{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,12,14]],"date-time":"2023-12-14T06:10:08Z","timestamp":1702534208426},"reference-count":50,"publisher":"Copernicus GmbH","issue":"8","license":[{"start":{"date-parts":[[2023,8,22]],"date-time":"2023-08-22T00:00:00Z","timestamp":1692662400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001655","name":"Deutscher Akademischer Austauschdienst","doi-asserted-by":"publisher","award":["57429422"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Earth Syst. Sci. Data"],"abstract":"Abstract. We present a global multiyear height-resolved data set of aerosol-type-specific cloud condensation nuclei concentrations (nCCN) estimated from the spaceborne lidar aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. For estimating nCCN, we apply the recently introduced Optical Modelling of the CALIPSO Aerosol Microphysics (OMCAM) algorithm to the CALIPSO Level 2 Aerosol Profile product. The estimated nCCN are then gridded into a uniform latitude\u2013longitude grid of 2\u2218\u00d75\u2218, a vertical grid of resolution 60\u2009m from the surface to an altitude of 8\u2009km, and a temporal resolution of 1\u00a0month. The data span a total of 186\u00a0months, from June\u00a02006 to December\u00a02021. In addition, we provide a 3D aerosol-type-specific climatology of nCCN produced using the complete time series. We further highlight some potential applications of the data set in the context of aerosol\u2013cloud interactions. The complete data set can be accessed at https:\/\/doi.org\/10.1594\/PANGAEA.956215 (Choudhury and Tesche,\u00a02023).\n <\/jats:p>","DOI":"10.5194\/essd-15-3747-2023","type":"journal-article","created":{"date-parts":[[2023,8,22]],"date-time":"2023-08-22T08:54:11Z","timestamp":1692694451000},"page":"3747-3760","source":"Crossref","is-referenced-by-count":2,"title":["A first global height-resolved cloud condensation nuclei data set derived from spaceborne lidar measurements"],"prefix":"10.5194","volume":"15","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-5748-0517","authenticated-orcid":false,"given":"Goutam","family":"Choudhury","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0096-4785","authenticated-orcid":false,"given":"Matthias","family":"Tesche","sequence":"additional","affiliation":[]}],"member":"3145","published-online":{"date-parts":[[2023,8,22]]},"reference":[{"key":"ref1","doi-asserted-by":"crossref","unstructured":"Albrecht, B.\u00a0A.: Aerosols, Cloud Microphysics, and Fractional\nCloudiness, Science, 245, 1227\u20131230, https:\/\/doi.org\/10.1126\/science.245.4923.1227,\n1989.\u2002a","DOI":"10.1126\/science.245.4923.1227"},{"key":"ref2","doi-asserted-by":"crossref","unstructured":"Amiridis, V., Marinou, E., Tsekeri, A., Wandinger, U., Schwarz, A., Giannakaki, E., Mamouri, R., Kokkalis, P., Binietoglou, I., Solomos, S., Herekakis, T., Kazadzis, S., Gerasopoulos, E., Proestakis, E., Kottas, M., Balis, D., Papayannis, A., Kontoes, C., Kourtidis, K., Papagiannopoulos, N., Mona, L., Pappalardo, G., Le Rille, O., and Ansmann, A.: LIVAS: a 3-D multi-wavelength aerosol\/cloud database based on CALIPSO and EARLINET, Atmos. Chem. Phys., 15, 7127\u20137153, https:\/\/doi.org\/10.5194\/acp-15-7127-2015, 2015.