>>> Smart Borders?

>>> Wie die EU versucht Grenzübergänge mit einem diskriminierenden KI-Lügendetektor zu regulieren.

Name: verschiedene[†]

Date: September 12, 2021

[†]AG Link

```
>>> Inhalt
```

1. Was ist iBorderCtrl? (15min)

Akteure und Organisationsstruktur Silent Talker Geschichte des Lügendetektor

2. Grundlagen KI (10min)

KI, Algorithmen und maschinelles Lernen Overfitting

3. Grenzen und Risiken von KI (20min)

KI und Interpretierbarkeit KI und Bias

- 4. Bias in iBorderCtrl (20min)
- 5. Ausblick und Diskussion(20min)

Politische Einordnung
Wie und wofür forschen wir?

>>> Akteure und Organisationsstruktur

- * Horizon 2020 (auch Roborder)
- * Tresspass etc.
- * Finanzierung
- * Beteiligte Forschungseinrichtungen, beteiligte Unternehmen?
- * Aktueller Entwickllungsstand

```
>>> Silent Talker
```


Quelle: iborderctrl.eu

"The avatar is presented in a uniform to convey an air of authority." (K.Crockett et.al.)

>>> Die Geschichte des Lügendetektors - Der Polygraph

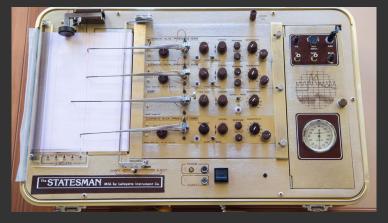


Foto: Sebastian Kahnert/ dpa

>>> Die Geschichte des Lügendetektors - Der Polygraph

- * Entwicklung in der ersten Hälfte des 20. Jahrhunderts
- * Maßgeblich von John A. Larson (Polizist und Physiologe) geprägt
- * Später patentiert und vermarktet
- * Forschung umstritten
- * Einige Studien legen nahe, dass Ergebnisse beinahe zufällig sind (Saxe, Ben-Shakhar, 1999)
- * Andere Systeme, die physiologische Reaktionen testen ähnlich umstritten

>>> Die Geschichte des Lügendetektors - Mikroexpressionen

Paul Ekman's Pictures of Facial Affect

>>> Die Geschichte des Lügendetektors - Mikroexpressionen

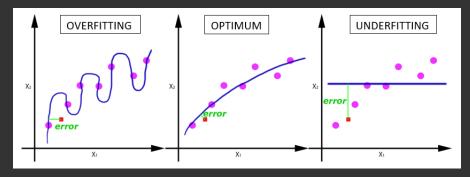
- * Facial Action Coding System (FACS) von Ekman und Friesen entwickelt,
- * 'Mikroexpressionen' codieren Gefühle des Menschen,
- * Annahme: Lügen ist emotionaler AKt und kann mit Mikroexpressionen entschlüsselt werden,
- * Studien zeigen: Vorgehen ist so exakt wie zufällige Vermutung,
- * Forschung ist uneinig, ob Mikroexpressionen bei jedem Menschen vorliegen und eindeutig sind.

>>> Die Geschichte des Lügendetektors - Die Rolle von KI

- Versuche Mikroexpressionen und ähnliches mit KI zu klassifizieren,
- * Nutzung für die Optimierung von Werbeanzeigen (Facebook),
- * Projekt AVATAR (US-Projekt für Grenzkontrollen)

>>> KI, Algorithmen und maschinelles Lernen

>>> Overfitting



Quelle: Sagar Sharma / Towards Data Science

>>> Was heißt interpretierbar?

- * Keine einheitliche Definition
- * Interpretierbarkeit als "Verstehen des Algorithmus":
 - * Bedeutung der Parameter kann verstanden werden
 - * Funktionsweise des Alogrithmus kann für jeden Input nachvollzugen werden
 - * Kann bei KI oft nicht angewendet werden
- Interpretierbarkeit durch methodische Analyse:
 - * Verschiedene Techniken
 - * Benutzung weiterer KI
 - * Analyse durch Manipulation von Datensätzen
 - * Konzepte sind neu
 - * Bedeutung und Korrektheit nicht geklärt

>>> Wofür braucht mensch Interpretierbarkeit?

