{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,1,12]],"date-time":"2024-01-12T05:09:06Z","timestamp":1705036146007},"reference-count":46,"publisher":"Springer Science and Business Media LLC","issue":"11","license":[{"start":{"date-parts":[[2023,9,21]],"date-time":"2023-09-21T00:00:00Z","timestamp":1695254400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2023,9,21]],"date-time":"2023-09-21T00:00:00Z","timestamp":1695254400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Nat. Clim. Chang."],"published-print":{"date-parts":[[2023,11]]},"abstract":"Abstract<\/jats:title>Quantifying changes in hot temperature extremes is key for developing adaptation strategies. Changes in hot extremes are often determined on the basis of air temperatures; however, hydrology and many biogeochemical processes are more sensitive to soil temperature. Here we show that soil hot extremes are increasing faster than air hot extremes by 0.7\u2009\u00b0C per decade in intensity and twice as fast in frequency on average over Central Europe. Furthermore, we identify soil temperature as a key factor in the soil moisture\u2013temperature feedback. During dry and warm conditions, the energy absorbed by the soil is used to warm the soil, increasing the release of sensible heat flux and surface air temperatures. This increase in surface air temperature leads to a higher atmospheric demand for water, increasing soil evaporation, which may further dry and warm the soil highlighting the contribution of soil moisture\u2013temperature feedback to the evolution of hot extremes in a warming climate.<\/jats:p>","DOI":"10.1038\/s41558-023-01812-3","type":"journal-article","created":{"date-parts":[[2023,9,21]],"date-time":"2023-09-21T16:02:40Z","timestamp":1695312160000},"page":"1237-1241","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Soil heat extremes can outpace air temperature extremes"],"prefix":"10.1038","volume":"13","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-1333-4774","authenticated-orcid":false,"given":"Almudena","family":"Garc\u00eda-Garc\u00eda","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1577-671X","authenticated-orcid":false,"given":"Francisco Jos\u00e9","family":"Cuesta-Valero","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6186-5751","authenticated-orcid":false,"given":"Diego G.","family":"Miralles","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3031-613X","authenticated-orcid":false,"given":"Miguel D.","family":"Mahecha","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7057-194X","authenticated-orcid":false,"given":"Johannes","family":"Quaas","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5736-1112","authenticated-orcid":false,"given":"Markus","family":"Reichstein","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6045-1629","authenticated-orcid":false,"given":"Jakob","family":"Zscheischler","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4071-0512","authenticated-orcid":false,"given":"Jian","family":"Peng","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,9,21]]},"reference":[{"key":"1812_CR1","doi-asserted-by":"publisher","first-page":"220","DOI":"10.1126\/science.1201224","volume":"332","author":"D Barriopedro","year":"2011","unstructured":"Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M. & Garc\u00eda-Herrera, R. The hot summer of 2010: redrawing the temperature record map of Europe. Science 332, 220\u2013224 (2011).","journal-title":"Science"},{"key":"1812_CR2","doi-asserted-by":"publisher","first-page":"84","DOI":"10.1038\/nature16467","volume":"529","author":"C Lesk","year":"2016","unstructured":"Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84\u201387 (2016).","journal-title":"Nature"},{"key":"1812_CR3","doi-asserted-by":"publisher","first-page":"1700","DOI":"10.1038\/s41591-022-01872-6","volume":"28","author":"JL Kephart","year":"2022","unstructured":"Kephart, J. L. et al. City-level impact of extreme temperatures and mortality in Latin America. Nat. Med. 28, 1700\u20131705 (2022).","journal-title":"Nat. Med."