\u2002a","DOI":"10.5194\/acp-15-7127-2015"},{"key":"ref3","doi-asserted-by":"crossref","unstructured":"Andreae, M.\u00a0O. and Rosenfeld, D.: Aerosol\u2013cloud\u2013precipitation interactions.\nPart 1. The nature and sources of cloud-active aerosols, Earth-Sci.\nRev., 89, 13\u201341, https:\/\/doi.org\/10.1016\/j.earscirev.2008.03.001, 2008.\u2002a","DOI":"10.1016\/j.earscirev.2008.03.001"},{"key":"ref4","doi-asserted-by":"crossref","unstructured":"Aravindhavel, A., Choudhury, G., Prabhakaran, T., Murugav<span id="page3758"\/>el, P., and Tesche,\nM.: Retrieval and validation of cloud condensation nuclei from satellite and\nairborne measurements over the Indian Monsoon region, Atmos. Res.,\n290, 106802, https:\/\/doi.org\/10.1016\/j.atmosres.2023.106802, 2023.\u2002a, b","DOI":"10.1016\/j.atmosres.2023.106802"},{"key":"ref5","doi-asserted-by":"crossref","unstructured":"Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris,\nD., Boucher, O., Carslaw, K.\u00a0S., Christensen, M., Daniau, A.-L., Dufresne,\nJ.-L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J.\u00a0M.,\nLohmann, U., Malavelle, F., Mauritsen, T., McCoy, D.\u00a0T., Myhre, G.,\nM\u00fclmenst\u00e4dt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato, Y.,\nSchulz, M., Schwartz, S.\u00a0E., Sourdeval, O., Storelvmo, T., Toll, V., Winker,\nD., and Stevens, B.: Bounding Global Aerosol Radiative Forcing of\nClimate Change, Rev. Geophys., 58, e2019RG000660,\nhttps:\/\/doi.org\/10.1029\/2019RG000660, 2020.\u2002a, b","DOI":"10.1029\/2019RG000660"},{"key":"ref6","doi-asserted-by":"crossref","unstructured":"Brock, C. A., Froyd, K. D., Dollner, M., Williamson, C. J., Schill, G., Murphy, D. M., Wagner, N. J., Kupc, A., Jimenez, J. L., Campuzano-Jost, P., Nault, B. A., Schroder, J. C., Day, D. A., Price, D. J., Weinzierl, B., Schwarz, J. P., Katich, J. M., Wang, S., Zeng, L., Weber, R., Dibb, J., Scheuer, E., Diskin, G. S., DiGangi, J. P., Bui, T., Dean-Day, J. M., Thompson, C. R., Peischl, J., Ryerson, T. B., Bourgeois, I., Daube, B. C., Commane, R., and Wofsy, S. C.: Ambient aerosol properties in the remote atmosphere from global-scale in situ measurements, Atmos. Chem. Phys., 21, 15023\u201315063, https:\/\/doi.org\/10.5194\/acp-21-15023-2021, 2021.\u2002a","DOI":"10.5194\/acp-21-15023-2021"},{"key":"ref7","doi-asserted-by":"crossref","unstructured":"Chen, Y., Haywood, J., Wang, Y., Malavelle, F., Jordan, G., Partridge, D.,\nFieldsend, J., De\u00a0Leeuw, J., Schmidt, A., Cho, N., Oreopoulos, L., Platnick, S., Grosvenor, D., Field, P., and Lohmann, U.: Machine learning\nreveals climate forcing from aerosols is dominated by increased cloud cover,\nNat. Geosci., 15, 609\u2013614, https:\/\/doi.org\/10.1038\/s41561-022-00991-6, 2022.\u2002a","DOI":"10.1038\/s41561-022-00991-6"},{"key":"ref8","doi-asserted-by":"crossref","unstructured":"Choudhury, G. and Tesche, M.: Estimating cloud condensation nuclei concentrations from CALIPSO lidar measurements, Atmos. Meas. Tech., 15, 639\u2013654, https:\/\/doi.org\/10.5194\/amt-15-639-2022, 2022a.\u2002a, b, c, d, e, f","DOI":"10.5194\/amt-15-639-2022"},{"key":"ref9","doi-asserted-by":"crossref","unstructured":"Choudhury, G. and Tesche, M.: Assessment of CALIOP-Derived CCN Concentrations\nby In Situ Surface Measurements, Remote Sensing, 14, 3342,\nhttps:\/\/doi.org\/10.3390\/rs14143342, 2022b.