{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,10,11]],"date-time":"2023-10-11T05:03:00Z","timestamp":1697000580369},"reference-count":72,"publisher":"Copernicus GmbH","issue":"17","license":[{"start":{"date-parts":[[2023,9,11]],"date-time":"2023-09-11T00:00:00Z","timestamp":1694390400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","award":["268020496 - TRR 172"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Atmos. Meas. Tech."],"abstract":"Abstract. Most Arctic clouds occur below 2\u2009km altitude, as revealed by CloudSat satellite observations. However, recent studies suggest that the\nrelatively coarse spatial resolution, low sensitivity, and blind zone of the radar installed on CloudSat may not enable it to comprehensively\ndocument low-level clouds. We investigate the impact of these limitations on the Arctic low-level cloud fraction, which is the number of cloudy\npoints with respect to all points as a function of height, derived from CloudSat radar observations. For this purpose, we leverage highly resolved\nvertical profiles of low-level cloud fraction derived from down-looking Microwave Radar\/radiometer for Arctic Clouds (MiRAC) radar reflectivity\nmeasurements. MiRAC was operated during four aircraft campaigns that took place in the vicinity of Svalbard during different times of the year,\ncovering more than 25\u2009000\u2009km. This allows us to study the dependence of CloudSat limitations on different synoptic and surface conditions. A forward simulator converts MiRAC measurements to synthetic CloudSat radar reflectivities. These forward simulations are compared with the original\nCloudSat observations for four satellite underflights to prove the suitability of our forward-simulation approach. Above CloudSat's blind zone of\n1\u2009km and below 2.5\u2009km, the forward simulations reveal that CloudSat would overestimate the MiRAC cloud fraction over all campaigns\nby about 6\u00a0percentage points (pp) due to its horizontal resolution and by 12\u2009pp due to its range resolution and underestimate it by\n10\u2009pp due to its sensitivity. Especially during cold-air outbreaks over open water, high-reflectivity clouds appear below 1.5\u2009km,\nwhich are stretched by CloudSat's pulse length causing the forward-simulated cloud fraction to be 16\u2009pp higher than that observed by\nMiRAC. The pulse length merges multilayer clouds, whereas thin low-reflectivity clouds remain undetected. Consequently, 48\u2009% of clouds observed\nby MiRAC belong to multilayer clouds, which reduces by a factor of\u00a04 for the forward-simulated CloudSat counterpart. Despite the overestimation\nbetween\u00a01 and\u00a02.5\u2009km, the overall low-level cloud fraction is strongly reduced due to CloudSat's blind zone that misses a cloud fraction of\n32\u2009% and half of the total (mainly light) precipitation amount.\n <\/jats:p>","DOI":"10.5194\/amt-16-4081-2023","type":"journal-article","created":{"date-parts":[[2023,9,11]],"date-time":"2023-09-11T08:20:55Z","timestamp":1694420455000},"page":"4081-4100","source":"Crossref","is-referenced-by-count":0,"title":["Assessing Arctic low-level clouds and precipitation from above \u2013 a radar perspective"],"prefix":"10.5194","volume":"16","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-4438-3077","authenticated-orcid":false,"given":"Imke","family":"Schirmacher","sequence":"first","affiliation":[]},{"given":"Pavlos","family":"Kollias","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8328-5704","authenticated-orcid":false,"given":"Katia","family":"Lamer","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6229-9616","authenticated-orcid":false,"given":"Mario","family":"Mech","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6396-5518","authenticated-orcid":false,"given":"Lukas","family":"Pfitzenmaier","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4652-5561","authenticated-orcid":false,"given":"Manfred","family":"Wendisch","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1251-5805","authenticated-orcid":false,"given":"Susanne","family":"Crewell","sequence":"additional","affiliation":[]}],"member":"3145","published-online":{"date-parts":[[2023,9,11]]},"reference":[{"key":"ref1","doi-asserted-by":"crossref","unstructured":"Akkermans, T., B\u00f6hme, T., Demuzere, M., Crewell, S., Selbach, C., Reinhardt, T., Seifert, A., Ament, F., and van Lipzig, N. P.\u00a0M.:\nRegime-dependent evaluation of accumulated precipitation in COSMO, Theor. Appl. Climatol., 108, 39\u201352, https:\/\/doi.org\/10.1007\/s00704-011-0502-0, 2012.\u2002a, b","DOI":"10.1007\/s00704-011-0502-0"},{"key":"ref2","doi-asserted-by":"crossref","unstructured":"Atkinson, B.