumor models: techniques and applications. Cancers 13, 874 (2021).","journal-title":"Cancers"},{"key":"677_CR149","doi-asserted-by":"publisher","first-page":"1685","DOI":"10.1002\/ijc.32018","volume":"144","author":"S K\u00f6cher","year":"2019","unstructured":"K\u00f6cher, S. et al. A functional ex vivo assay to detect PARP1-EJ repair and radiosensitization by PARP-inhibitor in prostate cancer. Int. J. Cancer 144, 1685\u20131696 (2019).","journal-title":"Int. J. Cancer"},{"key":"677_CR150","doi-asserted-by":"publisher","first-page":"3439","DOI":"10.1073\/pnas.92.8.3439","volume":"92","author":"NM Greenberg","year":"1995","unstructured":"Greenberg, N. M. et al. Prostate cancer in a transgenic mouse. Proc. Natl Acad. Sci. USA 92, 3439\u20133443 (1995).","journal-title":"Proc. Natl Acad. Sci. USA"},{"key":"677_CR151","doi-asserted-by":"publisher","first-page":"223","DOI":"10.1016\/S1535-6108(03)00197-1","volume":"4","author":"K Ellwood-Yen","year":"2003","unstructured":"Ellwood-Yen, K. et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4, 223\u2013238 (2003).","journal-title":"Cancer Cell"},{"key":"677_CR152","first-page":"8256","volume":"63","author":"KW Freeman","year":"2003","unstructured":"Freeman, K. W. et al. Inducible prostate intraepithelial neoplasia with reversible hyperplasia in conditional FGFR1-expressing mice. Cancer Res. 63, 8256\u20138263 (2003).","journal-title":"Cancer Res."},{"key":"677_CR153","doi-asserted-by":"publisher","author":"AA Hurwitz","year":"2001","unstructured":"Hurwitz, A. A., Foster, B. A., Allison, J. P., Greenberg, N. M. & Kwon, E. D. The TRAMP mouse as a model for prostate cancer. Curr. Protoc. Immunol. https:\/\/doi.org\/10.1002\/0471142735.im2005s45 (2001).","journal-title":"Curr. Protoc. Immunol.","DOI":"10.1002\/0471142735.im2005s45"},{"key":"677_CR154","doi-asserted-by":"publisher","first-page":"2435","DOI":"10.1172\/JCI131133","volume":"130","author":"A Alajati","year":"2020","unstructured":"Alajati, A. et al. CDCP1 overexpression drives prostate cancer progression and can be targeted in vivo. J. Clin. Invest. 130, 2435\u20132450 (2020).","journal-title":"J. Clin. Invest."},{"key":"677_CR155","doi-asserted-by":"publisher","first-page":"6762","DOI":"10.1158\/0008-5472.CAN-08-0107","volume":"68","author":"RJ Jin","year":"2008","unstructured":"Jin, R. J. et al. The nuclear factor-\u03baB pathway controls the progression of prostate cancer to androgen-independent growth. Cancer Res. 68, 6762\u20136769 (2008).","journal-title":"Cancer Res."},{"key":"677_CR156","doi-asserted-by":"publisher","first-page":"61","DOI":"10.1016\/S0925-4773(00)00551-7","volume":"101","author":"X Wu","year":"2001","unstructured":"Wu, X. et al. Generation of a prostate epithelial cell-specific Cre transgenic mouse model for tissue-specific gene ablation. Mech. Dev. 101, 61\u201369 (2001).","journal-title":"Mech. Dev."},{"key":"677_CR157","doi-asserted-by":"publisher","first-page":"2884","DOI":"10.1073\/pnas.042688999","volume":"99","author":"MJ Kim","year":"2002","unstructured":"Kim, M. J. et al. Cooperativity of Nkx3.1 and Pten loss of function in a mouse model of prostate carcinogenesis. Proc. Natl Acad. Sci. USA 99, 2884\u20132889 (2002).","journal-title":"Proc. Natl Acad. Sci. USA"},{"key":"677_CR158","doi-asserted-by":"publisher","first-page":"209","DOI":"10.1016\/S1535-6108(03)00215-0","volume":"4","author":"S Wang","year":"2003","unstructured":"Wang, S. et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4, 209\u2013221 (2003).","journal-title":"Cancer Cell"},{"key":"677_CR159","doi-asserted-by":"publisher","first-page":"792","DOI":"10.1016\/j.ccr.2011.05.006","volume":"19","author":"DJ Mulholland","year":"2011","unstructured":"Mulholland, D. J. et al. Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth. Cancer Cell 19, 792\u2013804 (2011).","journal-title":"Cancer Cell"},{"key":"677_CR160","doi-asserted-by":"publisher","first-page":"436","DOI":"10.1016\/j.ccell.2017.02.004","volume":"31","author":"M Blattner","year":"2017","unstructured":"Blattner, M. et al. SPOP mutation drives prostate tumorigenesis in vivo through coordinate regulation of PI3K\/mTOR and AR signaling. Cancer Cell 31, 436\u2013451 (2017).","journal-title":"Cancer Cell"},{"key":"677_CR161","doi-asserted-by":"publisher","first-page":"896","DOI":"10.1016\/j.cell.2012.01.039","volume":"148","author":"Z Ding","year":"2012","unstructured":"Ding, Z. et al. Telomerase reactivation following telomere dysfunction yields murine prostate tumors with bone metastases. Cell 148, 896\u2013907 (2012).","journal-title":"Cell"},{"key":"677_CR162","doi-asserted-by":"publisher","first-page":"1878","DOI":"10.1158\/0008-5472.CAN-11-3132","volume":"72","author":"DJ Mulholland","year":"2012","unstructured":"Mulholland, D. J. et al. Pten loss and RAS\/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem\/progenitor cells. Cancer Res. 72, 1878\u20131889 (2012).","journal-title":"Cancer Res."},{"key":"677_CR163","doi-asserted-by":"publisher","first-page":"563","DOI":"10.1016\/j.ccell.2016.09.005","volume":"30","author":"E Dardenne","year":"2016","unstructured":"Dardenne, E. et al. N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer. Cancer Cell 30, 563\u2013577 (2016).","journal-title":"Cancer Cell"},{"key":"677_CR164","doi-asserted-by":"publisher","first-page":"269","DOI":"10.1038\/nature09677","volume":"470","author":"Z Ding","year":"2011","unstructured":"Ding, Z. et al. SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature 470, 269\u2013273 (2011).","journal-title":"Nature"},{"key":"677_CR165","doi-asserted-by":"publisher","first-page":"1374","DOI":"10.1158\/2159-8290.CD-19-1352","volume":"10","author":"D Zhao","year":"2020","unstructured":"Zhao, D. et al. Chromatin regulator CHD1 remodels the immunosuppressive tumor microenvironment in PTEN-deficient prostate cancer. Cancer Discov. 10, 1374\u20131387 (2020).","journal-title":"Cancer Discov."},{"key":"677_CR166","doi-asserted-by":"publisher","first-page":"728","DOI":"10.1038\/nature21676","volume":"543","author":"X Lu","year":"2017","unstructured":"Lu, X. et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature 543, 728\u2013732 (2017).","journal-title":"Nature"},{"key":"677_CR167","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-021-25624-1","volume":"12","author":"S Taavitsainen","year":"2021","unstructured":"Taavitsainen, S. et al. Single-cell ATAC and RNA sequencing reveal pre-existing and persistent cells associated with prostate cancer relapse. Nat. Commun. 12, 5307 (2021).","journal-title":"Nat. Commun."},{"key":"677_CR168","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-021-21615-4","volume":"12","author":"L Brady","year":"2021","unstructured":"Brady, L. et al. Inter- and intra-tumor heterogeneity of metastatic prostate cancer determined by digital spatial gene expression profiling. Nat. Commun. 12, 1426 (2021).","journal-title":"Nat. Commun."},{"key":"677_CR169","doi-asserted-by":"publisher","first-page":"85","DOI":"10.1038\/s41586-021-04217-4","volume":"601","author":"T Zhao","year":"2022","unstructured":"Zhao, T. et al. Spatial genomics enables multi-modal study of clonal heterogeneity in tissues. Nature 601, 85\u201391 (2022).","journal-title":"Nature"},{"key":"677_CR170","doi-asserted-by":"publisher","first-page":"4837","DOI":"10.3390\/cancers13194837","volume":"13","author":"E Chelebian","year":"2021","unstructured":"Chelebian, E. et al. Morphological features extracted by AI associated with spatial transcriptomics in prostate cancer. Cancers 13, 4837 (2021).","journal-title":"Cancers"},{"key":"677_CR171","doi-asserted-by":"publisher","first-page":"79","DOI":"10.1038\/s41585-020-00400-w","volume":"18","author":"MC Haffner","year":"2021","unstructured":"Haffner, M. C. et al. Genomic and phenotypic heterogeneity in prostate cancer. Nat. Rev. Urol. 18, 79\u201392 (2021).","journal-title":"Nat. Rev. Urol."},{"key":"677_CR172","doi-asserted-by":"publisher","DOI":"10.1038\/ncomms7605","volume":"6","author":"MK Hong","year":"2015","unstructured":"Hong, M. K. et al. Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer. Nat. Commun. 6, 6605 (2015).","journal-title":"Nat. Commun."