\u2002a, b, c, d, e, f, g","DOI":"10.3390\/rs14143342"},{"key":"ref10","doi-asserted-by":"crossref","unstructured":"Choudhury, G. and Tesche, M.: Global multiyear 3D dataset of cloud condensation\nnuclei derived from spaceborne lidar measurements, PANGAEA [data set],\nhttps:\/\/doi.org\/10.1594\/PANGAEA.956215, 2023.\u2002a, b, c, d","DOI":"10.5194\/essd-2023-91"},{"key":"ref11","doi-asserted-by":"crossref","unstructured":"Choudhury, G., Ansmann, A., and Tesche, M.: Evaluation of aerosol number concentrations from CALIPSO with ATom airborne in situ measurements, Atmos. Chem. Phys., 22, 7143\u20137161, https:\/\/doi.org\/10.5194\/acp-22-7143-2022, 2022.\u2002a, b, c, d, e, f, g, h, i","DOI":"10.5194\/acp-22-7143-2022"},{"key":"ref12","doi-asserted-by":"crossref","unstructured":"Deng, Z. Z., Zhao, C. S., Ma, N., Liu, P. F., Ran, L., Xu, W. Y., Chen, J., Liang, Z., Liang, S., Huang, M. Y., Ma, X. C., Zhang, Q., Quan, J. N., Yan, P., Henning, S., Mildenberger, K., Sommerhage, E., Sch\u00e4fer, M., Stratmann, F., and Wiedensohler, A.: Size-resolved and bulk activation properties of aerosols in the North China Plain, Atmos. Chem. Phys., 11, 3835\u20133846, https:\/\/doi.org\/10.5194\/acp-11-3835-2011, 2011.\u2002a","DOI":"10.5194\/acp-11-3835-2011"},{"key":"ref13","doi-asserted-by":"crossref","unstructured":"Dusek, U., Frank, G.\u00a0P., Hildebrandt, L., Curtius, J., Schneider, J., Walter,\nS., Chand, D., Drewnick, F., Hings, S., Jung, D., Borrmann, S., and Andreae,\nM.\u00a0O.: Size Matters More Than Chemistry for Cloud-Nucleating Ability of\nAerosol Particles, Science, 312, 1375\u20131378, https:\/\/doi.org\/10.1126\/science.1125261,\n2006.\u2002a","DOI":"10.1126\/science.1125261"},{"key":"ref14","doi-asserted-by":"crossref","unstructured":"Fanourgakis, G. S., Kanakidou, M., Nenes, A., Bauer, S. E., Bergman, T., Carslaw, K. S., Grini, A., Hamilton, D. S., Johnson, J. S., Karydis, V. A., Kirkev\u00e5g, A., Kodros, J. K., Lohmann, U., Luo, G., Makkonen, R., Matsui, H., Neubauer, D., Pierce, J. R., Schmale, J., Stier, P., Tsigaridis, K., van Noije, T., Wang, H., Watson-Parris, D., Westervelt, D. M., Yang, Y., Yoshioka, M., Daskalakis, N., Decesari, S., Gysel-Beer, M., Kalivitis, N., Liu, X., Mahowald, N. M., Myriokefalitakis, S., Schr\u00f6dner, R., Sfakianaki, M., Tsimpidi, A. P., Wu, M., and Yu, F.: Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation, Atmos. Chem. Phys., 19, 8591\u20138617, https:\/\/doi.org\/10.5194\/acp-19-8591-2019, 2019a.\u2002a, b, c, d, e, f","DOI":"10.5194\/acp-19-8591-2019"},{"key":"ref15","unstructured":"Fanourgakis, G., Kanakidou, M., Nenes, A., et al.: Data for the \u201cEvaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation\u201d (Version v1), Zenodo [data set], https:\/\/doi.org\/10.5281\/zenodo.3265866, 2019b.