\u00a0W. and Wu\u00a0Zhang, J.:\nMesoscale shallow convection in the atmosphere, Rev. Geophys., 34, 403\u2013431, https:\/\/doi.org\/10.1029\/96RG02623, 1996.\u2002a","DOI":"10.1029\/96RG02623"},{"key":"ref3","doi-asserted-by":"crossref","unstructured":"Barker, H.\u00a0W., Korolev, A.\u00a0V., Hudak, D.\u00a0R., Strapp, J.\u00a0W., Strawbridge, K.\u00a0B., and Wolde, M.:\nA comparison between CloudSat and aircraft data for a multilayer, mixed phase cloud system during the Canadian CloudSat-CALIPSO Validation Project, J.\u00a0Geophys. Res.-Atmos., 113, D00A16, https:\/\/doi.org\/10.1029\/2008JD009971, 2008.\u2002a","DOI":"10.1029\/2008JD009971"},{"key":"ref4","doi-asserted-by":"crossref","unstructured":"Blanchard, Y., Pelon, J., Eloranta, E.\u00a0W., Moran, K.\u00a0P., Delano\u00eb, J., and S\u00e8ze, G.:\nA Synergistic Analysis of Cloud Cover and Vertical Distribution from A-Train and Ground-Based Sensors over the High Arctic Station Eureka from 2006 to 2010, J.\u00a0Appl. Meteorol. Clim., 53, 2553\u20132570, https:\/\/doi.org\/10.1175\/JAMC-D-14-0021.1, 2014.\u2002a, b, c","DOI":"10.1175\/JAMC-D-14-0021.1"},{"key":"ref5","doi-asserted-by":"crossref","unstructured":"Br\u00fcmmer, B.:\nRoll and Cell Convection in Wintertime Arctic Cold-Air Outbreaks, J.\u00a0Atmos. Sci., 56, 2613\u20132636, https:\/\/doi.org\/10.1175\/1520-0469(1999)056&lt;2613:RACCIW&gt;2.0.CO;2, 1999.\u2002a","DOI":"10.1175\/1520-0469(1999)056<2613:RACCIW>2.0.CO;2"},{"key":"ref6","doi-asserted-by":"crossref","unstructured":"Burns, D., Kollias, P., Tatarevic, A., Battaglia, A., and Tanelli, S.:\nThe performance of the EarthCARE Cloud Profiling Radar in marine stratiform clouds, J.\u00a0Geophys. Res.-Atmos., 121, 14,525\u201314,537, https:\/\/doi.org\/10.1002\/2016JD025090, 2016.\u2002a","DOI":"10.1002\/2016JD025090"},{"key":"ref7","doi-asserted-by":"crossref","unstructured":"Curry, J.\u00a0A., Schramm, J.\u00a0L., Rossow, W.\u00a0B., and Randall, D.:\nOverview of Arctic Cloud and Radiation Characteristics, J.\u00a0Climate, 9, 1731\u20131764, https:\/\/doi.org\/10.1175\/1520-0442(1996)009&lt;1731:OOACAR&gt;2.0.CO;2, 1996.\u2002a","DOI":"10.1175\/1520-0442(1996)009<1731:OOACAR>2.0.CO;2"},{"key":"ref8","doi-asserted-by":"crossref","unstructured":"Edel, L., Claud, C., Genthon, C., Palerme, C., Wood, N., L'Ecuyer, T., and Bromwich, D.:\nArctic Snowfall from CloudSat Observations and Reanalyses, J.\u00a0Climate, 33, 2093\u20132109, https:\/\/doi.org\/10.1175\/JCLI-D-19-0105.1, 2020.\u2002a","DOI":"10.1175\/JCLI-D-19-0105.1"},{"key":"ref9","doi-asserted-by":"crossref","unstructured":"Ehrlich, A., Wendisch, M., L\u00fcpkes, C., Buschmann, M., Bozem, H., Chechin, D., Clemen, H.-C., Dupuy, R., Eppers, O., Hartmann, J., Herber, A., J\u00e4kel, E., J\u00e4rvinen, E., Jourdan, O., K\u00e4stner, U., Kliesch, L.-L., K\u00f6llner, F., Mech, M., Mertes, S., Neuber, R., Ruiz-Donoso, E., Schnaiter, M., Schneider, J., Stapf, J., and Zanatta, M.:\nA comprehensive in situ and remote sensing data set from the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign, Earth Syst. Sci. Data, 11, 1853\u20131881, https:\/\/doi.org\/10.5194\/essd-11-1853-2019, 2019.\u2002a, b","DOI":"10.5194\/essd-11-1853-2019"},{"key":"ref10","doi-asserted-by":"crossref","unstructured":"Etling, D. and Brown, R.\u00a0A.:\nRoll vortices in the planetary boundary layer: A review, Bound.-Lay. Meteorol., 65, 215\u2013248, https:\/\/doi.org\/10.1007\/BF00705527, 1993.\u2002a","DOI":"10.1007\/BF00705527"},{"key":"ref11","doi-asserted-by":"crossref","unstructured":"Francis, J.\u00a0A. and Hunter, E.:\nNew insight into the disappearing Arctic sea ice, Eos T. Am. Geophys. Un., 87, 509\u2013511, https:\/\/doi.org\/10.1029\/2006EO460001, 2006.\u2002a","DOI":"10.1029\/2006EO460001"},{"key":"ref12","doi-asserted-by":"crossref","unstructured":"Gayet, J.-F., Mioche, G., D\u00f6rnbrack, A., Ehrlich, A., Lampert, A., and Wendisch, M.:\nMicrophysical and optical properties of Arctic mixed-phase clouds. The 9\u00a0April 2007 case study., Atmos. Chem. Phys., 9, 6581\u20136595, https:\/\/doi.org\/10.5194\/acp-9-6581-2009, 2009.\n\u2002a, b","DOI":"10.5194\/acp-9-6581-2009"},{"key":"ref13","doi-asserted-by":"crossref","unstructured":"Gierens, R., Kneifel, S., Shupe, M. D., Ebell, K., Maturilli, M., and L\u00f6hnert, U.:\nLow-level mixed-phase clouds in a complex Arctic environment, Atmos. Chem. Phys., 20, 3459\u20133481, https:\/\/doi.org\/10.5194\/acp-20-3459-2020, 2020.\u2002a","DOI":"10.5194\/acp-20-3459-2020"},{"key":"ref14","doi-asserted-by":"crossref","unstructured":"Graversen, R.