},{"key":"1812_CR4","unstructured":"Seneviratne, S. et al. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 1513\u20131766 (Cambridge Univ. Press, 2021)."},{"key":"1812_CR5","doi-asserted-by":"publisher","first-page":"19","DOI":"10.1111\/nyas.13912","volume":"1436","author":"DG Miralles","year":"2019","unstructured":"Miralles, D. G., Gentine, P., Seneviratne, S. I. & Teuling, A. J. Land\u2013atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Ann. N. Y. Acad. Sci. 1436, 19\u201335 (2019).","journal-title":"Ann. N. Y. Acad. Sci."},{"key":"1812_CR6","doi-asserted-by":"publisher","first-page":"387","DOI":"10.5194\/esd-8-387-2017","volume":"8","author":"S Sippel","year":"2017","unstructured":"Sippel, S. et al. Refining multi-model projections of temperature extremes by evaluation against land\u2013atmosphere coupling diagnostics. Earth Syst. Dyn. 8, 387\u2013403 (2017).","journal-title":"Earth Syst. Dyn."},{"key":"1812_CR7","doi-asserted-by":"publisher","first-page":"3903","DOI":"10.1029\/2018JD030117","volume":"124","author":"A Garc\u00eda-Garc\u00eda","year":"2019","unstructured":"Garc\u00eda-Garc\u00eda, A., Cuesta-Valero, F. J., Beltrami, H. & Smerdon, J. E. Characterization of air and ground temperature relationships within the CMIP5 historical and future climate simulations. J. Geophys. Res. Atmos. 124, 3903\u20133929 (2019).","journal-title":"J. Geophys. Res. Atmos."},{"key":"1812_CR8","doi-asserted-by":"publisher","first-page":"210","DOI":"10.1038\/s41561-023-01126-1","volume":"16","author":"M R\u00f6thlisberger","year":"2023","unstructured":"R\u00f6thlisberger, M. & Papritz, L. Quantifying the physical processes leading to atmospheric hot extremes at a global scale. Nat. Geosci. 16, 210\u2013216 (2023).","journal-title":"Nat. Geosci."},{"key":"1812_CR9","doi-asserted-by":"publisher","first-page":"712","DOI":"10.1038\/s41561-019-0431-6","volume":"12","author":"DL Schumacher","year":"2019","unstructured":"Schumacher, D. L. et al. Amplification of mega-heatwaves through heat torrents fuelled by upwind drought. Nat. Geosci. 12, 712\u2013717 (2019).","journal-title":"Nat. Geosci."},{"key":"1812_CR10","doi-asserted-by":"publisher","first-page":"125","DOI":"10.1016\/j.earscirev.2010.02.004","volume":"99","author":"SI Seneviratne","year":"2010","unstructured":"Seneviratne, S. I. et al. Investigating soil moisture\u2013climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125\u2013161 (2010).","journal-title":"Earth Sci. Rev."},{"key":"1812_CR11","doi-asserted-by":"publisher","first-page":"262","DOI":"10.1038\/s41561-022-00912-7","volume":"15","author":"DL Schumacher","year":"2022","unstructured":"Schumacher, D. L., Keune, J., Dirmeyer, P. & Miralles, D. G. Drought self-propagation in drylands due to land\u2013atmosphere feedbacks. Nat. Geosci. 15, 262\u2013268 (2022).","journal-title":"Nat. Geosci."},{"key":"1812_CR12","doi-asserted-by":"publisher","first-page":"7516","DOI":"10.1002\/joc.7662","volume":"42","author":"C Melo-Aguilar","year":"2022","unstructured":"Melo-Aguilar, C. et al. Near-surface soil thermal regime and land\u2013air temperature coupling: a case study over Spain. Int. J. Climatol. 