\u2002a, b"},{"key":"ref16","doi-asserted-by":"crossref","unstructured":"Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J. L., Frame, D., Lunt, D. J.,\nMauritsen, T., Palmer, M. D., Watanabe, M.,Wild, M., and Zhang, H.: The Earth's energy budget,\nclimate feedbacks, and climate sensitivity, in: Climate Change 2021: The Physical Science Basis,\nContribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on\nClimate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirant, A., Connors, S. L., Pean, C.,\nBerger, S., Caud, C., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E.,\nMatthews, L. B. R., Maycock, T. K., Waterfield, T., Yelekci, O., Yu, R., and Zhou, B., Cambridge\nUniversity Press, 923\u20131054, https:\/\/www.ipcc.ch\/report\/ar6\/wg1\/ (last access: 11\u00a0August\u00a02023),\n2021.\u2002a","DOI":"10.1017\/9781009157896.009"},{"key":"ref17","doi-asserted-by":"crossref","unstructured":"Gasteiger, J. and Wiegner, M.: MOPSMAP v1.0: a versatile tool for the\nmodeling of aerosol optical properties, Geoscientific Model Development, 11,\n2739\u20132762, https:\/\/doi.org\/10.5194\/gmd-11-2739-2018, 2018.\u2002a","DOI":"10.5194\/gmd-11-2739-2018"},{"key":"ref18","doi-asserted-by":"crossref","unstructured":"Hasekamp, O.\u00a0P., Gryspeerdt, E., and Quaas, J.: Analysis of polarimetric\nsatellite measurements suggests stronger cooling due to aerosol-cloud\ninteractions, Nat. Commun., 10, 5405,\nhttps:\/\/doi.org\/10.1038\/s41467-019-13372-2, 2019.\u2002a","DOI":"10.1038\/s41467-019-13372-2"},{"key":"ref19","doi-asserted-by":"crossref","unstructured":"Humphries, R. S., Keywood, M. D., Gribben, S., McRobert, I. M., Ward, J. P., Selleck, P., Taylor, S., Harnwell, J., Flynn, C., Kulkarni, G. R., Mace, G. G., Protat, A., Alexander, S. P., and McFarquhar, G.: Southern Ocean latitudinal gradients of cloud condensation nuclei, Atmos. Chem. Phys., 21, 12757\u201312782, https:\/\/doi.org\/10.5194\/acp-21-12757-2021, 2021.\u2002a","DOI":"10.5194\/acp-21-12757-2021"},{"key":"ref20","doi-asserted-by":"crossref","unstructured":"Kim, M.-H., Omar, A. H., Tackett, J. L., Vaughan, M. A., Winker, D. M., Trepte, C. R., Hu, Y., Liu, Z., Poole, L. R., Pitts, M. C., Kar, J., and Magill, B. E.: The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm, Atmos. Meas. Tech., 11, 6107\u20136135, https:\/\/doi.org\/10.5194\/amt-11-6107-2018, 2018.\u2002a, b, c","DOI":"10.5194\/amt-11-6107-2018"},{"key":"ref21","doi-asserted-by":"crossref","unstructured":"Koehler, K.\u00a0A., Kreidenweis, S.\u00a0M., DeMott, P.\u00a0J., Petters, M.\u00a0D., Prenni,\nA.\u00a0J., and Carrico, C.\u00a0M.: Hygroscopicity and cloud droplet activation of\nmineral dust aerosol, Geophys. Res. Lett., 36, L08805,\nhttps:\/\/doi.org\/10.1029\/2009GL037348, 2009.\u2002a","DOI":"10.1029\/2009GL037348"},{"key":"ref22","doi-asserted-by":"crossref","unstructured":"Kumar, P., Sokolik, I. N., and Nenes, A.: Cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals, Atmos. Chem. Phys., 11, 8661\u20138676, https:\/\/doi.org\/10.5194\/acp-11-8661-2011, 2011.\u2002a","DOI":"10.5194\/acp-11-8661-2011"},{"key":"ref23","doi-asserted-by":"crossref","unstructured":"Liu, Z., Vaughan, M., Winker, D., Ki<span id="page3759"\/>ttaka, C., Getzewich, B., Kuehn, R., Omar,\nA., Powell, K., Trepte, C., and Hostetler, C.: The CALIPSO Lidar Cloud and\nAerosol Discrimination: Version 2 Algorithm and Initial Assessment of\nPerformance, J. Atmos. Ocean. Tech., 26, 1198\u20131213,\nhttps:\/\/doi.org\/10.1175\/2009JTECHA1229.1, 2009.