},{"key":"677_CR173","doi-asserted-by":"publisher","first-page":"353","DOI":"10.1038\/nature14347","volume":"520","author":"G Gundem","year":"2015","unstructured":"Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 520, 353\u2013357 (2015).","journal-title":"Nature"},{"key":"677_CR174","doi-asserted-by":"publisher","first-page":"933","DOI":"10.1016\/j.cell.2015.03.053","volume":"161","author":"M van de Wetering","year":"2015","unstructured":"van de Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933\u2013945 (2015).","journal-title":"Cell"},{"key":"677_CR175","doi-asserted-by":"publisher","first-page":"52","DOI":"10.3892\/ijo.2022.5342","volume":"60","author":"J Cao","year":"2022","unstructured":"Cao, J., Chan, W. C. & Chow, M. S. S. Use of conditional reprogramming cell, patient derived xenograft and organoid for drug screening for individualized prostate cancer therapy: current and future perspectives (Review). Int. J. Oncol. 60, 52 (2022).","journal-title":"Int. J. Oncol."},{"key":"677_CR176","doi-asserted-by":"publisher","DOI":"10.1186\/s12943-022-01597-7","volume":"21","author":"I Heidegger","year":"2022","unstructured":"Heidegger, I. et al. Comprehensive characterization of the prostate tumor microenvironment identifies CXCR4\/CXCL12 crosstalk as a novel antiangiogenic therapeutic target in prostate cancer. Mol. Cancer 21, 132 (2022).","journal-title":"Mol. Cancer"},{"key":"677_CR177","doi-asserted-by":"publisher","first-page":"279","DOI":"10.1016\/j.ccell.2020.06.005","volume":"38","author":"Z Zhang","year":"2020","unstructured":"Zhang, Z. et al. Tumor microenvironment-derived NRG1 promotes antiandrogen resistance in prostate cancer. Cancer Cell 38, 279\u2013296.e279 (2020).","journal-title":"Cancer Cell"},{"key":"677_CR178","doi-asserted-by":"publisher","first-page":"159","DOI":"10.1038\/s41391-021-00413-5","volume":"25","author":"J Javier-DesLoges","year":"2021","unstructured":"Javier-DesLoges, J. et al. The microbiome and prostate cancer. Prostate Cancer Prostatic Dis. 25, 159\u2013174 (2021).","journal-title":"Prostate Cancer Prostatic Dis."},{"key":"677_CR179","doi-asserted-by":"publisher","first-page":"567","DOI":"10.1038\/s41586-020-2095-1","volume":"579","author":"GD Poore","year":"2020","unstructured":"Poore, G. D. et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 579, 567\u2013574 (2020).","journal-title":"Nature"},{"key":"677_CR180","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-020-18649-5","volume":"11","author":"BA Daisley","year":"2020","unstructured":"Daisley, B. A. et al. Abiraterone acetate preferentially enriches for the gut commensal Akkermansia muciniphila in castrate-resistant prostate cancer patients. Nat. Commun. 11, 4822 (2020).","journal-title":"Nat. Commun."},{"key":"677_CR181","doi-asserted-by":"publisher","first-page":"216","DOI":"10.1126\/science.abf8403","volume":"374","author":"N Pernigoni","year":"2021","unstructured":"Pernigoni, N. et al. Commensal bacteria promote endocrine resistance in prostate cancer through androgen biosynthesis. Science 374, 216\u2013224 (2021).","journal-title":"Science"},{"key":"677_CR182","doi-asserted-by":"publisher","DOI":"10.1136\/jitc-2021-004191","volume":"10","author":"S Terrisse","year":"2022","unstructured":"Terrisse, S. et al. Immune system and intestinal microbiota determine efficacy of androgen deprivation therapy against prostate cancer. J. Immunother. Cancer 10, e004191 (2022).","journal-title":"J. Immunother. Cancer"},{"key":"677_CR183","doi-asserted-by":"publisher","first-page":"FSO190","DOI":"10.4155\/fsoa-2017-0003","volume":"3","author":"TG Meijer","year":"2017","unstructured":"Meijer, T. G., Naipal, K. A., Jager, A. & van Gent, D. C. Ex vivo tumor culture systems for functional drug testing and therapy response prediction. Future Sci. OA 3, FSO190 (2017).","journal-title":"Future Sci. OA"},{"key":"677_CR184","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-021-26771-1","volume":"12","author":"H Contreras-Trujillo","year":"2021","unstructured":"Contreras-Trujillo, H. et al. Deciphering intratumoral heterogeneity using integrated clonal tracking and single-cell transcriptome analyses. Nat. Commun. 12, 6522 (2021).","journal-title":"Nat. Commun."},{"key":"677_CR185","doi-asserted-by":"publisher","first-page":"2569","DOI":"10.3390\/ijms23052569","volume":"23","author":"G von Amsberg","year":"2022","unstructured":"von Amsberg, G. et al. Immunotherapy in advanced prostate cancer-light at the end of the tunnel? Int. J. Mol. Sci. 23, 2569 (2022).","journal-title":"Int. J. Mol. Sci."