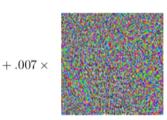
- * Kausalität vs. Korrelation, was lernt die KI?
- * Bsp.: KI soll Basketbälle erkennen und wird mit Bildern unterschieldicher Bälle trainiert. Erkennt die KI tatsächlich den Basketball oder einfach nur die Farbe Oragne?
- Wenn KI in gesellschaftlich relevanten Bereichen eingesetzt wird, kann es entscheidend sein Ergebnisse interpretieren zu können

>>> Missklassifikationshack

- * Ergebnisse der KI hängen stark vom Datensatz ab
- * Daraus ergibt sich ein Angriff auf KI's
- * Die Kriterien für die Entscheidung der KI stimmen nicht mit menschlichen Kriterien überein

>>> Panda oder Gibbon?

x
"panda"
57.7% confidence



 $sign(\nabla_x J(\boldsymbol{\theta}, x, y))$ "nematode"
8.2% confidence

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon"
99.3 % confidence

Quelle: J. Goodfellow et. al.

Quelle:

>>> Arten von Bias

Bias = Verzerrung

- * Bias in den Daten
- * Bias durch Design des Algorithmus
- * Bias durch Rückkopplung im Gebrauch

Konsequenz: Diskriminierende Algorithmen (auch Gender Bias, Racial Bias, Neurodiversity Bias etc. genannt)

- >>> Bias in den Daten
 - * Measurement Bias: Wie werden bestimmte Eigenschaften gemessen/bestimmt?
 - * COMPAS: Verhaftungen auch von Familie etc. wurden genutzt um Risiko zu bewerten

>>> Bias in den Daten

- * Measurement Bias: Wie werden bestimmte Eigenschaften gemessen/bestimmt?
 - * COMPAS: Verhaftungen auch von Familie etc. wurden genutzt um Risiko zu bewerten
- * Omitted Variable Bias: Wichtige Daten werden nicht im Modell berücksichtigt
 - * Ein Programm das die Kündigung von Abos (zB Netflix) prognostiziert, aber neue Konkurrenzangebote nicht beachtet

>>> Bias in den Daten

- * Measurement Bias: Wie werden bestimmte Eigenschaften gemessen/bestimmt?
 - * COMPAS: Verhaftungen auch von Familie etc. wurden genutzt um Risiko zu bewerten
- * Omitted Variable Bias: Wichtige Daten werden nicht im Modell berücksichtigt
 - * Ein Programm das die Kündigung von Abos (zB Netflix) prognostiziert, aber neue Konkurrenzangebote nicht beachtet
- * Represenation Bias: Fehlende Diversität in den verfügbaren Daten
 - * Coded Gaze, Joy Buolamwini

>>> Bias in den Daten

- * Measurement Bias: Wie werden bestimmte Eigenschaften gemessen/bestimmt?
 - * COMPAS: Verhaftungen auch von Familie etc. wurden genutzt um Risiko zu bewerten
- * Omitted Variable Bias: Wichtige Daten werden nicht im Modell berücksichtigt
 - * Ein Programm das die Kündigung von Abos (zB Netflix) prognostiziert, aber neue Konkurrenzangebote nicht beachtet
- Represenation Bias: Fehlende Diversität in den verfügbaren Daten
 - * Coded Gaze, Joy Buolamwini
- * Aggregation Bias: Spezifische Eigenschaften von Minderheiten gehen im gesamten Datensatz unter/Ableiten von Aussagen über Individuen aus Minderheit aus allgemeinem Datensatz
 - * Diskriminierungsklage gegen die Universität Berkeley

>>> Bias durch Design

- Evaluation Bias: Ergebnis wird an unrealistischen Kriterien gemessen
 - * Bias in Gesichtserkennung fällt nicht auf, weil Benchmarkdatenset gebiast ist