\u2002a, b","DOI":"10.1175\/2009JTECHA1229.1"},{"key":"ref24","doi-asserted-by":"crossref","unstructured":"Mamouri, R. E. and Ansmann, A.: Estimated desert-dust ice nuclei profiles from polarization lidar: methodology and case studies, Atmos. Chem. Phys., 15, 3463\u20133477, https:\/\/doi.org\/10.5194\/acp-15-3463-2015, 2015.\u2002a","DOI":"10.5194\/acp-15-3463-2015"},{"key":"ref25","doi-asserted-by":"crossref","unstructured":"Mamouri, R.-E. and Ansmann, A.: Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters, Atmos. Chem. Phys., 16, 5905\u20135931, https:\/\/doi.org\/10.5194\/acp-16-5905-2016, 2016.\u2002a, b, c, d, e, f","DOI":"10.5194\/acp-16-5905-2016"},{"key":"ref26","doi-asserted-by":"crossref","unstructured":"Mao, F., Shi, R., Rosenfeld, D., Pan, Z., Zang, L., Zhu, Y., and Lu, X.: Retrieving instantaneous extinction of aerosol undetected by the CALIPSO layer detection algorithm, Atmos. Chem. Phys., 22, 10589\u201310602, https:\/\/doi.org\/10.5194\/acp-22-10589-2022, 2022.\u2002a","DOI":"10.5194\/acp-22-10589-2022"},{"key":"ref27","doi-asserted-by":"crossref","unstructured":"Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2, Geosci. Model Dev., 8, 1339\u20131356, https:\/\/doi.org\/10.5194\/gmd-8-1339-2015, 2015.\u2002a","DOI":"10.5194\/gmd-8-1339-2015"},{"key":"ref28","doi-asserted-by":"crossref","unstructured":"Myhre, G., Grini, A., Haywood, J.\u00a0M., Stordal, F., Chatenet, B., Tanr\u00e9, D.,\nSundet, J.\u00a0K., and Isaksen, I. S.\u00a0A.: Modeling the radiative impact of\nmineral dust during the Saharan Dust Experiment (SHADE) campaign, J.\nGeophys. Res.-Atmos., 108, 8579,\nhttps:\/\/doi.org\/10.1029\/2002JD002566, 2003.\u2002a","DOI":"10.1029\/2002JD002566"},{"key":"ref29","unstructured":"NASA\/LARC\/SD\/ASDC: CALIPSO Lidar Level 2 Aerosol Profile, V4-20, NASA [data set],\nhttps:\/\/doi.org\/10.5067\/CALIOP\/CALIPSO\/LID_L2_05KMAPRO-STANDARD-V4-20,\n2018.\u2002a, b"},{"key":"ref30","doi-asserted-by":"crossref","unstructured":"Omar, A.\u00a0H., Winker, D.\u00a0M., Vaughan, M.\u00a0A., Hu, Y., Trepte, C.\u00a0R., Ferrare,\nR.\u00a0A., Lee, K.-P., Hostetler, C.\u00a0A., Kittaka, C., Rogers, R.\u00a0R., Kuehn,\nR.\u00a0E., and Liu, Z.: The CALIPSO Automated Aerosol Classification and Lidar\nRatio Selection Algorithm, J. Atmos. Ocean. Tech., 26,\n1994\u20132014, https:\/\/doi.org\/10.1175\/2009JTECHA1231.1, 2009.\u2002a, b, c","DOI":"10.1175\/2009JTECHA1231.1"},{"key":"ref31","doi-asserted-by":"crossref","unstructured":"Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961\u20131971, https:\/\/doi.org\/10.5194\/acp-7-1961-2007, 2007.\u2002a","DOI":"10.5194\/acp-7-1961-2007"},{"key":"ref32","doi-asserted-by":"crossref","unstructured":"Quaas, J., Arola, A., Cairns, B., Christensen, M., Deneke, H., Ekman, A. M. L., Feingold, G., Fridlind, A., Gryspeerdt, E., Hasekamp, O., Li, Z., Lipponen, A., Ma, P.-L., M\u00fclmenst\u00e4dt, J., Nenes, A., Penner, J. E., Rosenfeld, D., Schr\u00f6dner, R., Sinclair, K., Sourdeval, O., Stier, P., Tesche, M., van Diedenhoven, B., and Wendisch, M.: Constraining the Twomey effect from satellite observations: issues and perspectives, Atmos. Chem. Phys., 20, 15079\u201315099, https:\/\/doi.org\/10.5194\/acp-20-15079-2020, 2020.