42, 7516\u20137534 (2022).","journal-title":"Int. J. Climatol."},{"key":"1812_CR13","doi-asserted-by":"publisher","DOI":"10.1038\/srep35530","volume":"6","author":"H Zhang","year":"2016","unstructured":"Zhang, H., Wang, E., Zhou, D., Luo, Z. & Zhang, Z. Rising soil temperature in China and its potential ecological impact. Sci. Rep. 6, 35530 (2016).","journal-title":"Sci. Rep."},{"key":"1812_CR14","doi-asserted-by":"publisher","first-page":"9","DOI":"10.1007\/s10584-021-03293-9","volume":"170","author":"K Dorau","year":"2022","unstructured":"Dorau, K., Bamminger, C., Koch, D. & Mansfeldt, T. Evidences of soil warming from long-term trends (1951\u20132018) in North Rhine-Westphalia, Germany. Clim. Change 170, 9 (2022).","journal-title":"Clim. Change"},{"key":"1812_CR15","doi-asserted-by":"publisher","first-page":"2004","DOI":"10.1002\/2017JD027283","volume":"123","author":"L Wang","year":"2018","unstructured":"Wang, L. et al. Maximum and minimum soil surface temperature trends over China, 1965\u20132014. J. Geophys. Res. Atmos. 123, 2004\u20132016 (2018).","journal-title":"J. Geophys. Res. Atmos."},{"key":"1812_CR16","doi-asserted-by":"publisher","DOI":"10.1038\/s41597-020-0534-3","volume":"7","author":"G Pastorello","year":"2020","unstructured":"Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).","journal-title":"Sci. Data"},{"key":"1812_CR17","unstructured":"Integrated carbon observation system-icos data portal. ICOS https:\/\/data.icos-cp.eu\/portal\/#%7B%22filterCategories%22:%7B%22project%22:%5B%22icos%22%5D,%22level%22:%5B1,2%5D,%22stationclass%22:%5B%22ICOS%22%5D%7D%7D (2022)."},{"key":"1812_CR18","unstructured":"Hourly air and soil temperatures from 2000 to 2022 over Venice Province. ARPAV https:\/\/www.arpa.veneto.it\/previsioni\/it\/html\/meteo_veneto.php (2022)."},{"key":"1812_CR19","unstructured":"Hourly air and soil temperatures of the Climate Data Center (CDC) of the Deutscher Wetterdienst (DWD). DWD https:\/\/opendata.dwd.de\/climate_environment\/ (2022)."},{"key":"1812_CR20","unstructured":"6-hr air and soil temperatures from observations in situ. M\u00e9t\u00e9o France https:\/\/donneespubliques.meteofrance.fr (2022)."},{"key":"1812_CR21","unstructured":"Duguay-Tetzlaff, A. et al. CMSAF Land Surface Temperature Dataset from Meteosat First and Second Generation - Edition 1 (Sumet Ed. 1) (Satellite Application Facility on Climate Monitoring, 2017)."},{"key":"1812_CR22","doi-asserted-by":"publisher","first-page":"4349","DOI":"10.5194\/essd-13-4349-2021","volume":"13","author":"J Mu\u00f1oz Sabater","year":"2021","unstructured":"Mu\u00f1oz Sabater, J. et al. Era5-land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13, 4349\u20134383 (2021).","journal-title":"Earth Syst. Sci. Data"},{"key":"1812_CR23","doi-asserted-by":"publisher","first-page":"1937","DOI":"10.5194\/gmd-9-1937-2016","volume":"9","author":"V Eyring","year":"2016","unstructured":"Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937\u20131958 (2016).","journal-title":"Geosci. Model Dev."},{"key":"1812_CR24","doi-asserted-by":"publisher","first-page":"9391","DOI":"10.1029\/2017JD028200","volume":"123","author":"RC Cornes","year":"2018","unstructured":"Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M. & Jones, P. D. An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos. 123, 9391\u20139409 (2018).","journal-title":"J. Geophys. Res. Atmos."