},{"key":"677_CR186","doi-asserted-by":"publisher","first-page":"391","DOI":"10.1038\/s41585-019-0193-3","volume":"16","author":"SL Goldenberg","year":"2019","unstructured":"Goldenberg, S. L., Nir, G. & Salcudean, S. E. A new era: artificial intelligence and machine learning in prostate cancer. Nat. Rev. Urol. 16, 391\u2013403 (2019).","journal-title":"Nat. Rev. Urol."},{"key":"677_CR187","doi-asserted-by":"publisher","first-page":"916","DOI":"10.1016\/j.ccell.2021.04.002","volume":"39","author":"BH Kann","year":"2021","unstructured":"Kann, B. H., Hosny, A. & Aerts, H. Artificial intelligence for clinical oncology. Cancer Cell 39, 916\u2013927 (2021).","journal-title":"Cancer Cell"},{"key":"677_CR188","doi-asserted-by":"publisher","first-page":"1315","DOI":"10.1007\/s11030-021-10217-3","volume":"25","author":"R Gupta","year":"2021","unstructured":"Gupta, R. et al. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol. Divers. 25, 1315\u20131360 (2021).","journal-title":"Mol. Divers."},{"key":"677_CR189","first-page":"133","volume":"61","author":"DD Mickey","year":"1977","unstructured":"Mickey, D. D., Stone, K. R., Stone, M. P. & Paulson, D. F. Morphologic and immunologic studies of human prostatic carcinoma. Cancer Treat. Rep. 61, 133\u2013138 (1977).","journal-title":"Cancer Treat. Rep."},{"key":"677_CR190","doi-asserted-by":"publisher","first-page":"768","DOI":"10.1016\/S0022-5347(17)57628-4","volume":"119","author":"RD Williams","year":"1978","unstructured":"Williams, R. D. et al. Biochemical markers of cultured human prostatic epithelium. J. Urol. 119, 768\u2013771 (1978).","journal-title":"J. Urol."},{"key":"677_CR191","first-page":"359","volume":"17","author":"RD Williams","year":"1980","unstructured":"Williams, R. D. Human urologic cancer cell lines. Invest. Urol. 17, 359\u2013363 (1980).","journal-title":"Invest. Urol."},{"key":"677_CR192","first-page":"1809","volume":"43","author":"JS Horoszewicz","year":"1983","unstructured":"Horoszewicz, J. S. et al. LNCaP model of human prostatic carcinoma. Cancer Res. 43, 1809\u20131818 (1983).","journal-title":"Cancer Res."},{"key":"677_CR193","doi-asserted-by":"publisher","first-page":"227","DOI":"10.1111\/j.1399-0039.1983.tb00162.x","volume":"21","author":"FH Claas","year":"1983","unstructured":"Claas, F. H. & van Steenbrugge, G. J. Expression of HLA-like structures on a permanent human tumor line PC-93. Tissue Antigens 21, 227\u2013232 (1983).","journal-title":"Tissue Antigens"},{"key":"677_CR194","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1002\/pros.2990120112","volume":"12","author":"JC Romijn","year":"1988","unstructured":"Romijn, J. C., Verkoelen, C. F. & Schroeder, F. H. Application of the MTT assay to human prostate cancer cell lines in vitro: establishment of test conditions and assessment of hormone-stimulated growth and drug-induced cytostatic and cytotoxic effects. Prostate 12, 99\u2013110 (1988).","journal-title":"Prostate"},{"key":"677_CR195","first-page":"2913","volume":"45","author":"DN Carney","year":"1985","unstructured":"Carney, D. N. et al. Establishment and identification of small cell lung cancer cell lines having classic and variant features. Cancer Res. 45, 2913\u20132923 (1985).","journal-title":"Cancer Res."},{"key":"677_CR196","doi-asserted-by":"publisher","first-page":"1223","DOI":"10.1093\/jnci\/81.16.1223","volume":"81","author":"BE Johnson","year":"1989","unstructured":"Johnson, B. E. et al. Retention of chromosome 3 in extrapulmonary small cell cancer shown by molecular and cytogenetic studies. J. Natl Cancer Inst. 81, 1223\u20131228 (1989).","journal-title":"J. Natl Cancer Inst."},{"key":"677_CR197","doi-asserted-by":"publisher","first-page":"915","DOI":"10.1016\/S0022-5347(17)37960-0","volume":"146","author":"JR Gingrich","year":"1991","unstructured":"Gingrich, J. R. et al. Establishment and characterization of a new human prostatic carcinoma cell line (DuPro-1). J. Urol. 146, 915\u2013919 (1991).","journal-title":"J. Urol."},{"key":"677_CR198","doi-asserted-by":"publisher","first-page":"833","DOI":"10.1016\/0960-0760(91)90309-S","volume":"40","author":"SR Plymate","year":"1991","unstructured":"Plymate, S. R. et al. Effects of sex hormone binding globulin (SHBG) on human prostatic carcinoma. J. Steroid Biochem. Mol. Biol. 40, 833\u2013839 (1991).","journal-title":"J. Steroid Biochem. Mol. Biol."