\u2002a, b","DOI":"10.5194\/acp-20-15079-2020"},{"key":"ref33","doi-asserted-by":"crossref","unstructured":"Rose, D., Nowak, A., Achtert, P., Wiedensohler, A., Hu, M., Shao, M., Zhang, Y., Andreae, M. O., and P\u00f6schl, U.: Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China \u2013 Part 1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity, Atmos. Chem. Phys., 10, 3365\u20133383, https:\/\/doi.org\/10.5194\/acp-10-3365-2010, 2010.\u2002a","DOI":"10.5194\/acp-10-3365-2010"},{"key":"ref34","doi-asserted-by":"crossref","unstructured":"Rosenfeld, D., Zheng, Y., Hashimshoni, E., P\u00f6hlker, M.\u00a0L., Jefferson, A.,\nP\u00f6hlker, C., Yu, X., Zhu, Y., Liu, G., Yue, Z., Fischman, B., Li, Z.,\nGiguzin, D., Goren, T., Artaxo, P., Barbosa, H. M.\u00a0J., P\u00f6schl, U., and\nAndreae, M.\u00a0O.: Satellite retrieval of cloud condensation nuclei\nconcentrations by using clouds as CCN chambers, P. Natl.\nAcad. Sci. USA, 113, 5828\u20135834, https:\/\/doi.org\/10.1073\/pnas.1514044113, 2016.\u2002a","DOI":"10.1073\/pnas.1514044113"},{"key":"ref35","doi-asserted-by":"crossref","unstructured":"Sayer, A.\u00a0M., Smirnov, A., Hsu, N.\u00a0C., and Holben, B.\u00a0N.: A pure marine aerosol\nmodel, for use in remote sensing applications, J. Geophys.\nRes.-Atmos., 117, D05213, https:\/\/doi.org\/10.1029\/2011JD016689, 2012.\u2002a","DOI":"10.1029\/2011JD016689"},{"key":"ref36","doi-asserted-by":"crossref","unstructured":"Schmale, J., Henning, S., Decesari, S., Henzing, B., Keskinen, H., Sellegri, K., Ovadnevaite, J., P\u00f6hlker, M. L., Brito, J., Bougiatioti, A., Kristensson, A., Kalivitis, N., Stavroulas, I., Carbone, S., Jefferson, A., Park, M., Schlag, P., Iwamoto, Y., Aalto, P., \u00c4ij\u00e4l\u00e4, M., Bukowiecki, N., Ehn, M., Frank, G., Fr\u00f6hlich, R., Frumau, A., Herrmann, E., Herrmann, H., Holzinger, R., Kos, G., Kulmala, M., Mihalopoulos, N., Nenes, A., O'Dowd, C., Pet\u00e4j\u00e4, T., Picard, D., P\u00f6hlker, C., P\u00f6schl, U., Poulain, L., Pr\u00e9v\u00f4t, A. S. H., Swietlicki, E., Andreae, M. O., Artaxo, P., Wiedensohler, A., Ogren, J., Matsuki, A., Yum, S. S., Stratmann, F., Baltensperger, U., and Gysel, M.: Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories, Atmos. Chem. Phys., 18, 2853\u20132881, https:\/\/doi.org\/10.5194\/acp-18-2853-2018, 2018.\u2002a, b","DOI":"10.5194\/acp-18-2853-2018"},{"key":"ref37","doi-asserted-by":"crossref","unstructured":"Seinfeld, J.\u00a0H., Bretherton, C., Carslaw, K.\u00a0S., Coe, H., DeMott, P.\u00a0J.,\nDunlea, E.\u00a0J., Feingold, G., Ghan, S., Guenther, A.\u00a0B., Kahn, R., Kraucunas,\nI., Kreidenweis, S.\u00a0M., Molina, M.\u00a0J., Nenes, A., Penner, J.\u00a0E., Prather,\nK.\u00a0A., Ramanathan, V., Ramaswamy, V., Rasch, P.\u00a0J., Ravishankara, A.\u00a0R.,\nRosenfeld, D., Stephens, G., and Wood, R.: Improving our fundamental\nunderstanding of the role of aerosol\u2212cloud interactions in the climate\nsystem, P. Natl. Acad. Sci. USA, 113, 5781\u20135790,\nhttps:\/\/doi.org\/10.1073\/pnas.1514043113, 2016.\u2002a","DOI":"10.1073\/pnas.1514043113"},{"key":"ref38","doi-asserted-by":"crossref","unstructured":"Shinozuka, Y., Clarke, A. D., Nenes, A., Jefferson, A., Wood, R., McNaughton, C. S., Str\u00f6m, J., Tunved, P., Redemann, J., Thornhill, K. L., Moore, R. H., Lathem, T. L., Lin, J. J., and Yoon, Y. J.: The relationship between cloud condensation nuclei (CCN) concentration and light extinction of dried particles: indications of underlying aerosol processes and implications for satellite-based CCN estimates, Atmos. Chem. Phys., 15, 7585\u20137604, https:\/\/doi.org\/10.5194\/acp-15-7585-2015, 2015.