\u00a0G., Mauritsen, T., Tjernstr\u00f6m, M., K\u00e4ll\u00e9n, E., and Svensson, G.:\nVertical structure of recent Arctic warming, Nature, 451, 53\u201356, https:\/\/doi.org\/10.1038\/nature06502, 2008.\u2002a","DOI":"10.1038\/nature06502"},{"key":"ref15","doi-asserted-by":"crossref","unstructured":"Griesche, H. J., Seifert, P., Ansmann, A., Baars, H., Barrientos Velasco, C., B\u00fchl, J., Engelmann, R., Radenz, M., Zhenping, Y., and Macke, A.:\nApplication of the shipborne remote sensing supersite OCEANET for profiling of Arctic aerosols and clouds during Polarstern cruise PS106, Atmos. Meas. Tech., 13, 5335\u20135358, https:\/\/doi.org\/10.5194\/amt-13-5335-2020, 2020.\u2002a","DOI":"10.5194\/amt-13-5335-2020"},{"key":"ref16","doi-asserted-by":"crossref","unstructured":"Griesche, H. J., Ohneiser, K., Seifert, P., Radenz, M., Engelmann, R., and Ansmann, A.:\nContrasting ice formation in Arctic clouds: surface-coupled vs. surface-decoupled clouds, Atmos. Chem. Phys., 21, 10357\u201310374, https:\/\/doi.org\/10.5194\/acp-21-10357-2021, 2021.\u2002a, b, c, d","DOI":"10.5194\/acp-21-10357-2021"},{"key":"ref17","doi-asserted-by":"crossref","unstructured":"Haynes, J.\u00a0M., Marchand, R.\u00a0T., Luo, Z., Bodas-Salcedo, A., and Stephens, G.\u00a0L.:\nA Multipurpose Radar Simulation Package: QuickBeam, B.\u00a0Am. Meteorol. Soc., 88, 1723\u20131728, https:\/\/doi.org\/10.1175\/BAMS-88-11-1723, 2007.\u2002a","DOI":"10.1175\/BAMS-88-11-1723"},{"key":"ref18","doi-asserted-by":"crossref","unstructured":"Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Hor\u00e1nyi, A., Mu\u00f1oz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De\u00a0Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.\u00a0J., H\u00f3lm, E., Janiskov\u00e1, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de\u00a0Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Th\u00e9paut, J.-N.:\nThe ERA5 global reanalysis, Q.\u00a0J. Roy. Meteor. Soc., 146, 1999\u20132049, https:\/\/doi.org\/10.1002\/qj.3803, 2020.\u2002a, b","DOI":"10.1002\/qj.3803"},{"key":"ref19","doi-asserted-by":"crossref","unstructured":"Intrieri, J.\u00a0M. and Shupe, M.\u00a0D.:\nCharacteristics and Radiative Effects of Diamond Dust over the Western Arctic Ocean Region, J.\u00a0Climate, 17, 2953\u20132960, https:\/\/doi.org\/10.1175\/1520-0442(2004)017&lt;2953:CAREOD&gt;2.0.CO;2, 2004.\u2002a","DOI":"10.1175\/1520-0442(2004)017<2953:CAREOD>2.0.CO;2"},{"key":"ref20","doi-asserted-by":"crossref","unstructured":"Kay, J.\u00a0E. and L'Ecuyer, T.:\nObservational constraints on Arctic Ocean clouds and radiative fluxes during the early 21st century, J.\u00a0Geophys. Res.-Atmos., 118, 7219\u20137236, https:\/\/doi.org\/10.1002\/jgrd.50489, 2013.\u2002a","DOI":"10.1002\/jgrd.50489"},{"key":"ref21","doi-asserted-by":"crossref","unstructured":"Kneifel, S., von Lerber, A., Tiira, J., Moisseev, D., Kollias, P., and Leinonen, J.:\nObserved relations between snowfall microphysics and triple-frequency radar measurements, J.\u00a0Geophys. Res.-Atmos., 120, 6034\u20136055, https:\/\/doi.org\/10.1002\/2015JD023156, 2015.\u2002a","DOI":"10.1002\/2015JD023156"},{"key":"ref22","doi-asserted-by":"crossref","unstructured":"Knudsen, E. M., Heinold, B., Dahlke, S., Bozem, H., Crewell, S., Gorodetskaya, I. V., Heygster, G., Kunkel, D., Maturilli, M., Mech, M., Viceto, C., Rinke, A., Schmith\u00fcsen, H., Ehrlich, A., Macke, A., L\u00fcpkes, C., and Wendisch, M.:\nMeteorological conditions during the ACLOUD\/PASCAL field campaign near Svalbard in early summer 2017, Atmos. Chem. Phys., 18, 17995\u201318022, https:\/\/doi.org\/10.5194\/acp-18-17995-2018, 2018.\u2002a","DOI":"10.5194\/acp-18-17995-2018"},{"key":"ref23","doi-asserted-by":"crossref","unstructured":"Kolstad, E.\u00a0W.:\nHigher ocean wind speeds during marine cold air outbreaks, Q.\u00a0J. Roy. Meteor. Soc., 143, 2084\u20132092, https:\/\/doi.org\/10.1002\/qj.3068, 2017.\u2002a","DOI":"10.1002\/qj.3068"},{"key":"ref24","doi-asserted-by":"crossref","unstructured":"Kulie, M.\u00a0S. and Bennartz, R.:\nUtilizing Spaceborne Radars to Retrieve Dry Snowfall, J.\u00a0Appl. Meteorol. Clim., 48, 2564\u20132580, https:\/\/doi.org\/10.1175\/2009JAMC2193.1, 2009.\u2002a","DOI":"10.1175\/2009JAMC2193.1"},{"key":"ref25","doi-asserted-by":"crossref","unstructured":"Kulie, M.\u00a0S. and Milani, L.:\nSeasonal variability of shallow cumuliform snowfall: A CloudSat perspective, Q.\u00a0J. Roy. Meteor. Soc., 144, 329\u2013343, https:\/\/doi.org\/10.1002\/qj.3222, 2018.\u2002a","DOI":"10.1002\/qj.3222"},{"key":"ref26","doi-asserted-by":"crossref","unstructured":"Kulie, M.\u00a0S., Milani, L., Wood, N.\u00a0B., Tushaus, S.\u00a0A., Bennartz, R., and L'Ecuyer, T.