},{"key":"677_CR199","doi-asserted-by":"publisher","first-page":"18","DOI":"10.1002\/(SICI)1098-2744(199601)15:1<18::AID-MC4>3.0.CO;2-O","volume":"15","author":"PP Mehta","year":"1996","unstructured":"Mehta, P. P. et al. Gap-junctional communication in normal and neoplastic prostate epithelial cells and its regulation by cAMP. Mol. Carcinog. 15, 18\u201332 (1996).","journal-title":"Mol. Carcinog."},{"key":"677_CR200","doi-asserted-by":"publisher","first-page":"221","DOI":"10.1002\/ijc.21201","volume":"117","author":"RB Marques","year":"2005","unstructured":"Marques, R. B. et al. Androgen receptor modifications in prostate cancer cells upon long-term androgen ablation and antiandrogen treatment. Int. J. Cancer 117, 221\u2013229 (2005).","journal-title":"Int. J. Cancer"},{"key":"677_CR201","doi-asserted-by":"publisher","first-page":"15152","DOI":"10.1073\/pnas.93.26.15152","volume":"93","author":"HY Zhau","year":"1996","unstructured":"Zhau, H. Y. et al. Androgen-repressed phenotype in human prostate cancer. Proc. Natl Acad. Sci. USA 93, 15152\u201315157 (1996).","journal-title":"Proc. Natl Acad. Sci. USA"},{"key":"677_CR202","doi-asserted-by":"publisher","first-page":"402","DOI":"10.1038\/nm0497-402","volume":"3","author":"KA Klein","year":"1997","unstructured":"Klein, K. A. et al. Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice. Nat. Med. 3, 402\u2013408 (1997).","journal-title":"Nat. Med."},{"key":"677_CR203","first-page":"2493","volume":"3","author":"NM Navone","year":"1997","unstructured":"Navone, N. M. et al. Establishment of two human prostate cancer cell lines derived from a single bone metastasis. Clin. Cancer Res. 3, 2493\u20132500 (1997).","journal-title":"Clin. Cancer Res."},{"key":"677_CR204","first-page":"1190","volume":"6","author":"NM Navone","year":"2000","unstructured":"Navone, N. M. et al. TabBO: a model reflecting common molecular features of androgen-independent prostate cancer. Clin. Cancer Res. 6, 1190\u20131197 (2000).","journal-title":"Clin. Cancer Res."},{"key":"677_CR205","doi-asserted-by":"publisher","first-page":"394","DOI":"10.1093\/jnci\/85.5.394","volume":"85","author":"TG Pretlow","year":"1993","unstructured":"Pretlow, T. G. et al. Xenografts of primary human prostatic carcinoma. J. Natl Cancer Inst. 85, 394\u2013398 (1993).","journal-title":"J. Natl Cancer Inst."},{"key":"677_CR206","first-page":"6049","volume":"54","author":"MA Wainstein","year":"1994","unstructured":"Wainstein, M. A. et al. CWR22: androgen-dependent xenograft model derived from a primary human prostatic carcinoma. Cancer Res. 54, 6049\u20136052 (1994).","journal-title":"Cancer Res."},{"key":"677_CR207","doi-asserted-by":"publisher","first-page":"403","DOI":"10.1007\/s11626-999-0115-4","volume":"35","author":"RM Sramkoski","year":"1999","unstructured":"Sramkoski, R. M. et al. A new human prostate carcinoma cell line, 22Rv1. Vitr. Cell Dev. Biol. Anim. 35, 403\u2013409 (1999).","journal-title":"Vitr. Cell Dev. Biol. Anim."},{"key":"677_CR208","first-page":"2892","volume":"61","author":"CW Gregory","year":"2001","unstructured":"Gregory, C. W., Johnson, R. T. Jr, Mohler, J. L., French, F. S. & Wilson, E. M. Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen. Cancer Res. 61, 2892\u20132898 (2001).","journal-title":"Cancer Res."},{"key":"677_CR209","doi-asserted-by":"publisher","first-page":"406","DOI":"10.1002\/ijc.2910570319","volume":"57","author":"HC Wu","year":"1994","unstructured":"Wu, H. C. et al. Derivation of androgen-independent human LNCaP prostatic cancer cell sublines: role of bone stromal cells. Int. J. Cancer 57, 406\u2013412 (1994).","journal-title":"Int. J. Cancer"},{"key":"677_CR210","doi-asserted-by":"publisher","first-page":"93","DOI":"10.1002\/pros.2990220202","volume":"22","author":"SM Loop","year":"1993","unstructured":"Loop, S. M., Rozanski, T. A. & Ostenson, R. C. Human primary prostate tumor cell line, ALVA-31: a new model for studying the hormonal regulation of prostate tumor cell growth. Prostate 22, 93\u2013108 (1993).","journal-title":"Prostate"},{"key":"677_CR211","doi-asserted-by":"publisher","first-page":"586","DOI":"10.1016\/0039-128X(94)90052-3","volume":"59","author":"AM Nakhla","year":"1994","unstructured":"Nakhla, A. M. & Rosner, W. Characterization of ALVA-41 