},{"key":"1812_CR25","doi-asserted-by":"publisher","first-page":"2640","DOI":"10.1111\/j.1365-2486.2011.02414.x","volume":"17","author":"M-O Goebel","year":"2011","unstructured":"Goebel, M.-O., Bachmann, J., Reichstein, M., Janssens, I. A. & Guggenberger, G. Soil water repellency and its implications for organic matter decomposition\u2014is there a link to extreme climatic events? Glob. Change Biol. 17, 2640\u20132656 (2011).","journal-title":"Glob. Change Biol."},{"key":"1812_CR26","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s11104-014-2373-5","volume":"397","author":"C Fischer","year":"2015","unstructured":"Fischer, C. et al. Plant species diversity affects infiltration capacity in an experimental grassland through changes in soil properties. Plant Soil 397, 1\u201316 (2015).","journal-title":"Plant Soil"},{"key":"1812_CR27","doi-asserted-by":"publisher","first-page":"736","DOI":"10.1038\/nclimate1536","volume":"2","author":"B Quesada","year":"2012","unstructured":"Quesada, B., Vautard, R., Yiou, P., Hirschi, M. & Seneviratne, S. I. Asymmetric European summer heat predictability from wet and dry southern winters and springs. Nat. Clim. Change 2, 736\u2013741 (2012).","journal-title":"Nat. Clim. Change"},{"key":"1812_CR28","doi-asserted-by":"publisher","first-page":"345","DOI":"10.1038\/ngeo2141","volume":"7","author":"DG Miralles","year":"2014","unstructured":"Miralles, D. G., Teuling, A. J., van Heerwaarden, C. C. & Vil\u00e0-Guerau de Arellano, J. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci. 7, 345\u2013349 (2014).","journal-title":"Nat. Geosci."},{"key":"1812_CR29","doi-asserted-by":"publisher","first-page":"9326","DOI":"10.1073\/pnas.1701762114","volume":"114","author":"C Zhao","year":"2017","unstructured":"Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326\u20139331 (2017).","journal-title":"Proc. Natl Acad. Sci. USA"},{"key":"1812_CR30","unstructured":"Vincke, C. et al. ETC L2 Meteo, Vielsalm, 2019-12-31\u20132022-09-30. ICOS https:\/\/hdl.handle.net\/11676\/fP0w7LtYoUv_qaa90yzCAVVG (2022)."},{"key":"1812_CR31","unstructured":"Gharun, M. et al. ETC L2 Meteo, Davos, 2018-12-31\u20132021-12-31. ICOS https:\/\/hdl.handle.net\/11676\/t3hy9SMIg6VP3ilSchHODtJB (2022)."},{"key":"1812_CR32","unstructured":"\u0160igut, L. et al. ETC NRT Meteosens, Bily Kriz Forest, 2022-05-17\u20132022-12-11. ICOS https:\/\/hdl.handle.net\/11676\/Tn_OAMszm-rS5bBvRm813tFg (2022)."},{"key":"1812_CR33","unstructured":"Gianelle, D., Belelli Marchesini, L., Marcolla, B., Sottocornola, M. & ICOS Ecosystem Thematic Centre. Warm winter 2020 ecosystem eddy covariance flux product from Monte Bondone. ICOS https:\/\/meta.icos-cp.eu\/objects\/TpS_6HENQSySMMG8jkkAmaJp (2022)."},{"key":"1812_CR34","unstructured":"Kruijt, B. & ICOS Ecosystem Thematic Centre Drought. 2018 ecosystem eddy covariance flux product from Loobos. ICOS https:\/\/meta.icos-cp.eu\/objects\/xJKKbVMsJQr-x5vldv08vAUZ (2020)."},{"key":"1812_CR35","unstructured":"Nilsson, M. et al. ETC NRT Meteosens, Degero, 2022-08-31\u20132022-12-11. ICOS https:\/\/hdl.handle.net\/11676\/moB5yTHVhT-Sq3aCvmUFmlst (2022)."},{"key":"1812_CR36","unstructured":"Montagnani, L. et al. ETC NRT Meteosens, Renon, 2021-11-16\u20132022-12-11. ICOS https:\/\/hdl.handle.net\/11676\/nXoijrJPtQ7pAlqRRF-CRb8u (2022)."},{"key":"1812_CR37","unstructured":"Mammarella, I. et al. ETC NRT Meteosens, Hyytiala, 2022-10-31\u20132022-12-11. ICOS https:\/\/hdl.handle.net\/11676\/AsiIMmDR7KdBoo0U3Za8zwyY (2022)."