\u00a0S.:\nA Shallow Cumuliform Snowfall Census Using Spaceborne Radar, J.\u00a0Hydrometeorol., 17, 1261\u20131279, https:\/\/doi.org\/10.1175\/JHM-D-15-0123.1, 2016.\u2002a","DOI":"10.1175\/JHM-D-15-0123.1"},{"key":"ref27","unstructured":"Kulla, B.\u00a0S., Mech, M., Risse, N., and Ritter, C.:\nCloud top altitude retrieved from Lidar measurements during ACLOUD at 1\u00a0second resolution, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.932454, 2021a.\u2002a, b"},{"key":"ref28","unstructured":"Kulla, B.\u00a0S., Mech, M., Risse, N., and Ritter, C.:\nCloud top altitude retrieved from Lidar measurements during AFLUX at 1\u00a0second resolution, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.932455, 2021b.\u2002a, b"},{"key":"ref29","doi-asserted-by":"crossref","unstructured":"Lamer, K., Kollias, P., Battaglia, A., and Preval, S.:\nMind the gap\u00a0\u2013 Part\u00a01: Accurately locating warm marine boundary layer clouds and precipitation using spaceborne radars, Atmos. Meas. Tech., 13, 2363\u20132379, https:\/\/doi.org\/10.5194\/amt-13-2363-2020, 2020.\u2002a, b, c, d, e, f, g, h, i, j, k","DOI":"10.5194\/amt-13-2363-2020"},{"key":"ref30","doi-asserted-by":"crossref","unstructured":"Li, J., Yi, Y., Minnis, P., Huang, J., Yan, H., Ma, Y., Wang, W., and Ayers, J.\u00a0K.:\nRadiative effect differences between multi-layered and single-layer clouds derived from CERES, CALIPSO, and CloudSat data, J.\u00a0Quant. Spectrosc. Ra., 112, 361\u2013375, 2011.\u2002a","DOI":"10.1016\/j.jqsrt.2010.10.006"},{"key":"ref31","doi-asserted-by":"crossref","unstructured":"Liu, G.:\nDeriving snow cloud characteristics from CloudSat observations, J.\u00a0Geophys. Res.-Atmos., 113, D00A09, https:\/\/doi.org\/10.1029\/2007JD009766, 2008.\u2002a","DOI":"10.1029\/2007JD009766"},{"key":"ref32","doi-asserted-by":"crossref","unstructured":"Liu, Y.:\nImpacts of active satellite sensors' low-level cloud detection limitations on cloud radiative forcing in the Arctic, Atmos. Chem. Phys., 22, 8151\u20138173, https:\/\/doi.org\/10.5194\/acp-22-8151-2022, 2022.\u2002a, b","DOI":"10.5194\/acp-22-8151-2022"},{"key":"ref33","doi-asserted-by":"crossref","unstructured":"Liu, Y., Key, J.\u00a0R., Ackerman, S.\u00a0A., Mace, G.\u00a0G., and Zhang, Q.:\nArctic cloud macrophysical characteristics from CloudSat and CALIPSO, Remote Sens. Environ., 124, 159\u2013173, https:\/\/doi.org\/10.1016\/j.rse.2012.05.006, 2012.\u2002a, b, c","DOI":"10.1016\/j.rse.2012.05.006"},{"key":"ref34","doi-asserted-by":"crossref","unstructured":"Liu, Y., Shupe, M. D., Wang, Z., and Mace, G.:\nCloud vertical distribution from combined surface and space radar\u2013lidar observations at two Arctic atmospheric observatories, Atmos. Chem. Phys., 17, 5973\u20135989, https:\/\/doi.org\/10.5194\/acp-17-5973-2017, 2017.\u2002a","DOI":"10.5194\/acp-17-5973-2017"},{"key":"ref35","doi-asserted-by":"crossref","unstructured":"Lubin, D. and Vogelmann, A.\u00a0M.:\nA climatologically significant aerosol longwave indirect effect in the Arctic, Nature, 439, 453\u2013456, https:\/\/doi.org\/10.1038\/nature04449, 2006.\u2002a","DOI":"10.1038\/nature04449"},{"key":"ref36","doi-asserted-by":"crossref","unstructured":"Maahn, M., Burgard, C., Crewell, S., Gorodetskaya, I.\u00a0V., Kneifel, S., Lhermitte, S., Van\u00a0Tricht, K., and van Lipzig, N. P.\u00a0M.:\nHow does the spaceborne radar blind zone affect derived surface snowfall statistics in polar regions?, J.\u00a0Geophys. Res.-Atmos., 119, 13604\u201313620, https:\/\/doi.org\/10.1002\/2014JD022079, 2014.\u2002a, b, c, d, e, f, g, h, i","DOI":"10.1002\/2014JD022079"},{"key":"ref37","unstructured":"Marchand, R.: Level 2 GEOPROF Product Process Description and Interface Control Document, Product Version P1_R05, NASA JPL CloudSat project, document revision 0, 27\u00a0pp., https:\/\/www.cloudsat.cira.colostate.edu\/cloudsat-static\/info\/dl\/2b-geoprof\/2B-GEOPROF_PDICD.P1_R05.rev0__0.pdf\n(last access: 6\u00a0July 2022), 2018.\u2002a, b, c, d"},{"key":"ref38","doi-asserted-by":"crossref","unstructured":"McCrystall, M.\u00a0R., Stroeve, J., Serreze, M., Forbes, B.\u00a0C., and Screen, J.\u00a0A.:\nNew climate models reveal faster and larger increases in Arctic precipitation than previously projected, Nat. Commun., 12, 6765, https:\/\/doi.org\/10.1038\/s41467-021-27031-y, 2021.\u2002a, b","DOI":"10.1038\/s41467-021-27031-y"},{"key":"ref39","doi-asserted-by":"crossref","unstructured":"Mech, M., Kliesch, L.-L., Anh\u00e4user, A., Rose, T., Kollias, P., and Crewell, S.:\nMicrowave Radar\/radiometer for Arctic Clouds (MiRAC): first insights from the ACLOUD campaign, Atmos. Meas. Tech., 12, 5019\u20135037, https:\/\/doi.org\/10.5194\/amt-12-5019-2019, 2019.