cells, a new human prostatic cancer cell line. Steroids 59, 586\u2013589 (1994).","journal-title":"Steroids"},{"key":"677_CR212","doi-asserted-by":"publisher","first-page":"898","DOI":"10.1002\/ijc.2910440525","volume":"44","author":"AR Brothman","year":"1989","unstructured":"Brothman, A. R., Lesho, L. J., Somers, K. D., Wright, G. L. Jr & Merchant, D. J. Phenotypic and cytogenetic characterization of a cell line derived from primary prostatic carcinoma. Int. J. Cancer 44, 898\u2013903 (1989).","journal-title":"Int. J. Cancer"},{"key":"677_CR213","doi-asserted-by":"publisher","first-page":"721","DOI":"10.1002\/ijc.2910580517","volume":"58","author":"VL Bae","year":"1994","unstructured":"Bae, V. L., Jackson-Cook, C. K., Brothman, A. R., Maygarden, S. J. & Ware, J. L. Tumorigenicity of SV40 T antigen immortalized human prostate epithelial cells: association with decreased epidermal growth factor receptor (EGFR) expression. Int. J. Cancer 58, 721\u2013729 (1994).","journal-title":"Int. J. Cancer"},{"key":"677_CR214","doi-asserted-by":"publisher","first-page":"1215","DOI":"10.1093\/carcin\/18.6.1215","volume":"18","author":"D Bello","year":"1997","unstructured":"Bello, D., Webber, M. M., Kleinman, H. K., Wartinger, D. D. & Rhim, J. S. Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18. Carcinogenesis 18, 1215\u20131223 (1997).","journal-title":"Carcinogenesis"},{"key":"677_CR215","doi-asserted-by":"publisher","first-page":"11874","DOI":"10.1073\/pnas.91.25.11874","volume":"91","author":"JS Rhim","year":"1994","unstructured":"Rhim, J. S. et al. Stepwise immortalization and transformation of adult human prostate epithelial cells by a combination of HPV-18 and v-Ki-ras. Proc. Natl Acad. Sci. USA 91, 11874\u201311878 (1994).","journal-title":"Proc. Natl Acad. Sci. USA"},{"key":"677_CR216","doi-asserted-by":"publisher","first-page":"1641","DOI":"10.1093\/carcin\/17.8.1641","volume":"17","author":"MM Webber","year":"1996","unstructured":"Webber, M. M. et al. Prostate specific antigen and androgen receptor induction and characterization of an immortalized adult human prostatic epithelial cell line. Carcinogenesis 17, 1641\u20131646 (1996).","journal-title":"Carcinogenesis"},{"key":"677_CR217","doi-asserted-by":"publisher","first-page":"1185","DOI":"10.1093\/carcin\/20.7.1185","volume":"20","author":"MM Webber","year":"1999","unstructured":"Webber, M. M. et al. A human prostatic stromal myofibroblast cell line WPMY-1: a model for stromal-epithelial interactions in prostatic neoplasia. Carcinogenesis 20, 1185\u20131192 (1999).","journal-title":"Carcinogenesis"},{"key":"677_CR218","doi-asserted-by":"publisher","first-page":"141","DOI":"10.1002\/pros.20053","volume":"60","author":"S Koochekpour","year":"2004","unstructured":"Koochekpour, S. et al. Establishment and characterization of a primary androgen-responsive African-American prostate cancer cell line, E006AA. Prostate 60, 141\u2013152 (2004).","journal-title":"Prostate"},{"key":"677_CR219","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0003368","volume":"3","author":"XS Ke","year":"2008","unstructured":"Ke, X. S. et al. Epithelial to mesenchymal transition of a primary prostate cell line with switches of cell adhesion modules but without malignant transformation. PLoS ONE\u00a03, e3368 (2008).","journal-title":"PLoS ONE"},{"key":"677_CR220","first-page":"1477","volume":"37","author":"S Theodore","year":"2010","unstructured":"Theodore, S. et al. Establishment and characterization of a pair of non-malignant and malignant tumor derived cell lines from an African American prostate cancer patient. Int. J. Oncol. 37, 1477\u20131482 (2010).","journal-title":"Int. J. Oncol."},{"key":"677_CR221","doi-asserted-by":"publisher","first-page":"529","DOI":"10.1158\/1541-7786.MCR-09-0443","volume":"8","author":"J Szczyrba","year":"2010","unstructured":"Szczyrba, J. et al. The microRNA profile of prostate carcinoma obtained by deep sequencing. Mol. Cancer Res. 8, 529\u2013538 (2010).","journal-title":"Mol. Cancer Res."},{"key":"677_CR222","doi-asserted-by":"publisher","first-page":"559","DOI":"10.1016\/j.ccr.2007.11.004","volume":"12","author":"VD Acevedo","year":"2007","unstructured":"Acevedo, V. D. et al. Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition. Cancer Cell 12, 559\u2013571 (2007).","journal-title":"Cancer Cell"},{"key":"677_CR223","doi-asserted-by":"publisher","first-page":"966","DOI":"10.1101\/gad.13.8.966","volume":"13","author":"R Bhatia-Gaur","year":"1999","unstructured":"Bhatia-Gaur, R. et al. Roles for Nkx3.1 in prostate development and cancer. Genes Dev. 13, 966\u2013977 (1999).","journal-title":"Genes Dev."},{"key":"677_CR224","doi-asserted-by":"publisher","first-page":"252ra122","DOI":"10.1126\/scitranslmed.3009332","volume":"6","author":"X Wan","year":"2014","unstructured":"Wan, X. et al. Prostate cancer cell-stromal cell crosstalk via FGFR1 mediates antitumor activity of dovitinib in bone metastases. Sci. Transl. Med. 6, 252ra122 (2014).","journal-title":"Sci. Transl. Med."},{"key":"677_CR225","doi-asserted-by":"publisher","first-page":"365.e315","DOI":"10.1016\/j.urolonc.2018.05.020","volume":"36","author":"C Pecqueux","year":"2018","unstructured":"Pecqueux, C. et al. FGF-2 is a driving force for chromosomal instability and a stromal factor associated with adverse clinico-pathological features in prostate cancer. Urol. Oncol. 36, 365.e315\u2013365.e326 (2018).","journal-title":"Urol. Oncol."},{"key":"677_CR226","doi-asserted-by":"publisher","first-page":"611","DOI":"10.1002\/ijc.26064","volume":"130","author":"S Wach","year":"2012","unstructured":"Wach, S. et al. MicroRNA profiles of prostate carcinoma detected by multiplatform microRNA screening. Int. J. Cancer 130, 611\u2013621 (2012).","journal-title":"Int. J. Cancer"},{"key":"677_CR227","doi-asserted-by":"publisher","first-page":"272","DOI":"10.1016\/j.omtn.2019.02.020","volume":"16","author":"S Wach","year":"2019","unstructured":"Wach, S. et al. Exploring the MIR143-UPAR axis for the inhibition of human prostate cancer cells in vitro and in vivo. Mol. Ther. Nucleic Acids 16, 272\u2013283 (2019).","journal-title":"Mol. Ther. Nucleic Acids"},{"key":"677_CR228","doi-asserted-by":"publisher","first-page":"713","DOI":"10.1038\/bjc.2017.447","volume":"118","author":"UL McClurg","year":"2018","unstructured":"McClurg, U. L. et al. Human ex vivo prostate tissue model system identifies ING3 as an oncoprotein. Br. J. Cancer 118, 713\u2013726 (2018).","journal-title":"Br. J. Cancer"},{"key":"677_CR229","doi-asserted-by":"publisher","first-page":"206","DOI":"10.1007\/s13346-016-0306-y","volume":"7","author":"A Ewe","year":"2017","unstructured":"Ewe, A. et al. Optimized polyethylenimine (PEI)-based nanoparticles for siRNA delivery, analyzed in vitro and in an ex vivo tumor tissue slice culture model. Drug Deliv. Transl. Res. 7, 206\u2013216 (2017).","journal-title":"Drug Deliv. Transl. Res."},{"key":"677_CR230","doi-asserted-by":"publisher","first-page":"56","DOI":"10.1016\/j.ejpb.2021.02.005","volume":"161","author":"M Karimov","year":"2021","unstructured":"Karimov, M., Appelhans, D., Ewe, A. & Aigner, A. The combined disulfide cross-linking and tyrosine-modification of very low molecular weight linear PEI synergistically enhances transfection efficacies and improves biocompatibility. Eur. J. Pharm. Biopharm. 161, 56\u201365 (2021).","journal-title":"Eur. J. Pharm. Biopharm."},{"key":"677_CR231","doi-asserted-by":"publisher","first-page":"16","DOI":"10.1158\/0008-5472.CAN-08-2764","volume":"69","author":"R Hu","year":"2009","unstructured":"Hu, R. et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res. 69, 16\u201322 (2009).","journal-title":"Cancer Res."},{"key":"677_CR232","doi-asserted-by":"publisher","first-page":"1028","DOI":"10.1056\/NEJMoa1315815","volume":"371","author":"ES Antonarakis","year":"2014","unstructured":"Antonarakis, E. S. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371, 1028\u20131038 (2014).","journal-title":"N. Engl. J. Med."},{"key":"677_CR233","doi-asserted-by":"publisher","first-page":"1441","DOI":"10.1001\/jamaoncol.2016.1828","volume":"2","author":"HI Scher","year":"2016","unstructured":"Scher, H. I. et al. Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol. 2, 1441\u20131449 (2016).","journal-title":"JAMA Oncol."},{"key":"677_CR234","doi-asserted-by":"publisher","first-page":"1120","DOI":"10.1200\/JCO.18.01731","volume":"37","author":"AJ Armstrong","year":"2019","unstructured":"Armstrong, A. J. et al. Prospective multicenter validation of androgen receptor splice variant 7 and hormone therapy resistance in high-risk castration-resistant prostate cancer: the PROPHECY study. J. Clin. Oncol. 