},{"key":"1812_CR38","unstructured":"Ibrom, A., M\u00f8ller, F., Pilegaard, K., R\u00f8nn Lange, E. & Schaarup S\u00f8rensen, J. ETC NRT Meteosens, Soroe, 2022-10-31\u20132022-12-11. ICOS https:\/\/hdl.handle.net\/11676\/iR7JTKt9bLSLOKooGUSxEPxh (2022)."},{"key":"1812_CR39","unstructured":"Bernhofer, C. et al. ETC NRT Meteo, Tharandt, 2021-12-31\u20132022-12-11. ICOS https:\/\/hdl.handle.net\/11676\/YsYmXilwxqKgGzqSQf7HFhfG (2022)."},{"key":"1812_CR40","unstructured":"Br\u00fcmmer, C. & Delorme, J.-P. ETC NRT Meteo, Gebesee, 2022-08-31\u20132022-12-11. ICOS https:\/\/hdl.handle.net\/11676\/TKd-wR-smoJFGvis9gsjVogo (2022)."},{"key":"1812_CR41","doi-asserted-by":"publisher","unstructured":"Tachiiri, K. et al. MIROC MIROC-ES2L model output prepared for CMIP6 ScenarioMIP SSP585. WDC Climate https:\/\/doi.org\/10.22033\/ESGF\/CMIP6.5770 (2019).","DOI":"10.22033\/ESGF\/CMIP6.5770"},{"key":"1812_CR42","doi-asserted-by":"publisher","unstructured":"Shiogama, H., Abe, M. & Tatebe, H. MIROC MIROC6 model output prepared for CMIP6 ScenarioMIP SSP585. WDC Climate https:\/\/doi.org\/10.22033\/ESGF\/CMIP6.5771 (2019).","DOI":"10.22033\/ESGF\/CMIP6.5771"},{"key":"1812_CR43","doi-asserted-by":"publisher","unstructured":"Wieners, K.-H. et al. MPI-M MPI-ESM1.2-LR model output prepared for CMIP6 ScenarioMIP SSP585. WDC Climate https:\/\/doi.org\/10.22033\/ESGF\/CMIP6.6705 (2019).","DOI":"10.22033\/ESGF\/CMIP6.6705"},{"key":"1812_CR44","doi-asserted-by":"publisher","unstructured":"Schupfner, M. et al. DKRZ MPI-ESM1.2-hr model output prepared for CMIP6 ScenarioMIP SSP585. WDC Climate https:\/\/doi.org\/10.22033\/ESGF\/CMIP6.4403 (2019).","DOI":"10.22033\/ESGF\/CMIP6.4403"},{"key":"1812_CR45","doi-asserted-by":"publisher","unstructured":"(EC-Earth), E.-E. C. EC-Earth-Consortium EC-Earth3 model output prepared for CMIP6 ScenarioMIP SSP585. WDC Climate https:\/\/doi.org\/10.22033\/ESGF\/CMIP6.4912(2019).","DOI":"10.22033\/ESGF\/CMIP6.4912"},{"key":"1812_CR46","doi-asserted-by":"publisher","unstructured":"Hauser, M., Engelbrecht, F. & Fischer, E. M. Transient global warming levels for CMIP5 and CMIP6. Zenodo https:\/\/doi.org\/10.5281\/zenodo.7390473 (2022).","DOI":"10.5281\/zenodo.7390473"}],"container-title":["Nature Climate Change"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.nature.com\/articles\/s41558-023-01812-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s41558-023-01812-3","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s41558-023-01812-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,3]],"date-time":"2023-11-03T16:03:24Z","timestamp":1699027404000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.nature.com\/articles\/s41558-023-01812-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,9,21]]},"references-count":46,"journal-issue":{"issue":"11","published-print":{"date-parts":[[2023,11]]}},"alternative-id":["1812"],"URL":"http:\/\/dx.doi.org\/10.1038\/s41558-023-01812-3","relation":{"has-preprint":[{"id-type":"doi","id":"10.21203\/rs.3.rs-2832579\/v1","asserted-by":"object"}]},"ISSN":["1758-678X","1758-6798"],"issn-type":[{"value":"1758-678X","type":"print"},{"value":"1758-6798","type":"electronic"}],"subject":["Social Sciences (miscellaneous)","Environmental Science (miscellaneous)"],"published":{"date-parts":[[2023,9,21]]},"assertion":[{"value":"18 April 2023","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"18 August 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"21 September 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"The authors declare no competing interests.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}]}}