\u2002a, b, c, d, e","DOI":"10.5194\/amt-12-5019-2019"},{"key":"ref40","unstructured":"Mech, M., Risse, N., Marrollo, G., and Paul, D.: Ac3airborne, Zenodo [code], https:\/\/doi.org\/10.5281\/zenodo.7305585, 2022a.\u2002a, b"},{"key":"ref41","doi-asserted-by":"crossref","unstructured":"Mech, M., Ehrlich, A., Herber, A., L\u00fcpkes, C., Wendisch, M., Becker, S., Boose, Y., Chechin, D., Crewell, S., Dupuy, R., Gourbeyre, C., Hartmann, J., J\u00e4kel, E., Jourdan, O., Kliesch, L.-L., Klingebiel, M., Kulla, B.\u00a0S., Mioche, G., Moser, M., Risse, N., Ruiz-Donoso, E., Sch\u00e4fer, M., Stapf, J., and Voigt, C.:\nMOSAiC-ACA and AFLUX \u2013 Arctic airborne campaigns characterizing the exit area of MOSAiC, Scientific Data, 9, 790, https:\/\/doi.org\/10.1038\/s41597-022-01900-7, 2022b.\u2002a, b","DOI":"10.1038\/s41597-022-01900-7"},{"key":"ref42","unstructured":"Mech, M., Risse, N., Crewell, S., and Kliesch, L.-L.: Radar reflectivities at 94\u2009GHz and microwave brightness temperature measurements at 89\u2009GHz during the ACLOUD Arctic airborne campaign in early summer 2017 out of Svalbard, PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.945988, 2022c.\u2002a, b, c"},{"key":"ref43","unstructured":"Melsheimer, C. and Spreen, G.:\nAMSR2 ASI sea ice concentration data, Arctic, version 5.4 (NetCDF) (July 2012\u2013December 2019), PANGAEA [data set], https:\/\/doi.org\/10.1594\/PANGAEA.898399, 2019.\u2002a"},{"key":"ref44","doi-asserted-by":"crossref","unstructured":"Mioche, G., Jourdan, O., Ceccaldi, M., and Delano\u00eb, J.:\nVariability of mixed-phase clouds in the Arctic with a focus on the Svalbard region: a study based on spaceborne active remote sensing, Atmos. Chem. Phys., 15, 2445\u20132461, https:\/\/doi.org\/10.5194\/acp-15-2445-2015, 2015.\u2002a, b, c, d, e, f, g","DOI":"10.5194\/acp-15-2445-2015"},{"key":"ref45","doi-asserted-by":"crossref","unstructured":"Morrison, A.\u00a0L., Kay, J.\u00a0E., Frey, W.\u00a0R., Chepfer, H., and Guzman, R.:\nCloud Response to Arctic Sea Ice Loss and Implications for Future Feedback in the CESM1 Climate Model, J.\u00a0Geophys. Res.-Atmos., 124, 1003\u20131020, https:\/\/doi.org\/10.1029\/2018JD029142, 2019.\u2002a","DOI":"10.1029\/2018JD029142"},{"key":"ref46","doi-asserted-by":"crossref","unstructured":"Painemal, D., Clayton, M., Ferrare, R., Burton, S., Josset, D., and Vaughan, M.:\nNovel aerosol extinction coefficients and lidar ratios over the ocean from CALIPSO\u2013CloudSat: evaluation and global statistics, Atmos. Meas. Tech., 12, 2201\u20132217, https:\/\/doi.org\/10.5194\/amt-12-2201-2019, 2019.\u2002a","DOI":"10.5194\/amt-12-2201-2019"},{"key":"ref47","doi-asserted-by":"crossref","unstructured":"Palerme, C., Kay, J. E., Genthon, C., L'Ecuyer, T., Wood, N. B., and Claud, C.:\nHow much snow falls on the Antarctic ice sheet?, The Cryosphere, 8, 1577\u20131587, https:\/\/doi.org\/10.5194\/tc-8-1577-2014, 2014.\u2002a","DOI":"10.5194\/tc-8-1577-2014"},{"key":"ref48","doi-asserted-by":"crossref","unstructured":"Palerme, C., Claud, C., Wood, N.\u00a0B., L'Ecuyer, T., and Genthon, C.:\nHow Does Ground Clutter Affect CloudSat Snowfall Retrievals Over Ice Sheets?, IEEE Geosci. Remote\u00a0S., 16, 342\u2013346, https:\/\/doi.org\/10.1109\/LGRS.2018.2875007, 2019.\u2002a","DOI":"10.1109\/LGRS.2018.2875007"},{"key":"ref49","doi-asserted-by":"crossref","unstructured":"Papritz, L., Pfahl, S., Sodemann, H., and Wernli, H.:\nA Climatology of Cold Air Outbreaks and Their Impact on Air\u2013Sea Heat Fluxes in the High-Latitude South Pacific, J.\u00a0Climate, 28, 342\u2013364, https:\/\/doi.org\/10.1175\/JCLI-D-14-00482.1, 2015.\u2002a, b","DOI":"10.1175\/JCLI-D-14-00482.1"},{"key":"ref50","doi-asserted-by":"crossref","unstructured":"Philipp, A., Beck, C., Huth, R., and Jacobeit, J.:\nDevelopment and comparison of circulation type classifications using the COST 733 dataset and software, Int. J. Climatol., 36, 2673\u20132691, https:\/\/doi.org\/10.1002\/joc.3920, 2016.\u2002a","DOI":"10.1002\/joc.3920"},{"key":"ref51","doi-asserted-by":"crossref","unstructured":"Protat, A., Bouniol, D., Delano\u00eb, J., O'Connor, E., May, P.\u00a0T., Plana-Fattori, A., Hasson, A., G\u00f6rsdorf, U., and Heymsfield, A.\u00a0J.:\nAssessment of Cloudsat Reflectivity Measurements and Ice Cloud Properties Using Ground-Based and Airborne Cloud Radar Observations, J.\u00a0Atmos. Ocean. Tech., 26, 1717\u20131741, https:\/\/doi.org\/10.1175\/2009JTECHA1246.1, 2009.\u2002a, b, c","DOI":"10.1175\/2009JTECHA1246.1"},{"key":"ref52","doi-asserted-by":"crossref","unstructured":"Protat, A., Bouniol, D., O'Connor, E.\u00a0J., Baltink, H.