37, 1120\u20131129 (2019).","journal-title":"J. Clin. Oncol."},{"key":"677_CR235","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.eururo.2016.07.021","volume":"71","author":"C Bernemann","year":"2017","unstructured":"Bernemann, C. et al. Expression of AR-V7 in circulating tumour cells does not preclude response to next generation androgen deprivation therapy in patients with castration resistant prostate cancer. Eur. Urol. 71, 1\u20133 (2017).","journal-title":"Eur. Urol."},{"key":"677_CR236","doi-asserted-by":"publisher","first-page":"S378","DOI":"10.21037\/atm.2019.12.136","volume":"7","author":"C Bernemann","year":"2019","unstructured":"Bernemann, C., Krabbe, L. M. & Schrader, A. J. Considerations for AR-V7 testing in clinical routine practice. Ann. Transl. Med. 7, S378 (2019).","journal-title":"Ann. Transl. Med."},{"key":"677_CR237","doi-asserted-by":"publisher","first-page":"680","DOI":"10.1016\/j.eururo.2016.08.012","volume":"71","author":"M Del Re","year":"2017","unstructured":"Del Re, M. et al. The detection of androgen receptor splice variant 7 in plasma-derived exosomal RNA strongly predicts resistance to hormonal therapy in metastatic prostate cancer patients. Eur. Urol. 71, 680\u2013687 (2017).","journal-title":"Eur. Urol."},{"key":"677_CR238","doi-asserted-by":"publisher","first-page":"524","DOI":"10.1038\/s41391-020-00309-w","volume":"24","author":"M Del Re","year":"2021","unstructured":"Del Re, M. et al. Androgen receptor gain in circulating free DNA and splicing variant 7 in exosomes predict clinical outcome in CRPC patients treated with abiraterone and enzalutamide. Prostate Cancer Prostatic Dis. 24, 524\u2013531 (2021).","journal-title":"Prostate Cancer Prostatic Dis."},{"key":"677_CR239","doi-asserted-by":"publisher","first-page":"3223","DOI":"10.3390\/cells10113223","volume":"10","author":"V Lieb","year":"2021","unstructured":"Lieb, V. et al. Cell-free DNA variant sequencing using plasma and AR-V7 testing of circulating tumor cells in prostate cancer patients. Cells 10, 3223 (2021).","journal-title":"Cells"},{"key":"677_CR240","doi-asserted-by":"publisher","first-page":"101145","DOI":"10.1016\/j.tranon.2021.101145","volume":"14","author":"Q Li","year":"2021","unstructured":"Li, Q. et al. Clinicopathological characteristics of androgen receptor splicing variant 7 (AR-V7) expression in patients with castration resistant prostate cancer: a systematic review and meta-analysis. Transl. Oncol. 14, 101145 (2021).","journal-title":"Transl. Oncol."},{"key":"677_CR241","doi-asserted-by":"publisher","first-page":"367","DOI":"10.1038\/s41391-020-0215-5","volume":"23","author":"LC Brown","year":"2020","unstructured":"Brown, L. C., Lu, C., Antonarakis, E. S., Luo, J. & Armstrong, A. J. Androgen receptor variant-driven prostate cancer II: advances in clinical investigation. Prostate Cancer Prostatic Dis. 23, 367\u2013380 (2020).","journal-title":"Prostate Cancer Prostatic Dis."}],"container-title":["Nature Reviews Urology"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.nature.com\/articles\/s41585-022-00677-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s41585-022-00677-z","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s41585-022-00677-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,6]],"date-time":"2023-03-06T14:09:31Z","timestamp":1678111771000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.nature.com\/articles\/s41585-022-00677-z"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,11,30]]},"references-count":241,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2023,3]]}},"alternative-id":["677"],"URL":"http:\/\/dx.doi.org\/10.1038\/s41585-022-00677-z","relation":{},"ISSN":["1759-4812","1759-4820"],"issn-type":[{"value":"1759-4812","type":"print"},{"value":"1759-4820","type":"electronic"}],"subject":["Urology"],"published":{"date-parts":[[2022,11,30]]},"assertion":[{"value":"25 October 2022","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"30 November 2022","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"The authors declare no competing interests.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}]}}