\u2002a","DOI":"10.5194\/acp-15-7585-2015"},{"key":"ref39","doi-asserted-by":"crossref","unstructured":"Tackett, J. L., Winker, D. M., Getzewich, B. J., Vaughan, M. A., Young, S. A., and Kar, J.: CALIPSO lidar level 3 aerosol profile product: version 3 algorithm design, Atmos. Meas. Tech., 11, 4129\u20134152, https:\/\/doi.org\/10.5194\/amt-11-4129-2018, 2018.\u2002a, b, c, d, e, f, g, h","DOI":"10.5194\/amt-11-4129-2018"},{"key":"ref40","doi-asserted-by":"crossref","unstructured":"Tesche, M., Ansmann, A., M\u00fcller, D., Althausen, D., Engelmann, R.,\nFreudenthaler, V., and Gro\u00df, S.: Vertically resolved separation of dust and\nsmoke over Cape Verde using multiwavelength Raman and polarization\nlidars during Saharan Mineral Dust Experiment 2008, J.\nGeophys. Res.-Atmos., 114, D13202, https:\/\/doi.org\/10.1029\/2009JD011862, 2009.\u2002a, b","DOI":"10.1029\/2009JD011862"},{"key":"ref41","doi-asserted-by":"crossref","unstructured":"Twomey, S.: Pollution and the planetary albedo, Atmos. Environ.,\n8, 1251\u20131256, https:\/\/doi.org\/10.1016\/0004-6981(74)90004-3, 1974.\u2002a","DOI":"10.1016\/0004-6981(74)90004-3"},{"key":"ref42","doi-asserted-by":"crossref","unstructured":"van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates during 1997\u20132016, Earth Syst. Sci. Data, 9, 697\u2013720, https:\/\/doi.org\/10.5194\/essd-9-697-2017, 2017.\u2002a","DOI":"10.5194\/essd-9-697-2017"},{"key":"ref43","doi-asserted-by":"crossref","unstructured":"Wall, C.\u00a0J., Nor<span id="page3760"\/>ris, J.\u00a0R., Possner, A., McCoy, D.\u00a0T., McCoy, I.\u00a0L., and\nLutsko, N.\u00a0J.: Assessing effective radiative forcing from aerosol\u2013cloud\ninteractions over the global ocean, P. Natl. Acad.\nSci. USA, 119, e2210481119, https:\/\/doi.org\/10.1073\/pnas.2210481119, 2022.\u2002a","DOI":"10.1073\/pnas.2210481119"},{"key":"ref44","doi-asserted-by":"crossref","unstructured":"Winker, D.\u00a0M., Vaughan, M.\u00a0A., Omar, A., Hu, Y., Powell, K.\u00a0A., Liu, Z., Hunt,\nW.\u00a0H., and Young, S.\u00a0A.: Overview of the CALIPSO Mission and CALIOP\nData Processing Algorithms, J. Atmos. Ocean.\nTech., 26, 2310\u20132323, https:\/\/doi.org\/10.1175\/2009JTECHA1281.1, 2009.\u2002a, b","DOI":"10.1175\/2009JTECHA1281.1"},{"key":"ref45","doi-asserted-by":"crossref","unstructured":"Winker, D. M., Tackett, J. L., Getzewich, B. J., Liu, Z., Vaughan, M. A., and Rogers, R. R.: The global 3-D distribution of tropospheric aerosols as characterized by CALIOP, Atmos. Chem. Phys., 13, 3345\u20133361, https:\/\/doi.org\/10.5194\/acp-13-3345-2013, 2013.\u2002a","DOI":"10.5194\/acp-13-3345-2013"},{"key":"ref46","doi-asserted-by":"crossref","unstructured":"Young, S.\u00a0A., Vaughan, M.\u00a0A., Kuehn, R.\u00a0E., and Winker, D.\u00a0M.: The Retrieval of\nProfiles of Particulate Extinction from Cloud\u2013Aerosol Lidar and Infrared\nPathfinder Satellite Observations (CALIPSO) Data: Uncertainty and Error\nSensitivity Analyses, J. Atmos. Ocean. Tech., 30, 395\u2013428, https:\/\/doi.org\/10.1175\/JTECH-D-12-00046.1, 2013.