\u00a0K., Verlinde, J., and Widener, K.:\nCloudSat as a Global Radar Calibrator, J.\u00a0Atmos. Ocean. Tech., 28, 445\u2013452, https:\/\/doi.org\/10.1175\/2010JTECHA1443.1, 2011.\u2002a","DOI":"10.1175\/2010JTECHA1443.1"},{"key":"ref53","unstructured":"Risse, N., Marrollo, G., Paul, D., and Mech, M.:\nAc3airborne\u00a0\u2013 Flight-Phase-Separation, Zenodo [code], https:\/\/doi.org\/10.5281\/zenodo.7305558, 2022.\u2002a"},{"key":"ref54","doi-asserted-by":"crossref","unstructured":"Serreze, M.\u00a0C. and Barry, R.\u00a0G.:\nProcesses and impacts of Arctic amplification: A research synthesis, Global Planet. Change, 77, 85\u201396, https:\/\/doi.org\/10.1016\/j.gloplacha.2011.03.004, 2011.\u2002a","DOI":"10.1016\/j.gloplacha.2011.03.004"},{"key":"ref55","doi-asserted-by":"crossref","unstructured":"Shupe, M.\u00a0D. and Intrieri, J.\u00a0M.:\nCloud Radiative Forcing of the Arctic Surface: The Influence of Cloud Properties, Surface Albedo, and Solar Zenith Angle, J.\u00a0Climate, 17, 616\u2013628, https:\/\/doi.org\/10.1175\/1520-0442(2004)017&lt;0616:CRFOTA&gt;2.0.CO;2, 2004.\u2002a","DOI":"10.1175\/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2"},{"key":"ref56","doi-asserted-by":"crossref","unstructured":"Shupe, M.\u00a0D., Matrosov, S.\u00a0Y., and Uttal, T.:\nArctic Mixed-Phase Cloud Properties Derived from Surface-Based Sensors at SHEBA, J.\u00a0Atmos. Sci., 63, 697\u2013711, https:\/\/doi.org\/10.1175\/JAS3659.1, 2006.\u2002a","DOI":"10.1175\/JAS3659.1"},{"key":"ref57","doi-asserted-by":"crossref","unstructured":"Shupe, M.\u00a0D., Rex, M., Blomquist, B., Persson, P. O.\u00a0G., Schmale, J., Uttal, T., Althausen, D., Angot, H., Archer, S., Bariteau, L., Beck, I., Bilberry, J., Bucci, S., Buck, C., Boyer, M., Brasseur, Z., Brooks, I.\u00a0M., Calmer, R., Cassano, J., Castro, V., Chu, D., Costa, D., Cox, C.\u00a0J., Creamean, J., Crewell, S., Dahlke, S., Damm, E., de Boer, G., Deckelmann, H., Dethloff, K., D\u00fctsch, M., Ebell, K., Ehrlich, A., Ellis, J., Engelmann, R., Fong, A.\u00a0A., Frey, M.\u00a0M., Gallagher, M.\u00a0R., Ganzeveld, L., Gradinger, R., Graeser, J., Greenamyer, V., Griesche, H., Griffiths, S., Hamilton, J., Heinemann, G., Helmig, D., Herber, A., Heuz\u00e9, C., Hofer, J., Houchens, T., Howard, D., Inoue, J., Jacobi, H.-W., Jaiser, R., Jokinen, T., Jourdan, O., Jozef, G., King, W., Kirchgaessner, A., Klingebiel, M., Krassovski, M., Krumpen, T., Lampert, A., Landing, W., Laurila, T., Lawrence, D., Lonardi, M., Loose, B., L\u00fcpkes, C., Maahn, M., Macke, A., Maslowski, W., Marsay, C., Maturilli, M., Mech, M., Morris, S., Moser, M., Nicolaus, M., Ortega, P., Osborn, J., P\u00e4tzold, F., Perovich, D.\u00a0K., Pet\u00e4j\u00e4, T., Pilz, C., Pirazzini, R., Posman, K., Powers, H., Pratt, K.\u00a0A., Preu\u00dfer, A., Qu\u00e9l\u00e9ver, L., Radenz, M., Rabe, B., Rinke, A., Sachs, T., Schulz, A., Siebert, H., Silva, T., Solomon, A., Sommerfeld, A., Spreen, G., Stephens, M., Stohl, A., Svensson, G., Uin, J., Viegas, J., Voigt, C., von der Gathen, P., Wehner, B., Welker, J.\u00a0M., Wendisch, M., Werner, M., Xie, Z., and Yue, F.:\nOverview of the MOSAiC Expedition: Atmosphere, Elementa: Science of the Anthropocene, 10, 00060, https:\/\/doi.org\/10.1525\/elementa.2021.00060, 2022.\u2002a","DOI":"10.1525\/elementa.2021.00060"},{"key":"ref58","doi-asserted-by":"crossref","unstructured":"Stachlewska, I. S., Neuber, R., Lampert, A., Ritter, C., and Wehrle, G.:\nAMALi\u00a0\u2013 the Airborne Mobile Aerosol Lidar for Arctic research, Atmos. Chem. Phys., 10, 2947\u20132963, https:\/\/doi.org\/10.5194\/acp-10-2947-2010, 2010.\u2002a","DOI":"10.5194\/acp-10-2947-2010"},{"key":"ref59","doi-asserted-by":"crossref","unstructured":"Stapf, J., Ehrlich, A., and Wendisch, M.:\nInfluence of Thermodynamic State Changes on Surface Cloud Radiative Forcing in the Arctic: A Comparison of Two Approaches Using Data From AFLUX and SHEBA, J.\u00a0Geophys. Res.-Atmos., 126, e2020JD033589, https:\/\/doi.org\/10.1029\/2020JD033589, 2021.\u2002a","DOI":"10.1029\/2020JD033589"},{"key":"ref60","doi-asserted-by":"crossref","unstructured":"Stephens, G.\u00a0L., Vane, D.\u00a0G., Boain, R.\u00a0J., Mace, G.\u00a0G., Sassen, K., Wang, Z., Illingworth, A.\u00a0J., O'connor, E.\u00a0J., Rossow, W.\u00a0B., Durden, S.\u00a0L., Miller, S.\u00a0D., Austin, R.\u00a0T., Benedetti, A., and Mitrescu, C.:\nTHE CLOUDSAT MISSION AND THE A-TRAIN: A New Dimension of Space-Based Observations of Clouds and Precipitation, B.\u00a0Am. Meteorol. Soc., 83, 1771\u20131790, https:\/\/doi.org\/10.1175\/BAMS-83-12-1771, 2002.\u2002a, b, c, d","DOI":"10.1175\/BAMS-83-12-1771"},{"key":"ref61","doi-asserted-by":"crossref","unstructured":"Stephens, G.