>>> Bias durch Rückkopplung

* Beispiel Profiling

* Measurement Bias: Schauspieler*innen statt echte Situationen, Stress beim Grenzübergang löst u.U. gleiche Symptome wie Lügen aus

- * Measurement Bias: Schauspieler*innen statt echte Situationen, Stress beim Grenzübergang löst u.U. gleiche Symptome wie Lügen aus
- * Omitted Variable Bias: Lügen/nicht Lügen zeigt sich in nichterfassten Phänomenen

- * Measurement Bias: Schauspieler*innen statt echte Situationen, Stress beim Grenzübergang löst u.U. gleiche Symptome wie Lügen aus
- Omitted Variable Bias: Lügen/nicht Lügen zeigt sich in nichterfassten Phänomenen
- * Representation Bias: fehlende Diversität race, gender, neurdiversity, disability, health, scars

- * Measurement Bias: Schauspieler*innen statt echte Situationen, Stress beim Grenzübergang löst u.U. gleiche Symptome wie Lügen aus
- * Omitted Variable Bias: Lügen/nicht Lügen zeigt sich in nichterfassten Phänomenen
- * Representation Bias: fehlende Diversität race, gender, neurdiversity, disability, health, scars
- * Aggregation Bias: Reaktionen (z.B. Mikroexpressionen) nicht konsistent. Gleiches Verhalten kann unterschiedliches bedeuten.

- * Measurement Bias: Schauspieler*innen statt echte Situationen, Stress beim Grenzübergang löst u.U. gleiche Symptome wie Lügen aus
- * Omitted Variable Bias: Lügen/nicht Lügen zeigt sich in nichterfassten Phänomenen
- * Representation Bias: fehlende Diversität race, gender, neurdiversity, disability, health, scars
- * Aggregation Bias: Reaktionen (z.B. Mikroexpressionen) nicht konsistent. Gleiches Verhalten kann unterschiedliches bedeuten.
- * Overfitting: 73 Prozent in Testdaten vs 93 Prozent in Trainingsdaten, das impliziert Overfitting ist wahrscheinlich

* Evaluation Bias: Testbedingungen entsprechen nicht den Einsatzbedingungen, zB Licht, Diversität

- * Evaluation Bias: Testbedingungen entsprechen nicht den Einsatzbedingungen, zB Licht, Diversität
- * Bias durch Rückkopplung: Wenn Einsatzdaten wieder eingespeist werden, dann: LD klassifiziert mehr Benachteiligte als lügend, Überprüfungsbeamt*in ebenso und gibt Daten zurück

>>> Testergebnisse

- * Anzahl verschiedener Personen in der Testdatenmenge: 1
- * Stichprobenstreuung: 24.37 (Truthful) / 34.29 (Deceptive)

Table IV: Classification Outcomes using Unseen Participants

Test No	Participant				Accuracy (%)	
	Truthful		Deceptive			D
	Gender	Ethnicity	Gender	Ethnicity	Truthful	Deceptive
1	M	EU	M	A/A	100	57
2	M	A/A	F	EU	50	36
3	M	A/A	F	EU	50	100
4	M	EU	F	EU	90	100
5	M	A/A	M	EU	100	10
6	M	EU	M	EU	72	100
7	M	A/A	F	EU	100	100
8	F	EU	F	A/A	38	100
9	M	EU	М	EU	80	60
Overall Accuracy (%)					75.55	73.66

>>> Politische Einordnung

- * Unfreiwillige Datenerhebung zur "Verbesserung" des Algorithmus
- * Entwicklung Ethischer Normen für KI (EU KI Standards, Gesellschaft für Informatik)

>>> Wie und wofür forschen wir?

- * Wissenschaft wird immer wieder instrumentalisiert
- * Wir brauchen mehr kognitive Diversität in Forschungseinrichtungen
- * Was ist dein wissenschaftlicher Standard und worauf gründet er?