\n\u2002a","DOI":"10.1175\/JTECH-D-12-00046.1"},{"key":"ref47","doi-asserted-by":"crossref","unstructured":"Zang, L., Rosenfeld, D., Mao, F., Pan, Z., Zhu, Y., Gong, W., and Wang, Z.:\nCALIOP retrieval of droplet effective radius accounting for cloud vertical\nhomogeneity, Opt. Express, 29, 21921\u201321935, https:\/\/doi.org\/10.1364\/OE.427022,\n2021.\u2002a","DOI":"10.1364\/OE.427022"},{"key":"ref48","doi-asserted-by":"crossref","unstructured":"Zhang, R., Wang, Y., Li, Z., Wang, Z., Dickerson, R. R., Ren, X., He, H., Wang, F., Gao, Y., Chen, X., Xu, J., Cheng, Y., and Su, H.: Vertical profiles of cloud condensation nuclei number concentration and its empirical estimate from aerosol optical properties over the North China Plain, Atmos. Chem. Phys., 22, 14879\u201314891, https:\/\/doi.org\/10.5194\/acp-22-14879-2022, 2022.\u2002a","DOI":"10.5194\/acp-22-14879-2022"},{"key":"ref49","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Zhao, C., Zhang, K., Ke, J., Che, H., Shen, X., Zheng, Z., and Liu,\nD.: Retrieving the microphysical properties of opaque liquid water clouds\nfrom CALIOP measurements, Opt. Express, 27, 34126\u201334140,\nhttps:\/\/doi.org\/10.1364\/OE.27.034126, 2019.\u2002a","DOI":"10.1364\/OE.27.034126"},{"key":"ref50","doi-asserted-by":"crossref","unstructured":"Zieger, P., Fierz-Schmidhauser, R., Weingartner, E., and Baltensperger, U.: Effects of relative humidity on aerosol light scattering: results from different European sites, Atmos. Chem. Phys., 13, 10609\u201310631, https:\/\/doi.org\/10.5194\/acp-13-10609-2013, 2013.\u2002a","DOI":"10.5194\/acp-13-10609-2013"}],"container-title":["Earth System Science Data"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/essd.copernicus.org\/articles\/15\/3747\/2023\/essd-15-3747-2023.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,22]],"date-time":"2023-08-22T08:54:31Z","timestamp":1692694471000},"score":1,"resource":{"primary":{"URL":"https:\/\/essd.copernicus.org\/articles\/15\/3747\/2023\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,8,22]]},"references-count":50,"journal-issue":{"issue":"8","published-online":{"date-parts":[[2023]]}},"URL":"http:\/\/dx.doi.org\/10.5194\/essd-15-3747-2023","relation":{"has-preprint":[{"id-type":"doi","id":"10.5194\/essd-2023-91","asserted-by":"subject"}],"has-review":[{"id-type":"doi","id":"10.5194\/essd-2023-91-RC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/essd-2023-91-RC2","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/essd-2023-91-AC1","asserted-by":"subject"},{"id-type":"doi","id":"10.5194\/essd-2023-91-RC1","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/essd-2023-91-AC1","asserted-by":"object"},{"id-type":"doi","id":"10.5194\/essd-2023-91-RC2","asserted-by":"object"}],"is-part-of":[{"id-type":"doi","id":"10.1594\/PANGAEA.956215","asserted-by":"subject"},{"id-type":"doi","id":"10.5067\/CALIOP\/CALIPSO\/LID_L2_05KMAPRO-STANDARD-V4-20","asserted-by":"subject"},{"id-type":"doi","id":"10.5281\/zenodo.3265866","asserted-by":"subject"}]},"ISSN":["1866-3516"],"issn-type":[{"value":"1866-3516","type":"electronic"}],"subject":["General Earth and Planetary Sciences"],"published":{"date-parts":[[2023,8,22]]}}}