\u00a0L., Vane, D.\u00a0G., Tanelli, S., Im, E., Durden, S., Rokey, M., Reinke, D., Partain, P., Mace, G.\u00a0G., Austin, R., L'Ecuyer, T., Haynes, J., Lebsock, M., Suzuki, K., Waliser, D., Wu, D., Kay, J., Gettelman, A., Wang, Z., and Marchand, R.:\nCloudSat mission: Performance and early science after the first year of operation, J.\u00a0Geophys. Res.-Atmos., 113, D00A18, https:\/\/doi.org\/10.1029\/2008JD009982, 2008.\u2002a","DOI":"10.1029\/2008JD009982"},{"key":"ref62","doi-asserted-by":"crossref","unstructured":"Strong, C. and Rigor, I.\u00a0G.:\nArctic marginal ice zone trending wider in summer and narrower in winter, Geophys. Res. Lett., 40, 4864\u20134868, https:\/\/doi.org\/10.1002\/grl.50928, 2013.\u2002a","DOI":"10.1002\/grl.50928"},{"key":"ref63","doi-asserted-by":"crossref","unstructured":"Tanelli, S., Durden, S.\u00a0L., Im, E., Pak, K.\u00a0S., Reinke, D.\u00a0G., Partain, P., Haynes, J.\u00a0M., and Marchand, R.\u00a0T.:\nCloudSat's Cloud Profiling Radar After Two Years in Orbit: Performance, Calibration, and Processing, IEEE T. Geosci. Remote, 46, 3560\u20133573, https:\/\/doi.org\/10.1109\/TGRS.2008.2002030, 2008.\u2002a, b, c","DOI":"10.1109\/TGRS.2008.2002030"},{"key":"ref64","doi-asserted-by":"crossref","unstructured":"von Lerber, A., Mech, M., Rinke, A., Zhang, D., Lauer, M., Radovan, A., Gorodetskaya, I., and Crewell, S.:\nEvaluating seasonal and regional distribution of snowfall in regional climate model simulations in the Arctic, Atmos. Chem. Phys., 22, 7287\u20137317, https:\/\/doi.org\/10.5194\/acp-22-7287-2022, 2022.\u2002a, b, c","DOI":"10.5194\/acp-22-7287-2022"},{"key":"ref65","doi-asserted-by":"crossref","unstructured":"Wendisch, M., Macke, A., Ehrlich, A., L\u00fcpkes, C., Mech, M., Chechin, D., Dethloff, K., Velasco, C.\u00a0B., Bozem, H., Br\u00fcckner, M., Clemen, H.-C., Crewell, S., Donth, T., Dupuy, R., Ebell, K., Egerer, U., Engelmann, R., Engler, C., Eppers, O., Gehrmann, M., Gong, X., Gottschalk, M., Gourbeyre, C., Griesche, H., Hartmann, J., Hartmann, M., Heinold, B., Herber, A., Herrmann, H., Heygster, G., Hoor, P., Jafariserajehlou, S., J\u00e4kel, E., J\u00e4rvinen, E., Jourdan, O., K\u00e4stner, U., Kecorius, S., Knudsen, E.\u00a0M., K\u00f6llner, F., Kretzschmar, J., Lelli, L., Leroy, D., Maturilli, M., Mei, L., Mertes, S., Mioche, G., Neuber, R., Nicolaus, M., Nomokonova, T., Notholt, J., Palm, M., Pinxteren, M.\u00a0v., Quaas, J., Richter, P., Ruiz-Donoso, E., Sch\u00e4fer, M., Schmieder, K., Schnaiter, M., Schneider, J., Schwarzenb\u00f6ck, A., Seifert, P., Shupe, M.\u00a0D., Siebert, H., Spreen, G., Stapf, J., Stratmann, F., Vogl, T., Welti, A., Wex, H., Wiedensohler, A., Zanatta, M., and Zeppenfeld, S.:\nThe Arctic Cloud Puzzle: Using ACLOUD\/PASCAL Multiplatform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification, B.\u00a0Am. Meteorol. Soc., 100, 841\u2013871, https:\/\/doi.org\/10.1175\/BAMS-D-18-0072.1, 2019.\u2002a, b, c","DOI":"10.1175\/BAMS-D-18-0072.1"},{"key":"ref66","doi-asserted-by":"crossref","unstructured":"Wendisch, M., Br\u00fcckner, M., Crewell, S., Ehrlich, A., Notholt, J., L\u00fcpkes, C., Macke, A., Burrows, J.\u00a0P., Rinke, A., Quaas, J., Maturilli, M., Schemann, V., Shupe, M.\u00a0D., Akansu, E.\u00a0F., Barrientos-Velasco, C., B\u00e4rfuss, K., Blechschmidt, A.-M., Block, K., Bougoudis, I., Bozem, H., B\u00f6ckmann, C., Bracher, A., Bresson, H., Bretschneider, L., Buschmann, M., Chechin, D.\u00a0G., Chylik, J., Dahlke, S., Deneke, H., Dethloff, K., Donth, T., Dorn, W., Dupuy, R., Ebell, K., Egerer, U., Engelmann, R., Eppers, O., Gerdes, R., Gierens, R., Gorodetskaya, I.\u00a0V., Gottschalk, M., Griesche, H., Gryanik, V.\u00a0M., Handorf, D., Harm-Altst\u00e4dter, B., Hartmann, J., Hartmann, M., Heinold, B., Herber, A., Herrmann, H., Heygster, G., H\u00f6schel, I., Hofmann, Z., H\u00f6lemann, J., H\u00fcnerbein, A., Jafariserajehlou, S., J\u00e4kel, E., Jacobi, C., Janout, M., Jansen, F., Jourdan, O., Jur\u00e1nyi, Z., Kalesse-Los, H., Kanzow, T., K\u00e4thner, R., Kliesch, L.\u00a0L., Klingebiel, M., Knudsen, E.\u00a0M., Kov\u00e1cs, T., K\u00f6rtke, W., Krampe, D., Kretzschmar, J., Kreyling, D., Kulla, B., Kunkel, D., Lampert, A., Lauer, M., Lelli, L., von Lerber, A., Linke, O., L\u00f6hnert, U., Lonardi, M., Losa, S.\u00a0N., Losch, M., Maahn, M., Mech, M., Mei, L., Mertes, S., Metzner, E., Mewes, D., Michaelis, J., Mioche, G., Moser, M., Nakoudi, K., Neggers, R., Neuber, R., Nomokonova, T., Oelker, J., Papakonstantinou-Presvelou, I., P\u00e4tzold, F., Pefanis, V., Pohl, C., van Pinxteren, M., Radovan, A., Rhein, M., Rex, M., Richter, A., Risse, N., Ritter, C., Rostosky, P., Rozanov, V.\u00a0V., Donoso, E.\u00a0R., Saavedra\u00a0Garfias, P., Salzmann, M., Schacht, J., Sch\u00e4fer, M., Schneider, J., Schnierstein, N., Seifert, P., Seo, S., Siebert, H., Soppa, M.\u00a0A., Spreen, G., Stachlewska, I.\u00a0S., Stapf, J., Stratmann, F., Tegen, I., Viceto, C., Voigt, C., Vountas, M., Walbr\u00f6l, A., Walter, M., Wehner, B., Wex, H., Willmes, S., Zanatta, M., and Zeppenfeld, S.:\nAtmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)3 Project, B.\u00a0Am. Meteorol. Soc., 104, E208\u2013E242, https:\/\/doi.org\/10.1175\/BAMS-D-21-0218.1, 2023.\u2002a","DOI":"10.1175\/BAMS-D-21-0218.1"},{"key":"ref67","doi-asserted-by":"crossref","unstructured":"Wesche, C., Steinhage, D., and Nixdorf, U.:\nPolar Aircraft Polar\u00a05 and Polar\u00a06 Operated by the Alfred-Wegener-Institute, Journal of large-scale research facilities JLSRF, 2, 87, https:\/\/doi.org\/10.17815\/jlsrf-2-153, 2016.\u2002a","DOI":"10.17815\/jlsrf-2-153"},{"key":"ref68","doi-asserted-by":"crossref","unstructured":"Winker, D.\u00a0M., Pelon, J.\u00a0R., and McCormick, M.\u00a0P.:\nThe CALIPSO mission: spaceborne lidar for observation of aerosols and clouds, Proc. SPIE 4893, Lidar Remote Sensing for Industry and Environment Monitoring III, https:\/\/doi.org\/10.1117\/12.466539, 2003.\u2002a","DOI":"10.1117\/12.466539"},{"key":"ref69","doi-asserted-by":"crossref","unstructured":"Winton, M.: Amplified Arctic climate change: What does surface albedo feedback have to do with it?, Geophys. Res. Lett., 33, L03701, https:\/\/doi.org\/10.1029\/2005GL025244, 2006.\u2002a","DOI":"10.1029\/2005GL025244"},{"key":"ref70","unstructured":"Wood, N.\u00a0B.:\nESTIMATION OF SNOW MICROPHYSICAL PROPERTIES WITH APPLICATION TO MILLIMETER-WAVELENGTH RADAR RETRIEVALS FOR SNOWFALL RATE, Diss., Colorado State University, 2011.\u2002a"},{"key":"ref71","unstructured":"Wood, N.\u00a0B. and L'Ecuyer, T.\u00a0S.:\nLevel 2C Snow Profile Process Description and Interface Control Document, Product Version P1 R05, NASA JPL CloudSat project document revision\u00a00., 26\u00a0pp., https:\/\/www.cloudsat.cira.colostate.edu\/cloudsat-static\/info\/dl\/2c-snow-profile\/2C-SNOW-PROFILE_PDICD.P1_R05.rev0_.pdf (last access: 16\u00a0June 2023), 2018.\u2002a"},{"key":"ref72","doi-asserted-by":"crossref","unstructured":"Zygmuntowska, M., Mauritsen, T., Quaas, J., and Kaleschke, L.:\nArctic Clouds and Surface Radiation\u00a0\u2013 a critical comparison of satellite retrievals and the ERA-Interim reanalysis, Atmos. Chem. Phys., 12, 6667\u20136677, https:\/\/doi.org\/10.5194\/acp-12-6667-2012, 2012.\u2002a, b","DOI":"10.5194\/acp-12-6667-2012"}],"container-title":["Atmospheric Measurement Techniques"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/amt.copernicus.org\/articles\/16\/4081\/2023\/amt-16-4081-2023.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,10,10]],"date-time":"2023-10-10T12:11:23Z","timestamp":1696939883000},"score":1,"resource":{"primary":{"URL":"https:\/\/amt.copernicus.org\/articles\/16\/4081\/2023\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,9,11]]},"references-count":72,"journal-issue":{"issue":"17","published-online":{"date-parts":[[2023]]}},"URL":"http:\/\/dx.doi.org\/10.5194\/amt-16-4081-2023","relation":{"has-preprint":[{"id-type":"doi","id":"10.5194\/egusphere-2023-636","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/egusphere-2023-636","asserted-by":"object"}],"has-review":[{"id-type":"doi","id":"10.5194\/egusphere-2023-636-RC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/egusphere-2023-636-AC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/egusphere-2023-636-RC2","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/egusphere-2023-636-AC2","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/egusphere-2023-636-RC2","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/egusphere-2023-636-AC1","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/egusphere-2023-636-AC2","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/egusphere-2023-636-RC1","asserted-by":"object"}],"is-part-of":[{"id-type":"doi","id":"10.1002\/qj.3803","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.945988","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.932454","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.932455","asserted-by":"subject"},{"id-type":"doi","id":"10.1594\/PANGAEA.898399","asserted-by":"subject"},{"id-type":"doi","id":"10.5281\/zenodo.7305585","asserted-by":"subject"}]},"ISSN":["1867-8548"],"issn-type":[{"value":"1867-8548","type":"electronic"}],"subject":["Atmospheric Science"],"published":{"date-parts":[[2023,9,11]]}}}